
519

A
ABSTRACT CORE, 435–437
ADAPTERS, 367
AGGREGATES

definition, 126–127
examples, 130–135, 170–171,

177–179
invariants, 128–129
local vs. global identity, 127
overview, 125–129
ownership relationships, 126

Agile design
distillation, 483
MODULES, 111
reducing dependencies, 265,

435–437, 463
supple design, 243–244, 260–264

AIDS Memorial Quilt Project, 479
Analysis models, 47–49
Analysis patterns. See also design

patterns.
concept integrity, 306–307
definition, 293
example, 295–306
overview, 294
UBIQUITOUS LANGUAGE, 306–307

ANTICORRUPTION LAYER

ADAPTERS, 367
considerations, 368–369
example, 369–370
FACADES, 366–367
interface design, 366–369
overview, 364–366
relationships with external systems,

384–385
Application layer, 70, 76–79

Architectural frameworks, 70, 74,
156–157, 271–272, 495–496

ASSERTIONS, 255–259
Associations

bidirectional, 102–103
example, 169–170
for practical design, 82–88
VALUE OBJECTS, 102–103

Astrolabe, 47
Awkwardness, concept analysis,

210–216

B
Bidirectional associations, 102–103
Blind men and the elephant, 377–381
Bookmark anecdote, 57–59
BOUNDED CONTEXT. See also

CONTEXT MAP.
code reuse, 344
CONTINUOUS INTEGRATION,

341–343
defining, 382
duplicate concepts, 339–340
example, 337–340
false cognates, 339–340
large-scale structure, 485–488
overview, 335–337
relationships, 352–353
splinters, 339–340
testing boundaries, 351
translation layers, 374. See also ANTI-

CORRUPTION LAYER; PUBLISHED

LANGUAGE.
vs. MODULES, 335

Brainstorming, 7–13, 207–216, 219
Breakthroughs, 193–200, 202–203

I N D E X

evans_index.qxd 7/30/2003 8:54 PM Page 519

Business logic, in user interface layer,
77

Business rules, 17, 225

C
Callbacks, 73
Cargo shipping examples. See exam-

ples, cargo shipping.
Changing the design. See refactoring.
Chemical warehouse packer example,

235–241
Chemistry example, 377
Cleese, John, 5
CLOSURE OF OPERATIONS, 268–270
Code as documentation, 40
Code reuse

BOUNDED CONTEXT, 344
GENERIC SUBDOMAINS, 412–413
reusing prior art, 323–324

Cohesion, MODULES, 109–110, 113
COHESIVE MECHANISMS

and declarative style, 426–427
example, 425–427
overview, 422–425
vs. GENERIC SUBDOMAINS, 425

Common language. See PUBLISHED

LANGUAGE; UBIQUITOUS

LANGUAGE.
Communication, speech. See UBIQUI-

TOUS LANGUAGE.
Communication, written. See docu-

ments; UML (Unified Modeling
Language); UBIQUITOUS LAN-
GUAGE.

Complexity, reducing. See distillation;
large-scale structure; LAYERED

ARCHITECTURE; supple design.
COMPOSITE pattern, 315–320
Composite SPECIFICATION, 273–282
Concept analysis. See also analysis pat-

terns; examples, concept analysis.
awkwardness, 210–216
contradictions, 216–217
explicit constraints, 220–222
language of the domain experts,

206–207
missing concepts, 207–210

processes as domain objects, 222–223
researching existing resources,

217–219
SPECIFICATION, 223
trial and error, 219

CONCEPTUAL CONTOURS, 260–264
Conceptual layers, See LAYERED

ARCHITECTURE; RESPONSIBILITY

LAYERS

Configuring SPECIFICATION, 226–227
CONFORMIST, 361–363, 384–385
Constructors, 141–142, 174–175. See

also FACTORIES.
CONTEXT MAP. See also BOUNDED

CONTEXT.
example, 346–351
organizing and documenting,

351–352
overview, 344–346
vs. large-scale structure, 446,

485–488
CONTEXT MAP, choosing a strategy

ANTICORRUPTION LAYER, 384–385
CONFORMIST, 384–385
CUSTOMER/SUPPLIER DEVELOPMENT

TEAMS, 356–360
defining BOUNDED CONTEXT, 382
deployment, 387
external systems, 383–385
integration, 384–385
merging OPEN HOST SERVICE and

