Part |

Techniques

1

Policy-Based Class Design

This chapter describes policies and policy classes, important class design techniques
that enable the creation of flexible, highly reusable libraries—as Loki aims to be. In brief,
policy-based class design fosters assembling a class with complex behavior out of many
little classes (called policies), each of which takes care of only one behavioral or structural
aspect. As the name suggests, a policy establishes an interface pertaining to a specific issue.
You can implement policies in various ways as long as you respect the policy interface.

Because you can mix and match policies, you can achieve a combinatorial set of behav-
iors by using a small core of elementary components.

Policies are used in many chapters of this book. The generic SingletonHolder class
template (Chapter 6) uses policies for managing lifetime and thread safety. SmartPtr
(Chapter 7) is practically built out of policies. The double-dispatch engine in Chapter 11
uses policies for selecting various trade-offs. The generic Abstract Factory (Gamma et al.
1995) implementation in Chapter 9 uses a policy for choosing a creation method.

This chapter explains the problem that policies are intended to solve, provides details
of policy-based class design, and gives advice on decomposing a class into policies.

1.1 The Multiplicity of Software Design

Software engineering, maybe more than any other engineering discipline, exhibits a rich
multiplicity: You can do the same thing in many correct ways, and there are infinite nu-
ances between right and wrong. Each path opens up a new world. Once you choose a
solution, a host of possible variants appears, on and on at all levels—from the system ar-
chitecture level down to the smallest coding detail. The design of a software system is a
choice of solutions out of a combinatorial solution space.

Let’s think of a simple, low-level design artifact: a smart pointer (Chapter 7). A smart
pointer class can be single threaded or multithreaded, can use various ownership strategies,
can make various trade-offs between safety and speed, and may or may not support auto-
matic conversions to the underlying raw pointer type. All these features can be combined
freely, and usually exactly one solution is best suited for a given area of your application.

The multiplicity of the design space constantly confuses apprentice designers. Given
a software design problem, what’s a good solution to it? Events? Objects? Observers?

4 Policy-Based Class Design Chapter 1

Callbacks? Virtuals? Templates? Up to a certain scale and level of detail, many different so-
lutions seem to work equally well.

The most important difference between an expert software architect and a beginner is
the knowledge of what works and what doesn’t. For any given architectural problem, there are
many competing ways of solving it. However, they scale differently and have distinct sets
of advantages and disadvantages, which may or may not be suitable for the problem at
hand. A solution apparently acceptable on the whiteboard might be unusable in practice.

Designing software systems is hard because it constantly asks you to choose. And in pro-
gram design, just as in life, choice is hard.

Good, seasoned designers know what choices will lead to a good design. For a begin-
ner, each design choice opens a door to the unknown. The experienced designer is like a
good chess player: She can see more moves ahead. This takes time to learn. Maybe this is
the reason why programming genius may show at an early age, whereas software design
genius tends to take more time to ripen.

In addition to puzzling beginners, the combinatorial nature of design decisions is a ma-
jor source of trouble for library writers. To implement a useful library of designs, the li-
brary designer must classify and accommodate many typical situations, yet still leave the
library open-ended so that the application programmer can tailor it to the specific needs of
a particular situation.

Indeed, how can one package flexible, sound design components in libraries? How can
one let the user configure these components? How does one fight the “evil multiplicity” of
design with a reasonably sized army of code? These are the questions that the remainder
of this chapter, and ultimately this whole book, try to answer.

1.2 The Failure of the Do-It-All Interface

Implementing everything under the umbrella of a do-it-all interface is not a good solution,
for several reasons.

Some important negative consequences are intellectual overhead, sheer size, and effi-
ciency. Mammoth classes are unsuccessful because they incur a big learning overhead, tend
to be unnecessarily large, and lead to code that’s much slower than the equivalent hand-
crafted version.

But maybe the most important problem of an overly rich interface is loss of static type
safety. One essential purpose of the architecture of a system is to enforce certain axioms “by
design”—for example, you cannot create two Singleton objects (see Chapter 6) or create ob-
jects of disjoint families (see Chapter 9). Ideally, a design should enforce most constraints
at compile time.

In a large, all-encompassing interface, it is very hard to enforce such constraints. Typi-
cally, once you have chosen a certain set of design constraints, only certain subsets of the
large interface remain semantically valid. A gap grows between syntactically valid and se-
mantically valid uses of the library. The programmer can write an increasing number of con-
structs that are syntactically valid, but semantically illegal.

For example, consider the thread-safety aspect of implementing a Singleton object. If the
library fully encapsulates threading, then the user of a particular, nonportable threading

Section 1.3 Multiple Inheritance to the Rescue? 5

system is not able to use the Singleton library. If the library gives access to the unprotected
primitive functions, there is the risk that the programmer will break the design by writing
code that’s syntactically—but not semantically—valid.

