
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780132930215
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780132930215
https://plusone.google.com/share?url=http://www.informit.com/title/9780132930215
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780132930215
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780132930215/Free-Sample-Chapter


A Programmer’s Guide to

Java® SE 8
Oracle Certified Associate (OCA)



This page intentionally left blank 



A Programmer’s Guide to

Java® SE 8
Oracle Certified Associate (OCA)

A Comprehensive Primer

Khalid A. Mughal
Rolf W. Rasmussen

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town 
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City 
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo



Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publisher
was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2016937073

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education
Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-293021-5
ISBN-10: 0-13-293021-8
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, July 2016

http://www.pearsoned.com/permissions/


To the loving memory of my mother, Zubaida Begum,
and my father, Mohammed Azim

—K.A.M.

For Olivia E. Rasmussen and
Louise J. Dahlmo

—R.W.R.



This page intentionally left blank 



vii

Contents Overview

Figures xix

Tables xxi

Examples xxiii

Foreword xxvii

Preface xxix

1 Basics of Java Programming 1

2 Language Fundamentals 27

3 Declarations 47

4 Access Control 95

5 Operators and Expressions 143

6 Control Flow 199

7 Object-Oriented Programming 263

8 Fundamental Classes 341

9 Object Lifetime 383

10 The ArrayList<E> Class and Lambda Expressions 413

11 Date and Time 461



viii CONTENTS OVERVIEW

A Taking the Java SE 8 Programmer I Exam 507

B Exam Topics: Java SE 8 Programmer I 515

C Annotated Answers to Review Questions 519

D Solutions to Programming Exercises 553

E Mock Exam: Java SE 8 Programmer I 571

F Annotated Answers to Mock Exam I 605

Index  619



ix

Contents

Figures xix

Tables xxi

Examples xxiii

Foreword xxvii

Preface xxix

1 Basics of Java Programming 1
1.1 Introduction 2
1.2 Classes 2

Declaring Members: Fields and Methods 3
1.3 Objects 4

Class Instantiation, Reference Values, and References 4
Object Aliases 6

1.4 Instance Members 6
Invoking Methods 7

1.5 Static Members 7
1.6 Inheritance 10
1.7 Associations: Aggregation and Composition 12
1.8 Tenets of Java 13

Review Questions 13
1.9 Java Programs 15
1.10 Sample Java Application 16

Essential Elements of a Java Application 16
Compiling and Running an Application 17

1.11 Program Output 18
Formatted Output 18



x CONTENTS

1.12 The Java Ecosystem 21
Object-Oriented Paradigm 22
Interpreted: The JVM 23
Architecture-Neutral and Portable Bytecode 23
Simplicity 23
Dynamic and Distributed 23
Robust and Secure 24
High Performance and Multithreaded 24

Review Questions 25
Chapter Summary 25
Programming Exercise 26

2 Language Fundamentals 27
2.1 Basic Language Elements 28

Lexical Tokens 28
Identifiers 28
Keywords 29
Separators 29
Literals 30
Integer Literals 30
Floating-Point Literals 31
Underscores in Numerical Literals 32
Boolean Literals 32
Character Literals 32
String Literals 34
Whitespace 35
Comments 35

Review Questions 36
2.2 Primitive Data Types 37

The Integer Types 38
The char Type 38
The Floating-Point Types 38
The boolean Type 39

Review Questions 40
2.3 Variable Declarations 40

Declaring and Initializing Variables 41
Reference Variables 41

2.4 Initial Values for Variables 42
Default Values for Fields 42
Initializing Local Variables of Primitive Data Types 43
Initializing Local Reference Variables 43
Lifetime of Variables 44

Review Questions 45
Chapter Summary 46
Programming Exercise 46



CONTENTS xi

3 Declarations 47
3.1 Class Declarations 48
3.2 Method Declarations 49

Statements 50
Instance Methods and the Object Reference this 50
Method Overloading 52

3.3 Constructors 53
The Default Constructor 54
Overloaded Constructors 56

Review Questions 56
3.4 Arrays 58

Declaring Array Variables 59
Constructing an Array 59
Initializing an Array 60
Using an Array 61
Anonymous Arrays 63
Multidimensional Arrays 64
Sorting Arrays 68
Searching Arrays 69