PUBLISHED LANGUAGE, 394–396
merging SEPARATE WAYS and

SHARED KERNEL, 389–391
merging SHARED KERNEL and CON-

TINUOUS INTEGRATION, 391–393
packaging, 387
phasing out legacy systems, 393–394
for a project in progress, 388–389
SEPARATE WAYS, 384–385
SHARED KERNEL, 354–355
specialized terminologies, 386–387
system under design, 385–386
team context, 382
trade-offs, 387
transformations, 389
transforming boundaries, 382–383

520 I N D E X

evans_index.qxd 7/30/2003 8:54 PM Page 520

Context principle, 328–329. See also
BOUNDED CONTEXT; CONTEXT

MAP.
CONTINUOUS INTEGRATION, 341–343,

391–393. See also integration.
Continuous learning, 15–16
Contradictions, concept analysis,

216–217
CORE DOMAIN

DOMAIN VISION STATEMENT,
415–416

flagging key elements, 419–420
MECHANISMS, 425
overview, 400–405

Costs of architecture dictated
MODULES, 114–115

Coupling MODULES, 109–110
Customer-focused teams, 492
CUSTOMER/SUPPLIER, 356–360

D
Database tuning, example, 102
Declarative design, 270–272
Declarative style of design, 273–282,

426–427
Decoupling from the client, 156
Deep models

distillation, 436–437
overview, 20–21
refactoring, 189–191

Deployment, 387. See also MODULES.
Design changes. See refactoring.
Design patterns. See also analysis

patterns.
COMPOSITE, 315–320
FLYWEIGHT, 320
overview, 309–310
STRATEGY, 311–314
vs. domain patterns, 309

Development teams. See teams.
Diagrams. See documents; UML

(Unified Modeling Language).
Discovery, 191–192
Distillation. See also examples,

distillation.
ABSTRACT CORE, 435–437
deep models, 436–437

DOMAIN VISION STATEMENT,
415–416

encapsulation, 422–427
HIGHLIGHTED CORE, 417–421
INTENTION-REVEALING INTERFACES,

422–427
large-scale structure, 483, 488–489
overview, 397–399
PCB design anecdote, 7–13
polymorphism, 435–437
refactoring targets, 437
role in design, 329
SEGREGATED CORE, 428–434
separating CORE concepts, 428–434

Distillation, COHESIVE MECHANISMS

and declarative style, 426–427
overview, 422–425
vs. GENERIC SUBDOMAINS, 425

Distillation, CORE DOMAIN

DOMAIN VISION STATEMENT,
415–416

flagging key elements, 419–420
MECHANISMS, 425
overview, 400–405

Distillation, GENERIC SUBDOMAINS

adapting a published design, 408
in-house solution, 409–410
off-the-shelf solutions, 407
outsourcing, 408–409
overview, 406
reusability, 412–413
risk management, 413–414
vs. COHESIVE MECHANISMS, 425

Distillation document, 418–419,
420–421

Documents
code as documentation, 40
distillation document, 418–419,

420–421
DOMAIN VISION STATEMENT,

415–416
explanatory models, 41–43
keeping current, 38–40
in project activities, 39–40
purpose of, 37–40
validity of, 38–40
UBIQUITOUS LANGUAGE, 39–40

521I N D E X

evans_index.qxd 7/30/2003 8:54 PM Page 521

Domain experts
gathering requirements from. See

concept analysis; knowledge
crunching.

language of, 206–207. See also
UBIQUITOUS LANGUAGE.

Domain layer, 70, 75–79
Domain objects, life cycle, 123–124.

See also AGGREGATES;
FACTORIES; REPOSITORIES.

Domain patterns vs. design pattern,
309

DOMAIN VISION STATEMENT, 415–416
Domain-specific language, 272–273
Duplicate concepts, 339–340

E
Elephant and the blind men, 377–381
Encapsulation. See also FACTORIES.