What if the library implements different design choices as different, smaller classes?
Each class would represent a specific canned design solution. In the smart pointer case,
for example, you would expect a battery of implementations: SingleThreadedSmartPtr,
MultiThreadedSmartPtr, RefCountedSmartPtr, RefLinkedSmartPtr, and so on.

The problem that emerges with this second approach is the combinatorial explosion of
the various design choices. The four classes just mentioned lead necessarily to combina-
tions such as SingleThreadedRefCountedSmartPtr. Adding a third design option such as
conversion support leads to exponentially more combinations, which will eventually over-
whelm both the implementer and the user of the library. Clearly this is not the way to go.
Never use brute force in fighting an exponential.

Not only does such a library incur an immense intellectual overhead, but it also is
extremely rigid. The slightest unpredicted customization—such as trying to initialize
default-constructed smart pointers with a particular value—renders all the carefully
crafted library classes useless.

Designs enforce constraints; consequently, design-targeted libraries must help user-
crafted designs to enforce their own constraints, instead of enforcing predefined constraints.
Canned design choices would be as uncomfortable in design-targeted libraries as magic
constants would be in regular code. Of course, batteries of “most popular” or “recom-
mended” canned solutions are welcome, as long as the client programmer can change them
if needed.

These issues have led to an unfortunate state of the art in the library space: Low-level
general-purpose and specialized libraries abound, while libraries that directly assist the
design of an application—the higher-level structures—are practically nonexistent. This
situation is paradoxical because any nontrivial application has a design, so a design-
targeted library would apply to most applications.

Frameworks try to fill the gap here, but they tend to lock an application into a specific
design rather than help the user to choose and customize a design. If programmers need to
implement an original design, they have to start from first principles—classes, functions,
and so on.

1.3 Multiple Inheritance to the Rescue?

A TemporarySecretary class inherits both the Secretary and the Temporary classes.!
TemporarySecretary has the features of both a secretary and a temporary employee, and
possibly some more features of its own. This leads to the idea that multiple inheritance
might help with handling the combinatorial explosion of design choices through a small
number of cleverly chosen base classes. In such a setting, the user would build a multi-
threaded, reference-counted smart pointer class by inheriting some BaseSmartPtr class

This example is drawn from an old argument that Bjarne Stroustrup made in favor of multiple inheritance,
in the first edition of The C++ Programming Language. At that time, multiple inheritance had not yet been intro-
duced in C++.

6 Policy-Based Class Design Chapter 1

and two classes: MultiThreaded and RefCounted. Any experienced class designer knows
that such a naive design does not work.

Analyzing the reasons why multiple inheritance fails to allow the creation of flexible
designs provides interesting ideas for reaching a sound solution. The problems with as-
sembling separate features by using multiple inheritance are as follows:

1. Mechanics. There is no boilerplate code to assemble the inherited components in a con-
trolled manner. The only tool that combines BaseSmartPtr, MultiThreaded, and Ref-
Counted is a language mechanism called multiple inheritance. The language applies
simple superposition in combining the base classes and establishes a set of simple rules
for accessing their members. This is unacceptable except for the simplest cases. Most
of the time, you need to orchestrate the workings of the inherited classes carefully to
obtain the desired behavior.

2. Type information. The base classes do not have enough type information to carry on
their tasks. For example, imagine you try to implement deep copy for your smart
pointer class by deriving from a DeepCopy base class. But what interface would Deep-
Copy have? It must create objects of a type it doesn’t know yet.

3. State manipulation. Various behavioral aspects implemented with base classes must ma-
nipulate the same state. This means that they must use virtual inheritance to inherit a
base class that holds the state. This complicates the design and makes it more rigid be-
cause the premise was that user classes inherit library classes, not vice versa.

Although combinatorial in nature, multiple inheritance cannot address by itself the multi-
plicity of design choices.

1.4 Templates Bring Hope

Templates are a good candidate for coping with combinatorial behaviors because they gen-
erate code at compile time based on the types provided by the user.

Class templates are customizable in ways not supported by regular classes. If you
want to implement a special case, you can specialize any member functions of a class tem-
plate for a specific instantiation of the class template. For example, if the template is
SmartPtr<T>, you can specialize any member function for, say, SmartPtr<widget>. This
gives you good granularity in customizing behavior.

Furthermore, for class templates with multiple parameters, you can use partial tem-
plate specialization (as you will see in Chapter 2). Partial template specialization gives
you the ability to specialize a class template for only some of its arguments. For example,
given the definition

template <class T, class U> class SmartPtr { ... };

you can specialize SmartPtr<T, U> for Widget and any other type, with the following
syntax:

template <class U> class SmartPtr<Widget, U> { ... };

Section 1.5 Policies and Policy Classes 7

The innate compile-time and combinatorial nature of templates makes them very at-
tractive for creating design artifacts. As soon as you try to implement such designs, you
stumble upon several problems that are not self-evident:

1. You cannot specialize structure. Using templates alone, you cannot specialize the struc-
ture of a class (its data members). You can only specialize functions.

