cHAPTER 3: Control Flow

The control-flow statements of a language specify the order in which compu-
tations are performed. We have already met the most common control-flow
constructions in earlier examples; here we will complete the set, and be more
precise about the ones discussed before.

3.1 Statements and Blocks

An expression such as x = 0 or i++ or printf(...) becomes a statement

when it is followed by a semicolon, as in

x = 03

i++;

printf(...);
In C, the semicolon is a statement terminator, rather than a separator as it is in
languages like Pascal.

Braces { and } are used to group declarations and statements together into a
compound statement, or block, so that they are syntactically equivalent to a
single statement. The braces that surround the statements of a function are one
obvious example; braces around multiple statements after an if, else, while,
or for are another. (Variables can be declared inside any block; we will talk
about this in Chapter 4.) There is no semicolon after the right brace that ends
a block.

3.2 If-Else
The if-else statement is used to express decisions. Formally, the syntax is

if (expression)
Statement
else
Statement ,

55

56 CONTROL FLOW CHAPTER 3

where the else part is optional. The expression is evaluated; if it is true (that
is, if expression has a non-zero value), statement, is executed. If it is false
(expression is zero) and if there is an else part, statement, is executed
instead.

Since an if simply tests the numeric value of an expression, certain coding
shortcuts are possible. The most obvious is writing

if (expression)
instead of
if (expression |= 0)

Sometimes this is natural and clear; at other times it can be cryptic.

Because the else part of an if-else is optional, there is an ambiguity
when an else is omitted from a nested if sequence. This is resolved by asso-
ciating the else with the closest previous else-less if. For example, in

if (n > 0)
if (a > b)
zZ = a;
else
z = b;

the else goes with the inner if, as we have shown by indentation. If that isn’t
what you want, braces must be used to force the proper association:

if (n > 0) {

if (a > b)
Z = A
}
else
zZz = b;

The ambiguity is especially pernicious in situations like this:

if (n >= 0)
for (i = 0; i < n; i++)
if (s[i] > 0) {
printf("...");

return i;
}
else /% WRONG »/
printf("error -- n is negative\n");

The indentation shows unequivocally what you want, but the compiler doesn’t
get the message, and associates the else with the inner if. This kind of bug
can be hard to find; it’s a good idea to use braces when there are nested ifs.

By the way, notice that there is a semicolon after z = a in

SECTION 3.3 ELSE-IF §7

if (a > b)
zZ = a;
else
zZ = b;

This is because grammatically, a statement follows the if, and an expression
statement like “z = a;” is always terminated by a semicolon.

3.3 Else-If
The construction

if (expression)
statement

else if (expression)
statement

else if (expression)
Statement

else if (expression)
Statement

else
statement

occurs so often that it is worth a brief separate discussion. This sequence of if
statements is the most general way of writing a multi-way decision. The
expressions are evaluated in order; if any expression is true, the statement asso-
ciated with it is executed, and this terminates the whole chain. As always, the
code for each statement is either a single statement, or a group in braces.

The last else part handles the “none of the above” or default case where
none of the other conditions is satisfied. Sometimes there is no explicit action
for the default; in that case the trailing

else
statement

can be omitted, or it may be used for error checking to catch an “impossible”
condition.

To illustrate a three-way decision, here is a binary search function that
decides if a particular value x occurs in the sorted array v. The elements of v
must be in increasing order. The function returns the position (a number
between 0 and n-1) if x occurs in v, and -1 if not.

Binary search first compares the input value x to the middle element of the
array v. If x is less than the middle value, searching focuses on the lower half
of the table, otherwise on the upper half. In either case, the next step is to com-
pare x to the middle element of the selected half. This process of dividing the
range in two continues until the value is found or the range is empty.

58 CONTROL FLOW CHAPTER 3

/% binsearch: find x in v[0] <= v[1] <= ... <= v[n-1] */
int binsearch(int x, int v[], int n)
{

int low, high, mid;

low = 0;
high = n - 1;
while (low <= high) {
mid = (low+high) / 2;
if (x < v[mid])
high = mid - 1;
else if (x > v[mid])
low = mid + 1;
else /% found match */
return mid;

}

return -1; /% no match »/

}

The fundamental decision is whether x is less than, greater than, or equal to the
middle element v[mid] at each step; this is a natural for else-if.