COHESIVE MECHANISMS, 422–427
INTENTION-REVEALING INTERFACES,

246
REPOSITORIES, 154

ENTITIES. See also associations;
SERVICES; VALUE OBJECTS.

automatic IDs, 95–96
clustering. See AGGREGATES.
establishing identity, 90–93
example, 167–168
ID uniqueness, 96
identifying attributes, 94–96
identity tracking, 94–96
modeling, 93–94
referencing with VALUE OBJECTS,

98–99
vs. Java entity beans, 91

Evant, 504–505
EVOLVING ORDER, 444–446, 491
Examples

AGGREGATES, 130–135
analysis patterns, 295–306
ASSERTIONS, 256–259
breakthroughs, 202–203
chemical warehouse packer,

235–241
chemistry, PUBLISHED LANGUAGE,

377
CLOSURE OF OPERATIONS, 269–270

COHESIVE MECHANISMS, 425–427
composite SPECIFICATION, 278–282
CONCEPTUAL CONTOURS, 260–264
constructors, 174–175
Evant, 504–505
explanatory models, 41–43
extracting hidden concepts, 17–20
insurance project, 372–373
integration with other systems,

372–373
INTENTION-REVEALING INTERFACES,

423–424
introducing new features, 181–185
inventory management, 504–505
investment banking, 211–215
KNOWLEDGE LEVEL, 466–474
LAYERED ARCHITECTURE, 71–72
MODEL-DRIVEN DESIGN, 52–57
MODULES, 111–112
multiple teams, 358–360
online banking, 71–72
organization chart, 423–427
package coding in Java, 111–112
paint-mixing application, 247–249,

252–254, 256–259
payroll and pension, 466–474
PLUGGABLE COMPONENT FRAME-

WORK, 475–479
procedural languages, 52–57
prototypes, 238–241
PUBLISHED LANGUAGE, 377
purchase order integrity, 130–135
refactoring, 247–249
RESPONSIBILITY LAYERS, 452–460
selecting from Collections, 269–270
SEMATECH CIM framework,

476–479
SIDE-EFFECT-FREE FUNCTIONS,

252–254, 285–286
SPECIFICATION, 235–241
supple design, 247–249
time zones, 410–412
tuning a database, 102
VALUE OBJECTS, 102

Examples, cargo shipping
AGGREGATES, 170–171, 177–179
allocation checking, 181–185
ANTICORRUPTION LAYER, 369–370

522 I N D E X

evans_index.qxd 7/30/2003 8:54 PM Page 522

associations, 169–170
automatic routing, 346–351
booking

BOUNDED CONTEXT, 337–340
extracting hidden concepts, 17–20
legacy application, 369–370
overbooking, 18–19, 222
vs. yield analysis, 358–360

cargo routing, 27–30
cargo tracking, 41–43
COMPOSITE pattern, 316–320
composite routes, 316–320
concept analysis, 222
conclusion, 502–504
constructors, 174–175
CONTEXT MAP, 346–351
ENTITIES, 167–168
extracting hidden concepts, 17–20
FACTORIES, 174–175
identifying missing concepts,

207–210
isolating the domain, 166–167
large-scale structure, 452–460
MODULES, 179–181
multiple development teams,

358–360
performance tuning, 185–186
refactoring, 177–179
REPOSITORIES, 172–173
RESPONSIBILITY LAYERS, 452–460
route-finding, 312–314
scenarios, 173–177
SEGREGATED CORE, 430–434
shipping operations and routes,

41–43
STRATEGY, 312–314
system overview, 163–166
UBIQUITOUS LANGUAGE, 27–30
VALUE OBJECTS, 167–168

Examples, concept analysis
extracting hidden concepts, 17–20
identifying missing concepts,

207–210
implicit concepts, 286–288
researching existing resources,

217–219
resolving awkwardness, 211–215

Examples, distillation
COHESIVE MECHANISMS, 423–424,

425–427
GENERIC SUBDOMAINS, 410–412
organization chart, 423–424,

425–427
SEGREGATED CORE, 428–434
time zones, 410–412

Examples, integration
ANTICORRUPTION LAYER, 369–370
translator, 346–351
unifying an elephant, 378–381