2. Specialization of member functions does not scale. You can specialize any member function
of a class template with one template parameter, but you cannot specialize individual
member functions for templates with multiple template parameters. For example:

template <class T> class Widget

void Fun() { .. generic implementation ... }
1
// OK: specialization of a member function of Widget
template <> Widget<char>::Fun(Q)

{
}

template <class T, class U> class Gadget

. specialized implementation ...

void Fun() { .. generic implementation ... }
};
// Error! Cannot partially specialize a member class of Gadget
template <class U> void Gadget<char, U>::Fun()

{
}

. specialized implementation ...

3. The library writer cannot provide multiple default values. At best, a class template imple-
menter can provide a single default implementation for each member function. You
cannot provide several defaults for a template member function.

Now compare the list of drawbacks of multiple inheritance with the list of drawbacks
of templates. Interestingly, multiple inheritance and templates foster complementary trade-
offs. Multiple inheritance has scarce mechanics; templates have rich mechanics. Multiple
inheritance loses type information, which abounds in templates. Specialization of tem-
plates does not scale, but multiple inheritance scales quite nicely. You can provide only one
default for a template member function, but you can write an unbounded number of base
classes.

This analysis suggests that a combination of templates and multiple inheritance could
engender a very flexible device, appropriate for creating libraries of design elements.

1.5 Policies and Policy Classes

Policies and policy classes help in implementing safe, efficient, and highly customizable
design elements. A policy defines a class interface or a class template interface. The interface

8 Policy-Based Class Design Chapter 1

consists of one or all of the following: inner type definitions, member functions, and mem-
ber variables.

Policies have much in common with traits (Alexandrescu 2000a) but differ in that they
put less emphasis on type and more emphasis on behavior. Also, policies are reminiscent
of the Strategy design pattern (Gamma et al. 1995), with the twist that policies are compile-
time bound.

For example, let’s define a policy for creating objects. The Creator policy prescribes
a class template of type T. This class template must expose a member function called
Create that takes no arguments and returns a pointer to T. Semantically, each call to
Create should return a pointer to a new object of type T. The exact mode in which the ob-
ject is created is left to the latitude of the policy implementation.

Let’s define some policy classes that implement the Creator policy. One possible way is
to use the new operator. Another way is to use malloc and a call to the placement new oper-
ator (Meyers 1998b). Yet another way would be to create new objects by cloning a proto-
type object. Here are examples of all three methods:

template <class T>
struct OpNewCreator

{
static T* Create()
{
return new T;
}
};

template <class T>
struct MallocCreator

{
static T* Create()
{
void* buf = std::malloc(sizeof(T));
if (!'buf) return 0;
return new(buf) T;
}
};

template <class T>
struct PrototypeCreator
{
PrototypeCreator(T* pObj = 0)
:pPrototype_(pObj)
{3
T* Create()
{

}

T* GetPrototype() { return pPrototype_; }

void SetPrototype(T* pObj) { pPrototype_ = pObj; }
private:

T* pPrototype_;
3

return pPrototype_? pPrototype_->Clone() : 0;

Section 1.5 Policies and Policy Classes 9

For a given policy, there can be an unbounded number of implementations. The imple-
mentations of a policy are called policy classes.? Policy classes are not intended for stand-
alone use; instead, they are inherited by, or contained within, other classes.

An important aspect is that, unlike classic interfaces (collections of pure virtual func-
tions), policies” interfaces are loosely defined. Policies are syntax oriented, not signature
oriented. In other words, Creator specifies what syntactic constructs should be valid for a
conforming class, rather than what exact functions that class must implement. For ex-
ample, the Creator policy does not specify that Create must be static or virtual—the only
requirement is that the class template define a Create member function. Also, Creator says
that Create should return a pointer to a new object (as opposed to must). Consequently, it is
acceptable that in special cases, Create might return zero or throw an exception.

You can implement several policy classes for a given policy. They all must respect the
interface as defined by the policy. The user then chooses what policy class to use in larger
structures, as you will see.

The three policy classes defined earlier have different implementations and even
slightly different interfaces (for example, PrototypeCreator has two extra functions: Get-
Prototype and SetPrototype). However, they all define a function called Create with the
required return type, so they conform to the Creator policy.

Let’s see now how we can design a class that exploits the Creator policy. Such a class
will either contain or inherit one of the three classes defined previously, as shown in the
following:

// Library code
template <class CreationPolicy>
class WidgetManager : public CreationPolicy

{
1

The classes that use one or more policies are called hosts or host classes.®> In the example
above, WidgetManager is a host class with one policy. Hosts are responsible for assembling
the structures and behaviors of their policies in a complex structure and behavior.

When instantiating the WidgetManager template, the client passes the desired policy:

// Application code
typedef WidgetManager< OpNewCreator<Widget> > MyWidgetMgr;

Let’s analyze the resulting context. Whenever an object of type MywidgetMgr needs to
create a Widget, it invokes Create() for its OpNewCreator<Widget> policy subobject. How-
ever, it is the user of WidgetManager who chose the creation policy. Effectively, through its
design, WidgetManager allows its users to configure a specific aspect of WidgetManager’s
functionality.