Review Questions 70
3.5 Parameter Passing 72

Passing Primitive Data Values 73
Passing Reference Values 75
Passing Arrays 77
Array Elements as Actual Parameters 78
final Parameters 80

3.6 Variable Arity Methods 81
Calling a Variable Arity Method 82
Variable Arity and Fixed Arity Method Calls 84

3.7 The main() Method 85
Program Arguments 86

3.8 Enumerated Types 87
Declaring Type-safe Enums 87
Using Type-safe Enums 88
Selected Methods for Enum Types 89

Review Questions 90
Chapter Summary 92
Programming Exercise 93

4 Access Control 95
4.1 Java Source File Structure 96
4.2 Packages 97

Defining Packages 98
Using Packages 99
Compiling Code into Packages 105



xii CONTENTS

Running Code from Packages 106
4.3 Searching for Classes 107

Review Questions 110
4.4 Scope Rules 114

Class Scope for Members 114
Block Scope for Local Variables 117

4.5 Accessibility Modifiers for Top-Level Type Declarations 118
4.6 Non-Accessibility Modifiers for Classes 120

abstract Classes 120
final Classes 122

Review Questions 123
4.7 Member Accessibility Modifiers 123

public Members 124
protected Members 126
Default Accessibility for Members 127
private Members 128

Review Questions 129
4.8 Non-Accessibility Modifiers for Members 131

static Members 132
final Members 133
abstract Methods 136
synchronized Methods 136
native Methods 137
transient Fields 138
volatile Fields 139

Review Questions 140
Chapter Summary 142
Programming Exercise 142

5 Operators and Expressions 143
5.1 Conversions 144

Widening and Narrowing Primitive Conversions 144
Widening and Narrowing Reference Conversions 145
Boxing and Unboxing Conversions 145
Other Conversions 146

5.2 Type Conversion Contexts 147
Assignment Context 147
Method Invocation Context 148
Casting Context of the Unary Type Cast Operator: (type) 148
Numeric Promotion Context 149

5.3 Precedence and Associativity Rules for Operators 150
5.4 Evaluation Order of Operands 152

Left-Hand Operand Evaluation First 152
Operand Evaluation before Operation Execution 153
Left-to-Right Evaluation of Argument Lists 154



CONTENTS xiii

5.5 Representing Integers 154
Calculating Two’s Complement 155
Converting Binary Numbers to Decimals 157
Converting Decimals to Binary Numbers 157
Relationships among Binary, Octal, and Hexadecimal Numbers 157

5.6 The Simple Assignment Operator = 158
Assigning Primitive Values 159
Assigning References 159
Multiple Assignments 159
Type Conversions in an Assignment Context 160

Review Questions 162
5.7 Arithmetic Operators: *, /, %, +, - 163

Arithmetic Operator Precedence and Associativity 164
Evaluation Order in Arithmetic Expressions 164
Range of Numeric Values 164
Unary Arithmetic Operators: -, + 167
Multiplicative Binary Operators: *, /, % 167
Additive Binary Operators: +, - 169
Numeric Promotions in Arithmetic Expressions 170
Arithmetic Compound Assignment Operators: *=, /=, %=, +=, -= 172

Review Questions 173
5.8 The Binary String Concatenation Operator + 174
5.9 Variable Increment and Decrement Operators: ++, -- 176

The Increment Operator ++ 176
The Decrement Operator -- 176

Review Questions 178
5.10 Boolean Expressions 180
5.11 Relational Operators: <, <=, >, >= 180
5.12 Equality 181

Primitive Data Value Equality: ==, != 181
Object Reference Equality: ==, != 182
Object Value Equality 183

5.13 Boolean Logical Operators: !, ^, &, | 184
Operand Evaluation for Boolean Logical Operators 185
Boolean Logical Compound Assignment Operators: &=, ^=, |= 185

5.14 Conditional Operators: &&, || 186
Short-Circuit Evaluation 187

5.15 Integer Bitwise Operators: ~, &, |, ^ 189
Bitwise Compound Assignment Operators: &=, ^=, |= 192

Review Questions 192
5.16 The Conditional Operator: ?: 194
5.17 Other Operators: new, [], instanceof, -> 195