Examples, large-scale structure
KNOWLEDGE LEVEL, 466–474
PLUGGABLE COMPONENT FRAME-

WORK, 475–479
RESPONSIBILITY LAYERS, 452–460

Examples, LAYERED ARCHITECTURE

partitioning applications, 71–72
RESPONSIBILITY LAYERS, 452–460

Examples, loan management
analysis patterns, 295–306
breakthroughs, 194–200
concept analysis, 211–215, 217–219
CONCEPTUAL CONTOURS, 262–264
conclusion, 501–502
interest calculator, 211–215,

217–219, 295–306
investment banking, 194–200
refactoring, 194–200, 284–292

Explanatory models, 41–43
Explicit constraints, concept analysis,

220–222
External systems, 383–385. See also

integration.
Extracting hidden concepts, 17–20.

See also implicit concepts.

F
FACADES, 366–367
Facilities, 194
FACTORIES

configuring SPECIFICATION, 226–227
creating, 139–141
creating objects, 137–139
designing the interface, 143
ENTITY vs. VALUE OBJECT, 144–145

523I N D E X

evans_index.qxd 7/30/2003 8:54 PM Page 523

FACTORIES (continued)
example, 174–175
invariant logic, 143
overview, 136–139
placing, 139–141
reconstitution, 145–146
and REPOSITORIES, 157–159
requirements, 139

FACTORY METHOD, 139–141
False cognates, 339–340
Film editing anecdote, 5
Flexibility. See supple design.
FLYWEIGHT pattern, 320
Functions, SIDE-EFFECT-FREE,

250–254, 285–286

G
GENERIC SUBDOMAINS

adapting a published design, 408
example, 410–412
in-house solution, 409–410
off-the-shelf solutions, 407
outsourcing, 408–409
overview, 406
reusability, 412–413
risk management, 413–414
vs. COHESIVE MECHANISMS, 425

Granularity, 108

H
Hidden concepts, extracting,

17–20
HIGHLIGHTED CORE, 417–421
Holy Grail anecdote, 5

I
Identity

establishing, 90–93
local vs. global, 127
tracking, 94–96

Immutability of VALUE OBJECTS,
100–101

Implicit concepts
categories of, 219–223
recognizing, 206–219

Infrastructure layer, 70
Infrastructure-driven packaging,

112–116

In-house solution, GENERIC SUB-
DOMAINS, 409–410

Insurance project example,
372–373

Integration
ANTICORRUPTION LAYER, 364–370
CONTINUOUS INTEGRATION,

341–343, 391–393
cost/benefit analysis, 371–373
elephant and the blind men,

377–381
example, 372–373
external systems, 384–385
OPEN HOST SERVICE, 374
SEPARATE WAYS, 371–373
translation layers, 374. See also

PUBLISHED LANGUAGE.
Integrity. See model integrity.
INTENTION-REVEALING INTERFACES,

246–249, 422–427
Interest calculator examples, 211–215,

217–219, 295–306
Internet Explorer bookmark anec-

dote, 57–59
Invariant logic, 128–129, 143
Inventory management example,

504–505
Investment banking example,

194–200, 211–215, 501
Isolated domain layer, 106–107
Isolating the domain. See ANTI-

CORRUPTION LAYER; distillation;
LAYERED ARCHITECTURE.

Iterative design process, 14, 188, 445

J
Jargon. See PUBLISHED LANGUAGE;

UBIQUITOUS LANGUAGE.
Java entity beans vs. ENTITIES, 91

K
Knowledge crunching, 13–15
Knowledge crunching, example, 7–12
KNOWLEDGE LEVEL, 465–474

L
Language of the domain experts,

206–207

524 I N D E X

evans_index.qxd 7/30/2003 8:54 PM Page 524

Large-scale structure. See also distilla-
tion; examples, large-scale struc-
ture; LAYERED ARCHITECTURE;
strategic design.