This is the gist of policy-based class design.

2This name is slightly inaccurate because, as you will see soon, policy implementations can be class templates.
3Although host classes are technically host class templates, let’s stick to a unique definition. Both host classes
and host class templates serve the same concept.

10 Policy-Based Class Design Chapter 1

1.5.1 Implementing Policy Classes with Template Template Parameters

Often, as is the case above, the policy’s template argument is redundant. It is awkward that
the user must pass OpNewCreator’s template argument explicitly. Typically, the host class
already knows, or can easily deduce, the template argument of the policy class. In the ex-
ample above, WidgetManager always manages objects of type Widget, so requiring the user
to specify Widget again in the instantiation of OpNewCreator is redundant and potentially
dangerous.

In this case, library code can use template template parameters for specifying policies, as
shown in the following:

// Library code
template <template <class Created> class CreationPolicy>
class WidgetManager : public CreationPolicy<Widget>

{
3

In spite of appearances, the Created symbol does not contribute to the definition of
WidgetManager. You cannot use Created inside WidgetManager—it is a formal argument for
CreationPolicy (not WidgetManager) and can be simply missing.

Application code now has to provide only the name of the template in instantiating
WidgetManager:

// Application code
typedef WidgetManager<OpNewCreator> MyWidgetMgr;

Using template template parameters with policy classes is not simply a matter of con-
venience; sometimes, it is essential that the host class have access to the template so that the
host can instantiate it with a different type. For example, assume WidgetManager needs also

to create objects of type Gadget using the same creation policy. Then the code would look
like this:

// Library code
template <template <class> class CreationPolicy>
class WidgetManager : public CreationPolicy<Widget>

{
\./c.r}d DoSomething()
¢ Gadget* pW = CreationPolicy<Gadget>().Create();
) -

1

Does using policies give one an edge? At first sight, not a lot. For one thing, all im-
plementations of the Creator policy are trivially simple. The author of WidgetManager
could certainly have written the creation code inline and avoided the trouble of making
WidgetManager a template.

Section 1.5 Policies and Policy Classes 11

But using policies gives great flexibility to WidgetManager. First, you can change
policies from the outside as easily as changing a template argument when instantiating
WidgetManager. Second, you can provide your own policies that are specific to your con-
crete application. You can use new, malloc, prototypes or a peculiar memory allocation li-
brary that only your system uses. It is as if WidgetManager were a little code generation engine,
and you configure the ways in which it generates code.

To ease the life of application developers, WidgetManager’s author might define a bat-
tery of often-used policies and provide a default template argument for the policy that’s
most commonly used:

template <template <class> class CreationPolicy = OpNewCreator>
class WidgetManager ...

Note that policies are quite different from mere virtual functions. Virtual functions
promise a similar effect: The implementer of a class defines higher-level functions in terms
of primitive virtual functions and lets the user override the behavior of those primitives.
As shown above, however, policies come with enriched type knowledge and static bind-
ing, which are essential ingredients for building designs. Aren’t designs full of rules that
dictate before runtime how types interact with each other and what you can and what you
cannot do? Policies allow you to generate designs by combining simple choices in a type-
safe manner. In addition, because the binding between a host class and its policies is done
at compile time, the code is tight and efficient, comparable to its handcrafted equivalent.

Of course, policies’ features also make them unsuitable for dynamic binding and binary
interfaces, so in essence policies and classic interfaces do not compete.

1.5.2 Implementing Policy Classes with Template Member Functions

An alternative to using template template parameters is to use template member functions
in conjunction with simple classes. That is, the policy implementation is a simple class (as
opposed to a template class) but has one or more templated members.

For example, we can redefine the Creator policy to prescribe a regular (nontemplate)
class that exposes a template function Create<T>. A conforming policy class looks like the
following:

struct OpNewCreator

{
template <class T>
static T* Create()
{
return new T;
}
b

This way of defining and implementing a policy has the advantage of being better sup-
ported by older compilers. On the other hand, policies defined this way are often harder to
talk about, define, implement, and use.

12 Policy-Based Class Design Chapter 1

1.6 Enriched Policies

The Creator policy prescribes only one member function, Create. However, Prototype-
Creator defines two more functions, GetPrototype and SetPrototype. Let’s analyze the re-
sulting context.

Because WidgetManager inherits its policy class and because GetPrototype and Set-
Prototype are public members of PrototypeCreator, the two functions propagate through
WidgetManager and are directly accessible to clients.

However, WidgetManager asks only for the Create member function; that’s all
WidgetManager needs and uses for ensuring its own functionality. The users, however, can
exploit the enriched interface.