Exercise 3-1. Our binary search makes two tests inside the loop, when one
would suffice (at the price of more tests outside). Write a version with only one
test inside the loop and measure the difference in run-time. O

3.4 Switch

The switch statement is a multi-way decision that tests whether an expres-
sion matches one of a number of constant integer values, and branches accord-

ingly.

switch (expression) {
case const-expr: Sstatements
case const-expr: statements
default: statements

}

Each case is labeled by one or more integer-valued constants or constant expres-
sions. If a case matches the expression value, execution starts at that case. All
case expressions must be different. The case labeled default is executed if
none of the other cases are satisfied. A default is optional; if it isn’t there
and if none of the cases match, no action at all takes place. Cases and the
default clause can occur in any order.

In Chapter 1 we wrote a program to count the occurrences of each digit,
white space, and all other characters, using a sequence of if ... else if ...
else. Here is the same program with a switch:

SECTION 3.4 SWITCH 59

#include <stdio.h>

main() /* count digits, white space, others »/

{
int ¢, i, nwhite, nother, ndigit[10];
nwhite = nother = 0;
for (i = 0; i < 10; i++)
ndigit[i] = 0;
while ((c = getchar()) != EOF) {
switch (c) {
case ‘0’: case ’“1’: case ’‘2’: case ’‘3’: case ‘4’:
case ‘5’: case ‘6’: case ‘7’: case ’8’: case ‘9’:
ndigit[c-"0"]1++;
break;
case ’ ‘:
case ‘\n’:
case ‘\t’:
nwhite++;
break;
default:
nother++;
break;
}
}
printf("digits =");
for (i = 0; i < 10; i++)
printf(" %d", ndigit([il]);
printf(", white space = %d, other = %d\n",
nwhite, nother);
return 0;
}

The break statement causes an immediate exit from the switch. Because
cases serve just as labels, after the code for one case is done, execution falls
through to the next unless you take explicit action to escape. break and
return are the most common ways to leave a switch. A break statement
can also be used to force an immediate exit from while, for, and do loops, as
will be discussed later in this chapter.

Falling through cases is a mixed blessing. On the positive side, it allows
several cases to be attached to a single action, as with the digits in this example.
But it also implies that normally each case must end with a break to prevent
falling through to the next. Falling through from one case to another is not
robust, being prone to disintegration when the program is modified. With the
exception of multiple labels for a single computation, fall-throughs should be
used sparingly, and commented.

As a matter of good form, put a break after the last case (the default
here) even though it’s logically unnecessary. Some day when another case gets
added at the end, this bit of defensive programming will save you.

60 CONTROL FLOW CHAPTER 3

Exercise 3-2. Write a function escape(s,t) that converts characters like
newline and tab into visible escape sequences like \n and \t as it copies the
string t to s. Use a switch. Write a function for the other direction as well,
converting escape sequences into the real characters. O

3.5 Loops—While and For

We have already encountered the while and for loops. In

while (expression)
statement

the expression is evaluated. If it is non-zero, statement is executed and expres-
sion is re-evaluated. This cycle continues until expression becomes zero, at
which point execution resumes after statement.
The for statement
for (expr,; expr,; expry)
Statement

is equivalent to
expr, ;
while (expr,) {
Statement
expry;
}

except for the behavior of continue, which is described in Section 3.7.
Grammatically, the three components of a for loop are expressions. Most
commonly, expr, and expr; are assignments or function calls and expr, is a
relational expression. Any of the three parts can be omitted, although the semi-
colons must remain. If expr, or expr; is omitted, it is simply dropped from the
expansion. If the test, expr,, is not present, it is taken as permanently true, so

for (5;) {
}

is an “infinite” loop, presumably to be broken by other means, such as a break
or return.
Whether to use while or for is largely a matter of personal preference.
For example, in
while ((c = getchar()) == * * || ==-‘\n’ || cim= \t%)
s /+ skip white space characters */

there is no initialization or re-initialization, so the while is most natural.
The for is preferable when there is a simple initialization and increment,
since it keeps the loop control statements close together and visible at the top of

SECTION 3.5 LOOPS—WHILE AND FOR 61

the loop. This is most obvious in

for (i = 0; i < n; i++)

which is the C idiom for processing the first n elements of an array, the analog
of the Fortran DO loop or the Pascal for. The analogy is not perfect, however,
since the index and limit of a C for loop can be altered from within the loop,
and the index variable i retains its value when the loop terminates for any rea-
son. Because the components of the for are arbitrary expressions, for loops
are not restricted to arithmetic progressions. Nonetheless, it is bad style to
force unrelated computations into the initialization and increment of a for,
which are better reserved for loop control operations.

As a larger example, here is another version of atoi for converting a string
to its numeric equivalent. This one is slightly more general than the one in
Chapter 2; it copes with optional leading white space and an optional + or -
sign. (Chapter 4 shows atof, which does the same conversion for floating-
point numbers.)