CONTEXT MAP, 446
definition, 442
development constraints, 445–446
EVOLVING ORDER, 444–446
flexibility, 480–481
KNOWLEDGE LEVEL, 465–474
minimalism, 481
naive metaphor, 448–449
overview, 439–443
PLUGGABLE COMPONENT FRAME-

WORK, 475–479
refactoring, 481
role in design, 329
supple design, 482–483
SYSTEM METAPHOR, 447–449
team communication, 482

Large-scale structure, RESPONSIBILITY

LAYERS

choosing layers, 460–464
overview, 450–452
useful characteristics, 461

LAYERED ARCHITECTURE. See also
distillation; examples, LAYERED

ARCHITECTURE; large-scale
structure.

application layer, 70, 76–79
callbacks, 73
conceptual layers, 70
connecting layers, 72–74
design dependencies, 72–74
diagram, 68
domain layer, 70, 75–79
frameworks, 74–75
infrastructure layer, 70
isolated domain layer, 106–107
MVC (MODEL-VIEW-CONTROLLER),

73
OBSERVERS, 73
partitioning complex programs, 70
separating user interface, applica-

tion, and domain, 76–79
SERVICES, 73–74
SMART UI, 73
TRANSACTION SCRIPT, 79

user interface layer, 70, 76–79
value of, 69

LAYERED ARCHITECTURE, ANTI-
CORRUPTION LAYER

ADAPTERS, 367
considerations, 368–369
FACADES, 366–367
interface design, 366–369
overview, 364–366
relationships with external systems,

384–385
LAYERED ARCHITECTURE, RESPONSI-

BILITY LAYERS

choosing layers, 460–464
overview, 450–452
useful characteristics, 461

Legacy systems, phasing out,
393–394

Life cycle of domain objects, 123–124.
See also AGGREGATES;
FACTORIES; REPOSITORIES.

Loan management examples. See ex-
amples, loan management.

Local vs. global identity, 127

M
Merging

OPEN HOST SERVICE and PUBLISHED

LANGUAGE, 394–396
SEPARATE WAYS to SHARED KERNEL,

389–391
SHARED KERNEL to CONTINUOUS

INTEGRATION, 391–393
METADATA MAPPING LAYERS, 149
Missing concepts, 207–210
Mistaken identity anecdote, 89
Model integrity. See also BOUNDED

CONTEXT; CONTEXT MAP;
multiple models.

establishing boundaries, 333–334
multiple models, 333
overview, 331–334
recognizing relationships, 333–334
unification, 332. See also CON-

TINUOUS INTEGRATION.
Model layer. See domain layer.
Model-based language. See UBIQUI-

TOUS LANGUAGE.

525I N D E X

evans_index.qxd 7/30/2003 8:55 PM Page 525

MODEL-DRIVEN DESIGN

correspondence to design, 50–51
modeling paradigms, 50–52
overview, 49
procedural languages, 51–54
relevance of model, 49
tool support, 50–52

Modeling
associations, 82–88
ENTITIES, 93–94
HANDS-ON MODELERS, 60–62
integrating with programming,

60–62
non-object, 119–122

Models
binding to implementation. See

MODEL-DRIVEN DESIGN.
and user understanding, 57–59

MODEL-VIEW-CONTROLLER (MVC),
73

Modularity, 115–116
MODULES

agile, 111
cohesion, 109–110, 113
costs of, 114–115
coupling, 109–110
determining meaning of, 110
examples, 111–112, 179–181
infrastructure-driven packaging,

112–116
mixing paradigms, 119–122
modeling paradigms, 116–119
modularity, 115–116
naming, 110
non-object models, 119–122
object paradigm, 116–119
overview, 109
packaging domain objects, 115
refactoring, 110, 111
vs. BOUNDED CONTEXT, 335

Monty Python anecdote, 5
Multiple models, 333, 335–340
MVC (MODEL-VIEW-CONTROLLER),

73

N
Naive metaphor, 448–449

Naming
BOUNDED CONTEXTS, 345
conventions for supple design, 247
INTENTION-REVEALING INTERFACES,