A user who uses a prototype-based Creator policy class can write the following code:

typedef WidgetManager<PrototypeCreator>
MyWidgetManager;

Widget* pPrototype = ...;

MyWidgetManager mgr;

mgr.SetPrototype(pPrototype);
. use mgr ...

If later on the user decides to use a creation policy that does not support prototypes, the
compiler pinpoints the spots where the prototype-specific interface was used. This is ex-
actly what should be expected from a sound design.

The resulting context is very favorable. Clients who need enriched policies can benefit
from that rich functionality, without affecting the basic functionality of the host class. Don’t
forget that users decide what policy class to use, not the library. Unlike regular multiple in-
terfaces, policies give the user the ability to add functionality to a host class, in a typesafe
manner.

1.7 Destructors of Policy Classes

There is an important detail about creating policy classes. Most often, the host class uses
public inheritance to derive from its policies. For this reason, the user can automatically
convert a host class to a policy and later deTete that pointer. Unless the policy class defines
a virtual destructor, applying delete to a pointer to the policy class has undefined behav-
ior,* as shown below.

typedef WidgetManager<PrototypeCreator>
MyWidgetManager;

MyWidgetManager wm;

PrototypeCreator<Widget>* pCreator = &wm; // dubious, but Tegal
delete pCreator; // compiles fine, but has undefined behavior

Defining a virtual destructor for a policy, however, works against its static nature and
hurts performance. Many policies don’t have any data members, but rather are purely be-

#You can find a discussion on exactly why this happens in Chapter 4, Small-Object Allocation.

Section 1.8 Optional Functionality Through Incomplete Instantiation 13

havioral by nature. The first virtual function added incurs a size overhead for the objects
of that class, so the virtual destructor should be avoided.
A solution is to have the host class use protected or private inheritance when deriving
from the policy class. However, this would disable enriched policies as well (Section 1.6).
The lightweight, effective solution that policies should use is to define a nonvirtual pro-
tected destructor:

struct OpNewCreator

{
template <class T>
static T* Create()
{
return new T;
b
protected:
~OpNewCreator() {}
b

Because the destructor is protected, only derived classes can destroy policy objects, so it’s
impossible for outsiders to apply delete to a pointer to a policy class. The destructor, how-
ever, is not virtual, so there is no size or speed overhead.

1.8 Optional Functionality Through Incomplete Instantiation

It gets even better. C++ contributes to the power of policies with an interesting feature. If
a member function of a class template is never used, it is not even instantiated —the com-
piler does not look at it at all, except perhaps for syntax checking.®

This gives the host class a chance to specify and use optional features of a policy class.
For example, let’s define a SwitchPrototype member function for WidgetManager.

// Library code
template <template <class> class CreationPolicy>
class WidgetManager : public CreationPolicy<Widget>

{
void SwitchPrototype(Widget* pNewPrototype)
{
CreationPolicy<Widget>& myPolicy = *this;
delete myPolicy.GetPrototype();
myPoTlicy.SetPrototype(pNewPrototype);
}

b
The resulting context is very interesting:

¢ If the user instantiates WidgetManager with a Creator policy class that supports proto-
types, he or she can use SwitchPrototype.

5According to the C++ standard, the degree of syntax checking for unused template functions is up to the
implementation. The compiler does not do any semantic checking—for example, symbols are not looked up.

14 Policy-Based Class Design Chapter 1

¢ If the user instantiates WidgetManager with a Creator policy class that does not support
prototypes and tries to use SwitchPrototype, a compile-time error occurs.

¢ If the user instantiates WidgetManager with a Creator policy class that does not support
prototypes and does not try to use SwitchPrototype, the program is valid.

This all means that WidgetManager can benefit from optional enriched interfaces but still
work correctly with poorer interfaces—as long as you don’t try to use certain member
functions of WidgetManager.

The author of WidgetManager can define the Creator policy in the following manner:

Creator prescribes a class template of one type T that exposes a member func-
tion Create. Create should return a pointer to a new object of type T. Optionally, the
implementation can define two additional member functions, T* GetPrototype()
and SetPrototype(T*), having the semantics of getting/ setting a prototype ob-
ject used for creation. In this case, WidgetManager exposes the SwitchPrototype
(T* pNewPrototype) member function, which deletes the current prototype and
sets it to the incoming argument.

In conjunction with policy classes, incomplete instantiation brings remarkable freedom
to you as a library designer. You can implement lean host classes that are able to use addi-
tional features and degrade graciously for spartan, minimal policies.

1.9 Combining Policy Classes

The greatest usefulness of policies is apparent when you combine them. Typically, a highly
configurable class uses several policies for various aspects of its workings. Then the library
user selects the desired high-level behavior by combining several policy classes.

