
xxi

Foreword

In reading a book or manuscript for the first time I always ask myself the same
question, “What is the author adding to the state of the art on this subject?” In
Mike’s case the answer is twofold: His book adds to our knowledge of “how” to do
estimating and planning, and it adds to our knowledge of “why” certain practices
are important.

Agile planning is deceptive. At one level, it’s pretty easy—create a few story
cards, prioritize them, allocate them to release iterations, then add additional
detail to get a next iteration plan. You can show a team the basics of planning in
a couple of hours, and they can actually turn out a tolerable plan (for a small
project) in a few more hours. Mike’s book will greatly help teams move from pro-
ducing tolerable plans to producing very good plans. I’m using my words care-
fully here—I didn’t say a great plan, because as Mike points out in this book, the
difference between a good (enough) plan and a great plan probably isn’t worth
the extra effort.

My early thoughts about Mike’s book have to do with the concept of agile
planning itself. I’m always amused, and sometimes saddened, by the lack of un-
derstanding about agile planning. We hear criticisms like “agile project teams
don’t plan,” or “agile teams won’t commit to dates and features.” Even Barry
Boehm and Richard Turner got it wrong in Balancing Agility and Discipline: A
Guide for the Perplexed (Addison-Wesley, 2004) when they talk about plan-
driven versus agile methods. Actually, Boehm and Turner got the idea right, but
the terms wrong. By plan-driven they actually mean “greatly weighting the bal-
ance of anticipation versus adaptation toward anticipation,” while in agile

AEP.book Page xxi Tuesday, October 4, 2005 1:48 AM

xxii | Foreword

methods the weighting is the opposite. The problem with the words “plan-
driven” versus “agile” is that it sends entirely the wrong message—that agile
teams don’t plan. Nothing could be further from the state of the practice. Mike’s
book sends the right message—planning is an integral part of any agile project.
The book contains a wealth of ideas about why planning is so important and how
to plan effectively.

First, agile teams do a lot of planning, but it is spread out much more evenly
over the entire project. Second, agile teams squarely face the critical factor that
many non-agile teams ignore—uncertainty. Is planning important?—absolutely.
Is adjusting the plan as knowledge is gained and uncertainty reduced impor-
tant?—absolutely. I’ve gone into too many organizations where making outland-
ish early commitments, and then failing to meet those commitments, was
acceptable, while those who tried to be realistic (and understanding uncertainty)
were branded as “not getting with the program,” or “not being team players.” In
these companies failure to deliver seems to be acceptable, whereas failure to
commit (even to outlandish objectives) is unacceptable. The agile approach, as
Mike so ably describes, is focused on actually delivering value and not on making
outrageous and unachievable plans and commitments. Agile developers essen-
tially say: We will give you a plan based on what we know today; we will adapt the
plan to meet your most critical objective; we will adapt the project and our plans
as we both move forward and learn new information; we expect you to under-
stand what you are asking for—that flexibility to adapt to changing business
conditions and absolute conformance to original plans are incompatible objec-
tives. Agile Estimating and Planning addresses each of those statements.

Returning to the critical issue of managing uncertainty, Mike does a great
job of looking at how an agile development process works to reduce ends uncer-
tainty (what do we really want to build) and means uncertainty (how are we go-
ing to build it), concurrently. Many traditional planners don’t understand a key
concept—you can’t “plan” away uncertainty. Plans are based on what we know at
a given point in time. Uncertainty is another way of expressing what we don’t
know—about the ends or the means. For most uncertainties (lack of knowledge)
the only way to reduce the uncertainty and gain knowledge is to execute—to do
something, to build something, to simulate something—and then get feedback.
Many project management approaches appear to be “plan, plan, plan-do.” Agile
approaches are “plan-do-adapt,” “plan-do-adapt.” The higher a project’s uncer-
tainties, the more critical an agile approach is to success.