247
MODULES, 110
SERVICES, 105

Non-object models, 119–122

O
Object references. See REPOSITORIES.
Objects. See also ENTITIES; VALUE

OBJECTS.
associations, 82–88
creating, 234–235. See also construc-

tors; FACTORIES.
defining, 81–82
designing for relational databases,

159–161
made up of objects. See AGGRE-

GATES; COMPOSITE.
persistent, 150–151

OBSERVERS, 73
Off-the-shelf solutions, 407
Online banking example, 71–72
OPEN HOST SERVICE, converting to

PUBLISHED LANGUAGE, 394–396
Outsourcing, 408–409
Overbooking examples, 18–19, 222

P
Packaging. See deployment;

MODULES.
Paint-mixing application, examples,

247–249, 252–254, 256–259
Partitioning

complex programs. See large-scale
structure; LAYERED ARCHITEC-
TURE.

SERVICES into layers, 107
Patterns, 507–510. See also analysis

patterns; design patterns; large-
scale structure.

PCB design anecdote, 7–13, 501
Performance tuning, example,

185–186
Persistent objects, 150–151

526 I N D E X

evans_index.qxd 7/30/2003 8:55 PM Page 526

PLUGGABLE COMPONENT FRAME-
WORK, 475–479

POLICY pattern. See STRATEGY

pattern.
Polymorphism, 435–437
Presentation layer. See user interface

layer.
Procedural languages, and MODEL-

DRIVEN DESIGN, 51–54
Processes as domain objects,

222–223
Prototypes, 238–241
PUBLISHED LANGUAGE

elephant and the blind men,
377–381

example, 377
merging with OPEN HOST SERVICE,

394–396
overview, 375–377

Q
Quilt project, 479

R
Reconstitution, 145–146, 148
Refactoring

breakthroughs, 193–200
during a crisis, 325–326
deep models, 189–191
definition, 188
designing for developers, 324
discovery, 191–192
distillation, 437
examples, 177–179, 181–185,

194–200, 247–249
exploration teams, 322–323
initiation, 321–322
large-scale structure, 481
levels of, 188–189
MODULES, 110, 111
to patterns, 188–189
reusing prior art, 323–324
supple design, 191
timing, 324–325

Refactoring targets, 437
Reference objects. See ENTITIES.
REPOSITORIES

advantages, 152

architectural frameworks, 156–157
decoupling from the client, 156
designing objects for relational data-

bases, 159–161
encapsulation, 154
example, 172–173
and FACTORIES, 157–159
global searches, 150–151
implementing, 155–156
METADATA MAPPING LAYERS, 149
object access, 149–151
overview, 147–152
persistent objects, 150–151
querying, 152–154
references to preexisting domain

objects, 149
transaction control, 156
transient objects, 149
type abstraction, 155–156

Requirements gathering. See concept
analysis; knowledge crunching;
UBIQUITOUS LANGUAGE.

RESPONSIBILITY LAYERS

choosing layers, 460–464
example, 452–460
overview, 450–452
useful characteristics, 461

Reusing code
BOUNDED CONTEXT, 344
GENERIC SUBDOMAINS, 412–413
reusing prior art, 323–324

Risk management, 413–414

S
Scenarios, examples, 173–177
SEGREGATED CORE, 428–434
Selecting objects, 229–234, 269–270
SEPARATE WAYS, 384–385, 389–391
SERVICES. See also ENTITIES; VALUE

OBJECTS.
access to, 108
characteristics of, 105–106
granularity, 108
and the isolated domain layer,

106–107
naming, 105
overview, 104–105
partitioning into layers, 107

527I N D E X

evans_index.qxd 7/30/2003 8:55 PM Page 527

SHARED KERNEL

example, 359
merging with CONTINUOUS

INTEGRATION, 391–393
merging with SEPARATE WAYS,

389–391
overview, 354–355

Sharing VALUE OBJECTS, 100–101
Shipping examples. See examples,

cargo shipping.
Side effects, 250. See also ASSERTIONS.
SIDE-EFFECT-FREE FUNCTIONS,

250–254, 285–286
Simplifying your design. See distilla-

tion; large-scale structure; LAY-
ERED ARCHITECTURE.