For example, consider designing a generic smart pointer class. (Chapter 7 builds a full
implementation.) Say you identify two design choices that you should establish with poli-
cies: threading model and check before dereference. Then you implement a SmartPtr class
template that uses two policies, as shown:

template
<
class T,
template <class> class CheckingPolicy,
template <class> class ThreadingModel
>
class SmartPtr;

SmartPtr has three template parameters: the pointee type and two policies. Inside
SmartPtr, you orchestrate the two policies into a sound implementation. SmartPtr be-
comes a coherent shell that integrates several policies, rather than a rigid, canned im-
plementation. By designing SmartPtr this way, you confer on the user the ability to
configure SmartPtr with a simple typedef:

typedef SmartPtr<Widget, NoChecking, SingleThreaded>
WidgetPtr;

Section 1.9 Combining Policy Classes 15

Inside the same application, you can define and use several smart pointer classes:

typedef SmartPtr<Widget, EnforceNotNull, SingleThreaded>
SafeWidgetPtr;

The two policies can be defined as follows:

Checking: The CheckingPolicy<T> class template must expose a Check member func-
tion, callable with an Ivalue of type T*. SmartPtr calls Check, passing it the pointee object
before dereferencing it.

ThreadingModel: The ThreadingMode1<T> class template must expose an inner type
called Lock, whose constructor accepts a T&. For the lifetime of a Lock object, operations on
the T object are serialized.

For example, here is the implementation of the NoChecking and EnforceNotNul1 policy
classes:

template <class T> struct NoChecking

{
static void Check(T*) {}
};
template <class T> struct EnforceNotNull
{
class NullPointerException : public std::exception { ... };

static void Check(T* ptr)
if (!ptr) throw NullPointerException();
1

By plugging in various checking policy classes, you can implement various behaviors.
You can even initialize the pointee object with a default value by accepting a reference to a
pointer, as shown:

template <class T> struct EnsureNotNull

{
static void Check(T*& ptr)

if (!ptr) ptr = GetDefaultValue();
¥
SmartPtr uses the Checking policy like so:

template
<
class T,
template <class> class CheckingPolicy,
template <class> class ThreadingModel
>
class SmartPtr
: public CheckingPolicy<T>

16 Policy-Based Class Design Chapter 1

, public ThreadingModel<SmartPtr>

{
T* operator->()
{
typename ThreadingModel<SmartPtr>::Lock guard(*this);
CheckingPoTicy<T>::Check(pointee_);
return pointee_;
}
private:
T* pointee_;

1

Notice the use of both the CheckingPolicy and ThreadingModel policy classes in
the same function. Depending on the two template arguments, SmartPtr::operator->
behaves differently on two orthogonal dimensions. Such is the power of combining
policies.

If you manage to decompose a class in orthogonal policies, you can cover a large spec-
trum of behaviors with a small amount of code.

1.10 Customizing Structure with Policy Classes

One of the limitations of templates, mentioned in Section 1.4, is that you cannot use tem-
plates to customize the structure of a class—only its behavior. Policy-based designs, how-
ever, do support structural customization in a natural manner.

Suppose that you want to support nonpointer representations for SmartPtr. For
example, on certain platforms some pointers might be represented by a handle—an inte-
gral value that you pass to a system function to obtain the actual pointer. To solve this you
might “indirect” the pointer access through a policy, say, a Structure policy. The Structure
policy abstracts the pointer storage. Consequently, Structure should expose types called
PointerType (the type of the pointed-to object) and ReferenceType (the type to which the
pointer refers) and functions such as GetPointer and SetPointer.

The fact that the pointer type is not hardcoded to T* has important advantages.
For example, you can use SmartPtr with nonstandard pointer types (such as near and
far pointers on segmented architectures), or you can easily implement clever solutions
such as before and after functions (Stroustrup 2000a). The possibilities are extremely
interesting.

The default storage of a smart pointer is a plain-vanilla pointer adorned with the
Structure policy interface, as shown in the following code.

template <class T>
class DefaultSmartPtrStorage
{
public:
typedef T* PointerType;
typedef T& ReferenceType;
protected:
PointerType GetPointer() { return ptr_; }
void SetPointer(PointerType ptr) { ptr_ = ptr; }

Section 1.11 Compatible and Noncompatible Policies 17

private:
PointerType pointee_;
1

The actual storage used is completely hidden behind Structure’s interface. Now
SmartPtr can use a Storage policy instead of aggregating a T*.

template
<
class T,
template <class> class CheckingPolicy,
template <class> class ThreadingModel,
template <class> class Storage = DefaultSmartPtrStorage
>
class SmartPtr;

Of course, SmartPtr must either derive from Storage<T> or aggregate a Storage<T>
object in order to embed the needed structure.

1.11 Compatible and Noncompatible Policies

Suppose you create two instantiations of SmartPtr: FastWidgetPtr, a pointer with-
out checking, and SafeWidgetPtr, a pointer with checking before dereference. An
interesting question is: Should you be able to assign FastWidgetPtr objects to Safe-
WidgetPtr objects? Should you be able to assign them the other way around? If you want
to allow such conversions, how can you implement that?