I’d like to illustrate the “how’s” and “why’s” of Mike’s book by looking at
Chapters 4 and 5, which detail how to estimate story points or ideal days and
provide an explanation of the pros and cons of each. While I have used both

AEP.book Page xxii Tuesday, October 4, 2005 1:48 AM

Foreword | xxiii

approaches with clients, Mike’s words crystallized my thinking about the bene-
fits of story-point estimation, and I realized that story points are part of an evo-
lution, an evolution toward simplicity. Software development organizations have
long looked for an answer to the question, “How big is this piece of software.” A
home builder can do some reasonable estimating based on square footage. While
estimates from builders may vary, the size is fixed (although finish work, mate-
rial specifications, and more will also impact the estimates) and remains a con-
stant. Software developers have long searched for such a measurement.

In software development we first utilized lines-of-code to size the product
(this measure still has its uses today). For much day-to-day planning, lines-of-
code proved to be of limited use for a variety of reasons, including the amount of
up-front work required to estimate them. Next on the scene came function
points (and several similar ideas). Function points eliminated a number of the
problems with lines-of-code, but still required a significant amount of up-front
work to calculate (you had to estimate inputs, outputs, files, and so on). But
what dooms function points from widespread use is their complexity. My guess is
that as the complexity of counting has gone up—a quick perusal of the Interna-
tional Function Point User Group (IFPUG) website indicates the degree of that
complexity—the usage in the general population has gone down.

However, the need to estimate the “size” of a software project has not dimin-
ished. The problem with both historical measures is twofold—they are complex
to calculate and they are based on a waterfall approach to development. We still
need a size measure, we just need one that is simple to calculate and applicable
without going through the entire requirements and design phases.

The two critical differences between story points and either lines-of-code or
function points are that they are simpler to calculate and they can be calculated
much earlier. Why are they simpler? Because they are based on relative size
more than absolute size. Why can they be calculated earlier? Because they are
based on relative size more than absolute size. As Mike points out, story-point
estimating is about sitting around discussing stories (gaining shared knowledge)
and guestimating the relative story size. Relative sizing, as opposed to absolute
sizing, goes remarkably quickly. Furthermore, after a few iterations of sizing and
delivering, the accuracy of a team’s guestimates improves significantly. Mike’s
description of both the “how” and the “why” of story-point versus ideal days esti-
mating provides keen insight into this critical topic.

Another example of Mike’s thoroughness shows up in Chapters 9 to 11, on
the prioritization of stories. Mike isn’t content with telling us to do the highest
value stories first, he actually delves into the key aspects of value: financial
benefits, cost, innovation/knowledge, and risk. He carefully defines each of these

AEP.book Page xxiii Tuesday, October 4, 2005 1:48 AM

xxiv | Foreword

aspects of value (including a primer on Net Present Value, Internal Rate of
Return, and other financial analysis tools), and then provides several schemes
(with varying levels of simplicity) for weighting decisions using these different
aspects of value.

Often, people new to agile development think that if you are doing the
twelve or nineteen or eight practices of a particular methodology that you are
therefore Agile, or Extreme, or Crystal Clear, or whatever. But in reality, you are
Agile, Extreme, or otherwise when you know enough about the practices to
adapt them to the reality of your own specific situation. Continuous learning and
adaptation are core to agile development. What Mike does so well in this book is
provide us with the ideas and experience that help take our agile estimating and
planning practices to this next level of sophistication. Mike tells us “how” in
depth—for example, the material on estimating in story points and ideal days.
Mike tells us “why” in depth—for example the pros and cons of both story points
and ideal days. While he usually gives us his personal recommendation (he pre-
fers story points), he provides enough information so we feel confident in tailor-
ing practices to specific situations ourselves.

So, this, in the end, identifies Mike’s significant contribution to the state of
the art—he helps us think through estimating and planning practices at a new
depth of knowledge and experience (the how) and then helps us frame decisions
about using this new knowledge in adapting these practices to new, unique, or
merely specific situations (the why). Of the half-dozen books I regularly recom-
mend to clients, Mike has written two of them. Agile Estimating and Planning
goes on my “must read” list for those wanting to understand the state of the art
in this aspect of agile project management.

Jim Highsmith
Agile Practice Director, Cutter Consortium

Flagstaff, Arizona
August 2005

AEP.book Page xxiv Tuesday, October 4, 2005 1:48 AM