The structure of the program reflects the form of the input:

skip white space, if any
get sign, if any
get integer part and convert it

Each step does its part, and leaves things in a clean state for the next. The
whole process terminates on the first character that could not be part of a
number.

#include <ctype.h>

/# atoi: convert s to integer; version 2 %/
int atoi(char s[])

{
int i, n, sign;
for (i = 0; isspace(s[i]); i++) /» skip white space */
H
sign = (s[i] == ’-") ? -1 : 1;
if (s[i] == ’+’ i} s[i] == ’-’) /» skip sign */
i++;
for (n = 0; isdigit(s[i]); i++)
n=10 *n + (s[i] - ’0’);
return sign * nj;
}

The standard library provides a more elaborate function strtol for conversion
of strings to long integers; see Section 5 of Appendix B.

The advantages of keeping loop control centralized are even more obvious
when there are several nested loops. The following function is a Shell sort for
sorting an array of integers. The basic idea of this sorting algorithm, which was

62 CONTROL FLOW CHAPTER 3

invented in 1959 by D. L. Shell, is that in early stages, far-apart elements are
compared, rather than adjacent ones as in simpler interchange sorts. This tends
to eliminate large amounts of disorder quickly, so later stages have less work to
do. The interval between compared elements is gradually decreased to one, at
which point the sort effectively becomes an adjacent interchange method.

/+ shellsort: sort v[0]...v[n-1] into increasing order =/
void shellsort(int v[], int n)
{

int gap, i, j, temp;

for (gap = n/2; gap > 0; gap /= 2)
for (i = gap; i < n; i++)
for (j=i-gap; j>=0 && v[jl>v[j+gapl; j-=gap) {
temp = v[jl;
v[jl = vlj+gapl;
vlj+gap] = temp;

}

There are three nested loops. The outermost controls the gap between com-
pared elements, shrinking it from n/2 by a factor of two each pass until it
becomes zero. The middle loop steps along the elements. The innermost loop
compares each pair of elements that is separated by gap and reverses any that
are out of order. Since gap is eventually reduced to one, all elements are even-
tually ordered correctly. Notice how the generality of the for makes the outer
loop fit the same form as the others, even though it is not an arithmetic progres-
sion.

One final C operator is the comma *“,”, which most often finds use in the
for statement. A pair of expressions separated by a comma is evaluated left to
right, and the type and value of the result are the type and value of the right
operand. Thus in a for statement, it is possible to place multiple expressions in
the various parts, for example to process two indices in parallel. This is illus-
trated in the function reverse(s), which reverses the string s in place.

#include <string.h>

/% reverse: reverse string s in place */
void reverse(char s[])
{

int c; 4, 9

for (i = 0, j = strlen(s)-1; i < j; i++, j--) {
c = s[i];
s[i]l = s[j];
s[3] c;

SECTION 3.6 LOOPS—DO-WHILE 63

The commas that separate function arguments, variables in declarations, etc.,
are not comma operators, and do not guarantee left to right evaluation.

Comma operators should be used sparingly. The most suitable uses are for
constructs strongly related to each other, as in the for loop in reverse, and in
macros where a multistep computation has to be a single expression. A comma
expression might also be appropriate for the exchange of elements in reverse,
where the exchange can be thought of as a single operation:

for (i = 0, j = strlen(s)-1; i < j; i++, j--)
c = s[i], s[i] = s[3j], s[3] = c;

Exercise 3-3. Write a function expand(s1,s2) that expands shorthand nota-
tions like a-z in the string s1 into the equivalent complete list abc...xyz in
s2. Allow for letters of either case and digits, and be prepared to handle cases
like a-b-c and a-z0-9 and -a-z. Arrange that a leading or trailing - is
taken literally. O

3.6 Loops—Do-while

As we discussed in Chapter 1, the while and for loops test the termination
condition at the top. By contrast, the third loop in C, the do-while, tests at
the bottom after making each pass through the loop body; the body is always
executed at least once.

The syntax of the do is

do
Statement
while (expression) ;

The statement is executed, then expression is evaluated. If it is true, statement
is evaluated again, and so on. When the expression becomes false, the loop ter-
minates. Except for the sense of the test, do-while is equivalent to the Pascal
repeat-until statement.

Experience shows that do-while is much less used than while and for.
Nonetheless, from time to time it is valuable, as in the following function itoa,
which converts a number to a character string (the inverse of atoi). The job
is slightly more complicated than might be thought at first, because the easy
methods of generating the digits generate them in the wrong order. We have
chosen to generate the string backwards, then reverse it.