Starting from the reasoning that SafeWidgetPtr is more restrictive than Fast-
WidgetPtr, it is natural to accept the conversion from FastWidgetPtr to SafeWidgetPtr.
This is because C++ already supports implicit conversions that increase restrictions—
namely, from non-const to const types.

On the other hand, freely converting SafeWidgetPtr objects to FastWidgetPtr objects
is dangerous. This is because in an application, the majority of code would use Safe-
WidgetPtr and only a small, speed-critical core would use FastWidgetPtr. Allowing only
explicit, controlled conversions to FastWidgetPtr would help keep FastWidgetPtr’s usage
to a minimum.

The best, most scalable way to implement conversions between policies is to initialize
and copy SmartPtr objects policy by policy, as shown below. (Let’s simplify the code by get-
ting back to only one policy—the Checking policy.)

template
<

class T,

template <class> class CheckingPoTicy
>
class SmartPtr : public CheckingPolicy<T>
{

template

18 Policy-Based Class Design Chapter 1

class T1,
template <class> class CP1,
>
SmartPtr(const SmartPtr<Tl, CP1>& other)
: pointee_(other.pointee), CheckingPolicy<T>(other)

{ ...}
1

SmartPtr implements a templated copy constructor, which accepts any other instantia-
tion of SmartPtr. The code in bold initializes the components of SmartPtr with the com-
ponents of the other SmartPtr<T1,CP1> received as arguments.

Here’s how it works. (Follow the constructor code.) Assume you have a class Extended-
Widget, derived from Widget. If you initialize a SmartPtr<wWidget, NoChecking> with a
SmartPtr<Extendedwidget, NoChecking>, the compiler attempts to initialize a Widget*
with an ExtendedWiget* (which works), and a NoChecking with a SmartPtr<Widget,
NoChecking>. This might look suspicious, but don't forget that SmartPtr derives from its
policy, so in essence the compiler will easily figure out that you initialize a NoChecking
with a NoChecking. The whole initialization works.

Now for the interesting part. Say you initialize a SmartPtr<Widget,EnforceNotNull>
with a SmartPtr<ExtendedwWidget, NoChecking>. The ExtendedWidget* to Widget* conver-
sion works just as before. Then the compiler tries to match SmartPtr<Extendedwidget,
NoChecking> to EnforceNotNul1’s constructors.

If EnforceNotNull implements a constructor that accepts a NoChecking object, then
the compiler matches that constructor. If NoChecking implements a conversion opera-
tor to EnforceNotNul1, that conversion is invoked. In any other case, the code fails to
compile.

As you can see, you have two-sided flexibility in implementing conversions between
policies. You can implement a conversion constructor on the left-hand side, or you can im-
plement a conversion operator on the right-hand side.

The assignment operator looks like an equally tricky problem, but fortunately, Sutter
(2000) describes a very nifty technique that allows you to implement the assignment oper-
ator in terms of the copy constructor. (It’s so nifty, you have to read about it. You can see the
technique at work in Loki’s SmartPtr implementation.)

Although conversions from NoChecking to EnforceNotNull and even vice versa are
quite sensible, some conversions don’t make any sense at all. Imagine converting a
reference-counted pointer to a pointer that supports another ownership strategy, such as
destructive copy (i la std: :auto_ptr). Such a conversion is semantically wrong. The defini-
tion of reference counting is that all pointers to the same object are known and tracked by
a unique counter. As soon as you try to confine a pointer to another ownership policy, you
break the invariant that makes reference counting work.

In conclusion, conversions that change the ownership policy should not be allowed im-
plicitly and should be treated with maximum care. At best, you can change the ownership
policy of a reference-counted pointer by explicitly calling a function. That function suc-
ceeds if and only if the reference count of the source pointer is 1.

Section 1.12 Decomposing a Class into Policies 19

1.12 Decomposing a Class into Policies

The hardest part of creating policy-based class design is to decompose correctly the func-
tionality of a class in policies. The rule of thumb is to identify and name the design deci-
sions that take part in a class’s behavior. Anything that can be done in more than one way
should be identified and migrated from the class to a policy. Don't forget: Design con-
straints buried in a class’s design are as bad as magic constants buried in code.

For example, consider a WidgetManager class. If WidgetManager creates new Widget ob-
jects internally, creation should be deferred to a policy. If WidgetManager stores a collection
of Widgets, it makes sense to make that collection a storage policy, unless there is a strong
preference for a specific storage mechanism.

At an extreme, a host class is totally depleted of any intrinsic policy. It delegates all de-
sign decisions and constraints to policies. Such a host class is a shell over a collection of
policies and deals only with assembling the policies into a coherent behavior.

The disadvantage of an overly generic host class is the abundance of template parame-
ters. In practice, more than four to six template parameters become awkward to work with.
Still, they justify their presence if the host class offers complex, useful functionality.