Review Questions 196
Chapter Summary 197
Programming Exercise 197



xiv CONTENTS

6 Control Flow 199
6.1 Overview of Control Flow Statements 200
6.2 Selection Statements 200

The Simple if Statement 200
The if-else Statement 201
The switch Statement 203

Review Questions 210
6.3 Iteration Statements 213

The while Statement 213
The do-while Statement 214
The for(;;) Statement 215
The for(:) Statement 217

6.4 Transfer Statements 219
Labeled Statements 220
The break Statement 221
The continue Statement 223
The return Statement 224

Review Questions 226
6.5 Stack-Based Execution and Exception Propagation 230
6.6 Exception Types 233

The Exception Class 235
The RuntimeException Class 236
The Error Class 237
Checked and Unchecked Exceptions 237
Defining Customized Exceptions 238

6.7 Exception Handling: try, catch, and finally 238
The try Block 240
The catch Clause 240
The finally Clause 245

6.8 The throw Statement 249
6.9 The throws Clause 251

Overriding the throws Clause 253
6.10 Advantages of Exception Handling 254

Review Questions 255
Chapter Summary 258
Programming Exercises 258

7 Object-Oriented Programming 263
7.1 Single Implementation Inheritance 264

Relationships: is-a and has-a 266
The Supertype–Subtype Relationship 267

7.2 Overriding Methods 268
Instance Method Overriding 268
Covariant return in Overriding Methods 273
Overriding versus Overloading 273



CONTENTS xv

7.3 Hiding Members 275
Field Hiding 275
Static Method Hiding 275

7.4 The Object Reference super 276
Review Questions 279

7.5 Chaining Constructors Using this() and super() 282
The this() Constructor Call 282
The super() Constructor Call 285

Review Questions 288
7.6 Interfaces 290

Defining Interfaces 290
Abstract Methods in Interfaces 291
Implementing Interfaces 291
Extending Interfaces 294
Interface References 296
Default Methods in Interfaces 297
Static Methods in Interfaces 300
Constants in Interfaces 302

Review Questions 304
7.7 Arrays and Subtyping 309

Arrays and Subtype Covariance 309
Array Store Check 311

7.8 Reference Values and Conversions 311
7.9 Reference Value Assignment Conversions 312
7.10 Method Invocation Conversions Involving References 315

Overloaded Method Resolution 316
7.11 Reference Casting and the instanceof Operator 320

The Cast Operator 320
The instanceof Operator 321

Review Questions 325
7.12 Polymorphism and Dynamic Method Lookup 329
7.13 Inheritance versus Aggregation 331
7.14 Basic Concepts in Object-Oriented Design 334

Encapsulation 335
Cohesion 335
Coupling 336

Review Questions 336
Chapter Summary 338
Programming Exercises 339

8 Fundamental Classes 341
8.1 Overview of the java.lang Package 342
8.2 The Object Class 342

Review Questions 346



xvi CONTENTS

8.3 The Wrapper Classes 346
Common Wrapper Class Constructors 347
Common Wrapper Class Utility Methods 348
Numeric Wrapper Classes 351
The Character Class 354
The Boolean Class 355

Review Questions 355
8.4 The String Class 357

Immutability 357
Creating and Initializing Strings 357
The CharSequence Interface 360
Reading Characters from a String 361
Comparing Strings 363
Character Case in a String 364
Concatenation of Strings 364
Joining of CharSequence Objects 365
Searching for Characters and Substrings 367
Extracting Substrings 369
Converting Primitive Values and Objects to Strings 369
Formatted Strings 370

Review Questions 371
8.5 The StringBuilder and StringBuffer Classes 374

Thread-Safety 374
Mutability 374
Constructing String Builders 374
Reading and Changing Characters in String Builders 375
Constructing Strings from String Builders 375
Appending, Inserting, and Deleting Characters in String Builders 376
Controlling String Builder Capacity 378

Review Questions 379
Chapter Summary 382
Programming Exercises 382

9 Object Lifetime 383
9.1 Garbage Collection 384
9.2 Reachable Objects 384
9.3 Facilitating Garbage Collection 386
9.4 Object Finalization 390
9.5 Finalizer Chaining 391
9.6 Invoking Garbage Collection Programmatically 393

Review Questions 396
9.7 Initializers 399
9.8 Field Initializer Expressions 400

Declaration Order of Initializer Expressions 401
9.9 Static Initializer Blocks 402