64 CONTROL FLOW CHAPTER 3

/# itoa: convert n to characters in s */
void itoa(int n, char s[])

{
int i, sign;
if ((sign = n) < 0) /% record sign */
n = -n; /% make n positive #/
i=20;
do { /% generate digits in reverse order »/
s[i++] = n % 10 + ‘0’; /% get next digit »/
} while ((n /= 10) > 0); /% delete it »/
if (sign < 0)
slit+] = 7=-%;
s[i] = ’°\0’;
reverse(s);
}

The do-while is necessary, or at least convenient, since at least one character
must be installed in the array s, even if n is zero. We also used braces around
the single statement that makes up the body of the do-while, even though
they are unnecessary, so the hasty reader will not mistake the while part for
the beginning of a while loop.

Exercise 3-4. In a two’s complement number representation, our version of
itoa does not handle the largest negative number, that is, the value of n equal
to —(2ordsize=l) Explain why not. Modify it to print that value correctly,
regardless of the machine on which it runs. O

Exercise 3-5. Write the function itob(n,s,b) that converts the integer n
into a base b character representation in the string s. In particular,
itob(n,s, 16) formats n as a hexadecimal integer in s. O

Exercise 3-6. Write a version of itoa that accepts three arguments instead of
two. The third argument is a minimum field width; the converted number must
be padded with blanks on the left if necessary to make it wide enough. O

3.7 Break and Continue

It is sometimes convenient to be able to exit from a loop other than by test-
ing at the top or bottom. The break statement provides an early exit from
for, while, and do, just as from switch. A break causes the innermost
enclosing loop or switch to be exited immediately.

The following function, trim, removes trailing blanks, tabs, and newlines
from the end of a string, using a break to exit from a loop when the rightmost
non-blank, non-tab, non-newline is found.

SECTION 3.8 GOTO AND LABELS 65

/+ trim: remove trailing blanks, tabs, newlines */
int trim(char s[])
{

int nj;

for (n = strlen(s)-1; n >= 0; n--)
if (s[n] != ’ ’ && s[n] I= ’\t’ && s[n] != ‘\n’)
break;
s[n+1] = ’\0’;
return n;

}

strlen returns the length of the string. The for loop starts at the end and
scans backwards looking for the first character that is not a blank or tab or
newline. The loop is broken when one is found, or when n becomes negative
(that is, when the entire string has been scanned). You should verify that this
is correct behavior even when the string is empty or contains only white space
characters.

The continue statement is related to break, but less often used; it causes
the next iteration of the enclosing for, while, or do loop to begin. In the
while and do, this means that the test part is executed immediately; in the
for, control passes to the increment step. The continue statement applies
only to loops, not to switch. A continue inside a switch inside a loop
causes the next loop iteration.

As an example, this fragment processes only the non-negative elements in
the array a; negative values are skipped.

for (i = 0; 1 < n; i++) {
if (a[i] < 0) /% skip negative elements */
continue;
/% do positive elements */
}

The continue statement is often used when the part of the loop that follows is
complicated, so that reversing a test and indenting another level would nest the
program too deeply.

3.8 Goto and Labels

C provides the infinitely-abusable goto statement, and labels to branch to.
Formally, the goto is never necessary, and in practice it is almost always easy
to write code without it. We have not used goto in this book.

Nevertheless, there are a few situations where gotos may find a place. The
most common is to abandon processing in some deeply nested structure, such as
breaking out of two or more loops at once. The break statement cannot be
used directly since it only exits from the innermost loop. Thus:

66 CONTROL FLOW CHAPTER 3

for (i)
for (...) ¥

if (disaster)
goto error;

error:
clean up the mess

This organization is handy if the error-handling code is non-trivial, and if errors
can occur in several places.

A label has the same form as a variable name, and is followed by a colon. It
can be attached to any statement in the same function as the goto. The scope
of a label is the entire function.

As another example, consider the problem of determining whether two
arrays a and b have an element in common. One possibility is

for (i = 0; i < n; i++)
for (j = 05 j < mj j++)
if (alil == b[3j])
goto found;
/% didn’t find any common element #/

found:
/% got one: al[i] == b[j] »/

Code involving a goto can always be written without one, though perhaps at
the price of some repeated tests or an extra variable. For example, the array
search becomes

found = 0;
for (i = 0; i < n && !found; i++)
for (j = 0; j < m && !found; j++)
if (a[i] == b[jl])
found = 1;
if (found)
/% got one: a[i-1] == b[j-1] »/

else
/% didn’t find any common element #*/

With a few exceptions like those cited here, code that relies on goto state-
ments is generally harder to understand and to maintain than code without
gotos. Although we are not dogmatic about the matter, it does seem that
goto statements should be used rarely, if at all.