Type definitions—typedef statements—are an essential tool in using classes that rely
on policies. Using typedef is not only a matter of convenience. Using typedef ensures or-
dered use and easy maintenance. For example, consider the following type definition:

typedef SmartPtr

<
Widget,
RefCounted,
NoChecked

>

WidgetPtr;

It would be very tedious to use the lengthy specialization of SmartPtr instead of WidgetPtr
in code. But the tediousness of writing code is nothing compared with the major problems
in understanding and maintaining that code. As design evolves, WidgetPtr’s definition
might change—for example, to use a different checking policy than NoChecked in debug
builds. It is essential that all the code use WidgetPtr instead of a hardcoded instantiation of
SmartPtr. It’s just like the difference between calling a function and writing the equivalent
inline code: The inline code technically does the same thing but fails to build an abstraction
behind it.

When decomposing a class in policies, it is very important to find an orthogonal decom-
position. An orthogonal decomposition yields policies that are completely independent of
each other. You can easily spot a nonorthogonal decomposition when various policies need
to know about each other.

For example, think of an Array policy in a smart pointer. The Array policy is very
simple—it dictates whether the smart pointer points to an array or not. The policy can be
defined to have a member function T& ElementAt(T* ptr, unsigned int index), plus
a similar version for constT. The non-array policy simply does not define an ETlementAt

20 Policy-Based Class Design Chapter 1

member function, so trying to use it would yield a compile-time error. The ElementAt func-
tion is an optional enriched behavior as defined in Section 1.6.
The implementations of two policy classes that implement the Array policy follow.

template <class T>
struct IsArray

T& ElementAt(T* ptr, unsigned int index)

{
return ptr[index];
}
const T& ElementAt(T* ptr, unsigned int index) const
{
return ptr[index];
}

1
template <class T> struct IsNotArray {};

The problem is that whether the smart pointer points to an array or not has an un-
fortunate interaction with another policy: destruction. You must destroy pointers to ob-
jects with the delete operator, and destroy pointers to arrays of objects with the delete[]
operator.

Two policies that do not interact with each other are called orthogonal. By this definition,
the Array and the Destroy policies are not orthogonal.

If you still need to confine the quality of being an array and of destruction to separate
policies, you need to establish a way for the two policies to communicate. You must have
the Array policy expose a Boolean constant in addition to a function, and pass that Boolean
to the Destroy policy. This complicates and somewhat constrains the design of both the
Array and Destroy policies.

Nonorthogonal policies are an imperfection you should strive to avoid. They reduce
compile-time type safety and complicate the design of both the host class and the policy
classes.

If you must use nonorthogonal policies, you can keep dependencies to a minimum by
passing a policy class as an argument to another policy class’s template function. This way
you can benefit from the flexibility specific to template-based interfaces. The downside re-
mains that one policy must expose some of its implementation details to other policies. This
decreases encapsulation.

1.13 Summary

Design is choice. Most often, the struggle is not that there is no way to solve a design prob-
lem, but that there are too many ways that apparently solve that problem. You must know
which collection of solutions solves the problem in a satisfactory manner. The need to
choose propagates from the largest architectural levels down to the smallest unit of code.
Furthermore, choices can be combined, which confers on design an evil multiplicity.

To fight the multiplicity of design with a reasonably small amount of code, a design-
oriented library needs to develop and use special techniques. These techniques are pur-
posely conceived to support flexible code generation by combining a small number of

Section 1.13 Summary 21

primitive devices. The library itself provides a number of such devices. Furthermore, the
library exposes the specifications from which these devices are built, so the client can build
her own. This essentially makes a policy-based design open-ended. These devices are
called policies, and the implementations thereof are called policy classes.

The mechanics of policies consist of a combination of templates with multiple inheri-
tance. A class that uses policies—a host class—is a template with many template parame-
ters (often, template template parameters), each parameter being a policy. The host class
“indirects” parts of its functionality through its policies and acts as a receptacle that com-
bines several policies in a coherent aggregate.

Classes designed around policies support enriched behavior and graceful degradation
of functionality. A policy can provide supplemental functionality that propagates through
the host class due to public inheritance. Furthermore, the host class can implement
enriched functionality that uses optional functionality of a policy. If the optional function-
ality is not present, the host class still compiles successfully, provided the enriched func-
tionality is not used.

The power of policies comes from their ability to mix and match. A policy-based class
can accommodate very many behaviors by combining the simpler behaviors that its poli-
cies implement. This effectively makes policies a good weapon for fighting against the evil
multiplicity of design.

You can customize not only behavior but also structure with policy classes. This im-
portant feature takes policy-based design beyond the simple type genericity that’s specific
to container classes.

Policy-based classes support flexibility when it comes about conversions. If you use
policy-by-policy copying, each policy can control what other policies it accepts, or converts
to, by providing the appropriate conversion constructors, conversion operators, or both.

In breaking a class into policies, you should follow two important guidelines. One is to
localize, name, and isolate design decisions in your class—things that are subject to a
trade-off or could be sensibly implemented in other ways. The other guideline is to look for
orthogonal policies, that is, policies that don’t need to interact with each other and that can
be changed independently.