CONTENTS xvii

Declaration Order of Static Initializers 403
9.10 Instance Initializer Blocks 404

Declaration Order of Instance Initializers 405
9.11 Constructing Initial Object State 406

Review Questions 409
Chapter Summary 411

10 The ArrayList<E> Class and Lambda Expressions 413
10.1 The ArrayList<E> Class 414

Lists 414
Declaring References and Constructing ArrayLists 415
Modifying an ArrayList 419
Querying an ArrayList 422
Traversing an ArrayList 423
Converting an ArrayList to an Array 424
Sorting an ArrayList 425
Arrays versus ArrayList 425

Review Questions 430
10.2 Lambda Expressions 433

Behavior Parameterization 434
Functional Interfaces 442
Defining Lambda Expressions 444
Type Checking and Execution of Lambda Expressions 450
Filtering Revisited: The Predicate<T> Functional Interface 451

Review Questions 455
Chapter Summary 458
Programming Exercise 458

11 Date and Time 461
11.1 Basic Date and Time Concepts 462
11.2 Working with Temporal Classes 462

Creating Temporal Objects 464
Querying Temporal Objects 468
Comparing Temporal Objects 470
Creating Modified Copies of Temporal Objects 470
Temporal Arithmetic 474

11.3 Working with Periods 476
Creating Periods 476
Querying Periods 478
Creating Modified Copies of Periods 479
More Temporal Arithmetic 479

Review Questions 483
11.4 Formatting and Parsing 486

Default Formatters 487



xviii CONTENTS

Predefined Formatters 488
Localized Formatters 490
Customized Formatters 495

Review Questions 500
Chapter Summary 502
Programming Exercise 503

A Taking the Java SE 8 Programmer I Exam 507

A.1 Preparing for the Exam 507
A.2 Registering for the Exam 508

Contact Information 509
Obtaining an Exam Voucher 509
Signing Up for the Test 509
After Taking the Exam 509

A.3 How the Exam Is Conducted 510
The Testing Locations 510
Utilizing the Allotted Time 510
The Exam Program 510
The Exam Result 511

A.4 The Questions 511
Assumptions about the Exam Questions 511
Types of Questions Asked 512
Types of Answers Expected 512
Topics Covered by the Questions 513

B Exam Topics: Java SE 8 Programmer I 515

C Annotated Answers to Review Questions 519

D Solutions to Programming Exercises 553

E Mock Exam: Java SE 8 Programmer I 571

F Annotated Answers to Mock Exam I 605

Index 619



xix

Figures

Chapter 1 11.1 UML Notation for Classes 3
1.2 UML Notation for Objects 5
1.3 Aliases 6
1.4 Class Diagram Showing Static Members of a Class 8
1.5 Members of a Class 9
1.6 Class Diagram Depicting Inheritance Relationship 10
1.7 Class Diagram Depicting Associations 12
1.8 Class Diagram Depicting Composition 13

Chapter 2 272.1 Primitive Data Types in Java 37
Chapter 3 473.1 Array of Arrays 67

3.2 Parameter Passing: Primitive Data Values 75
3.3 Parameter Passing: Reference Values 76
3.4 Parameter Passing: Arrays 78

Chapter 4 954.1 Java Source File Structure 96
4.2 Package Hierarchy 97
4.3 File Hierarchy 107
4.4 Searching for Classes 108
4.5 Block Scope 117
4.6 Public Accessibility for Members 124
4.7 Protected Accessibility for Members 127
4.8 Default Accessibility for Members 128
4.9 Private Accessibility for Members 129

Chapter 5 1435.1 Widening Primitive Conversions 144
5.2 Converting among Binary, Octal, and Hexadecimal Numbers 158
5.3 Overflow and Underflow in Floating-Point Arithmetic 166
5.4 Numeric Promotion in Arithmetic Expressions 170

Chapter 6 1996.1 Activity Diagram for if Statements 201
6.2 Activity Diagram for a switch Statement 204
6.3 Activity Diagram for the while Statement 213
6.4 Activity Diagram for the do-while Statement 214
6.5 Activity Diagram for the for Statement 215
6.6 Enhanced for Statement 217
6.7 Method Execution 231



xx FIGURES

6.8 Exception Propagation 233
6.9 Partial Exception Inheritance Hierarchy 234

6.10 The try-catch-finally Construct 239
6.11 Exception Handling (Scenario 1) 241
6.12 Exception Handling (Scenario 2) 243
6.13 Exception Handling (Scenario 3) 245