SMART UI, 73
SPECIFICATION. See also analysis pat-

terns; design patterns.
applying, 227
business rules, 225
combining. See composite SPECIFI-

CATION.
composite, 273–281
configuring, 226–227
definition, 225–226
example, 29, 235–241, 279–282
generating objects, 234–235
implementing, 227
overview, 224–227
purpose, 227
selecting objects, 229–234
validating objects, 227, 228–229

Speech, common language. See
UBIQUITOUS LANGUAGE.

Speech, modeling through, 30–32
STANDALONE CLASSES, 265–267
Strategic design. See also large-scale

structure.
assessing the situation, 490
customer-focused architecture

teams, 492
developers, role of, 494
essential requirements, 492–495
evolution, 493
EVOLVING ORDER, 491
feedback process, 493
minimalism, 494–495

multiple development teams, 491
objects, role of, 494
setting a strategy, 490–492
team communication, 492
team makeup, 494
technical frameworks, 495–497

STRATEGY pattern, 19, 311–314
Supple design

approaches to, 282–292
ASSERTIONS, 255–259
CLOSURE OF OPERATIONS, 268–270
composite SPECIFICATION, 273–282
CONCEPTUAL CONTOURS, 260–264
declarative design, 270–272
declarative style of design, 273–282
domain-specific language, 272–273
example, 247–249
INTENTION-REVEALING INTERFACES,

246–249
interdependencies, 265–267
large-scale structure, 480–483
naming conventions, 247
overview, 243–245
SIDE-EFFECT-FREE FUNCTIONS,

250–254, 285–286
STANDALONE CLASSES, 265–267

SYSTEM METAPHOR, 447–449
System under design, 385–386

T
Team context, 382
Teams

choosing a strategy, 382
communication, large-scale struc-

ture, 482
customer-focused, 492
defining BOUNDED CONTEXT, 382
developer community, maturity of,

117–119
exploration, 322–323

Teams, and strategic design
communication, 492
customer-focused, 492
developers, role of, 494
makeup of, 494
multiple teams, 491

Teams, multiple
ANTICORRUPTION LAYER, 364–370

528 I N D E X

evans_index.qxd 7/30/2003 8:55 PM Page 528

CONFORMIST, 361–363
CUSTOMER/SUPPLIER, 356–360
example, 358–360
SHARED KERNEL, 354–355, 359
strategic design, 491

Terminology. See BOUNDED CONTEXT;
PUBLISHED LANGUAGE; UBIQUI-
TOUS LANGUAGE.

Testing boundaries, 351
Transaction control, 156
TRANSACTION SCRIPT, 79
Transformations, 389
Transforming boundaries, 382–383
Transient objects, 149
Translation layers, 374
Tuning a database, example, 102

U
UBIQUITOUS LANGUAGE. See also

PUBLISHED LANGUAGE.
analysis patterns, 306–307
cargo router example, 27–30
consistent use of, 32–35
designing objects for relational data-

bases, 160–161
domain-specific language,

272–273
language of the domain experts,

206–207
overview, 24–27
refining the model, 30–32
specialized terminologies, 386–387
requirements analysis, 25
speech, role of, 30–32

UML (Unified Modeling Language),
35–37

Unification, 332. See also CONTINU-
OUS INTEGRATION.

Unified Modeling Language (UML),
35–37

Updating the design. See refactoring.
User interface layer

business logic, 77
definition, 70
separating from application and

domain, 76–79

V
Validating objects, 227, 228–229
VALUE OBJECTS. See also ENTITIES;

SERVICES.
associations, 102–103
bidirectional associations, 102–103
change management, 101
clustering. See AGGREGATES.
designing, 99–102
example, 167–168
immutability, 100–101
object assemblages, 98–99
overview, 97–99
passing as parameters, 99
referencing ENTITIES, 98–99
sharing, 100–101
tuning a database, example, 102

Vision statement. See DOMAIN VISION

STATEMENT.
Vocabulary. See PUBLISHED LAN-

GUAGE; UBIQUITOUS LANGUAGE.

W
Waterfall design method, 14
Web site bookmark anecdote, 57–59

529I N D E X

evans_index.qxd 7/30/2003 8:55 PM Page 529