Chapter 7 2637.1 Inheritance Hierarchy 267
7.2 Inheritance Hierarchy for Example 7.2 and Example 7.3 269
7.3 Inheritance Hierarchies 295
7.4 Inheritance Relationships for Interface Constants 303
7.5 Reference Type Hierarchy: Arrays and Subtype Covariance 310
7.6 Type Hierarchy That Illustrates Polymorphism 330
7.7 Implementing Data Structures by Inheritance and Aggregation 332

Chapter 8 3418.1 Partial Inheritance Hierarchy in the java.lang Package 342
8.2 Converting Values among Primitive, Wrapper, and String Types 347

Chapter 9 3839.1 Memory Organization at Runtime 386
Chapter 10 41310.1 Partial ArrayList Inheritance Hierarchy 415
Chapter 11 461



xxi

Tables

Chapter 1 11.1 Terminology for Class Members 9
1.2 Format Specifier Examples 20

Chapter 2 272.1 Keywords in Java 29
2.2 Reserved Literals in Java 29
2.3 Reserved Keywords Not Currently in Use 29
2.4 Separators in Java 29
2.5 Examples of Literals 30
2.6 Examples of Decimal, Binary, Octal, and Hexadecimal Literals 30
2.7 Examples of Character Literals 33
2.8 Escape Sequences 33
2.9 Examples of Escape Sequence \ddd 34

2.10 Range of Integer Values 38
2.11 Range of Character Values 38
2.12 Range of Floating-Point Values 39
2.13 Boolean Values 39
2.14 Summary of Primitive Data Types 39
2.15 Default Values 42

Chapter 3 473.1 Parameter Passing by Value 73
Chapter 4 954.1 Accessing Members within a Class 115

4.2 Summary of Accessibility Modifiers for Top-Level Types 120
4.3 Summary of Non-Accessibility Modifiers for Classes 122
4.4 Summary of Accessibility Modifiers for Members 129
4.5 Summary of Non-Accessibility Modifiers for Members 139

Chapter 5 1435.1 Selected Conversion Contexts and Conversion Categories 147
5.2 Operator Summary 151
5.3 Representing Signed byte Values Using Two’s Complement 155
5.4 Examples of Truncated Values 162
5.5 Arithmetic Operators 164
5.6 Examples of Arithmetic Expression Evaluation 169
5.7 Arithmetic Compound Assignment Operators 172
5.8 Relational Operators 180
5.9 Primitive Data Value Equality Operators 181

5.10 Reference Equality Operators 182



xxii TABLES

5.11 Truth Values for Boolean Logical Operators 184
5.12 Boolean Logical Compound Assignment Operators 185
5.13 Conditional Operators 186
5.14 Truth Values for Conditional Operators 186
5.15 Integer Bitwise Operators 189
5.16 Result Table for Bitwise Operators 190
5.17 Examples of Bitwise Operations 190
5.18 Bitwise Compound Assignment Operators 192

Chapter 6 1996.1 The return Statement 225
Chapter 7 2637.1 Overriding versus Overloading 274

7.2 Same Signature for Subclass and Superclass Method 276
7.3 Types and Values 309

Chapter 8 341Chapter 9 383Chapter 10 41310.1 Summary of Arrays versus ArrayLists 426
10.2 Selected Functional Interfaces from the java.util.function Package 444

Chapter 11 46111.1 Selected Common Method Prefix of the Temporal Classes 463
11.2 Selected ISO-Based Predefined Formatters for Date and Time 489
11.3 Format Styles for Date and Time 490
11.4 Combination of Format Styles and Localized Formatters 491
11.5 Selected Date/Time Pattern Letters 496



xxiii

Examples

Chapter 1 11.1 Basic Elements of a Class Declaration 4
1.2 Static Members in Class Declaration 8
1.3 Defining a Subclass 11
1.4 An Application 16
1.5 Formatted Output 21

Chapter 2 272.1 Default Values for Fields 42
2.2 Flagging Uninitialized Local Variables of Primitive Data Types 43
2.3 Flagging Uninitialized Local Reference Variables 44

Chapter 3 473.1 Using the this Reference 51
3.2 Namespaces 54
3.3 Using Arrays 62
3.4 Using Anonymous Arrays 64
3.5 Using Multidimensional Arrays 67
3.6 Passing Primitive Values 74
3.7 Passing Reference Values 75
3.8 Passing Arrays 77
3.9 Array Elements as Primitive Data Values 79

3.10 Array Elements as Reference Values 79
3.11 Calling a Variable Arity Method 83
3.12 Passing Program Arguments 86
3.13 Using Enums 88

Chapter 4 954.1 Defining Packages and Using Type Import 99
4.2 Single Static Import 102
4.3 Avoiding the Interface Constant Antipattern 102
4.4 Importing Enum Constants 103
4.5 Shadowing Static Import 104
4.6 Conflict in Importing Static Method with the Same Signature 105
4.7 Class Scope 116
4.8 Accessibility Modifiers for Classes and Interfaces 118
4.9 Abstract Classes 121

4.10 Public Accessibility of Members 125
4.11 Accessing Static Members 132
4.12 Using final Modifier 134



xxiv EXAMPLES

4.13 Synchronized Methods 137
Chapter 5 1435.1 Evaluation Order of Operands and Arguments 153

5.2 Numeric Promotion in Arithmetic Expressions 171
5.3 Short-Circuit Evaluation Involving Conditional Operators 187
5.4 Bitwise Operations 191

Chapter 6 1996.1 Fall-Through in a switch Statement 205
6.2 Using break in a switch Statement 206
6.3 Nested switch Statement 207
6.4 Strings in switch Statement 208
6.5 Enums in switch Statement 209
6.6 The break Statement 221
6.7 Labeled break Statement 222
6.8 continue Statement 223
6.9 Labeled continue Statement 224

6.10 The return Statement 225
6.11 Method Execution 230
6.12 The try-catch Construct 241
6.13 Exception Propagation 243
6.14 The try-catch-finally Construct 246
6.15 The try-finally Construct 247
6.16 The finally Clause and the return Statement 248
6.17 Throwing Exceptions 250
6.18 The throws Clause 252

Chapter 7 2637.1 Extending Classes: Inheritance and Accessibility 265
7.2 Overriding, Overloading, and Hiding 270
7.3 Using the super Keyword 277
7.4 Constructor Overloading 282
7.5 The this() Constructor Call 284
7.6 The super() Constructor Call 285
7.7 Implementing Interfaces 292
7.8 Default Methods in Interfaces 297
7.9 Default Methods and Multiple Inheritance 299

7.10 Static Methods in Interfaces 301
7.11 Constants in Interfaces 302
7.12 Inheriting Constants in Interfaces 304
7.13 Assigning and Passing Reference Values 312
7.14 Choosing the Most Specific Method (Simple Case) 317
7.15 Overloaded Method Resolution 318
7.16 The instanceof and Cast Operators 322
7.17 Using the instanceof Operator 323
7.18 Polymorphism and Dynamic Method Lookup 330
7.19 Implementing Data Structures by Inheritance and Aggregation 332

Chapter 8 3418.1 Methods in the Object Class 344
8.2 String Representation of Integers 353
8.3 String Construction and Equality 359
8.4 Reading Characters from a String 362



EXAMPLES xxv

Chapter 9 3839.1 Garbage Collection Eligibility 388
9.2 Using Finalizers 392
9.3 Invoking Garbage Collection 394
9.4 Initializer Expression Order and Method Calls 402
9.5 Static Initializers and Forward References 403
9.6 Instance Initializers and Forward References 405
9.7 Object State Construction 406
9.8 Initialization Anomaly under Object State Construction 408

Chapter 10 41310.1 Using an ArrayList 427
10.2 Implementing Customized Methods for Filtering an ArrayList 434
10.3 Implementing an Interface for Filtering an ArrayList 436
10.4 User-Defined Functional Interface for Filtering an ArrayList 439
10.5 Using the Predicate<T> Functional Interface for Filtering an ArrayList 441
10.6 Accessing Members in an Enclosing Object 447
10.7 Accessing Local Variables in an Enclosing Method 449
10.8 Filtering an ArrayList 452

Chapter 11 46111.1 Creating Temporal Objects 467
11.2 Using Temporal Objects 472
11.3 Temporal Arithmetic 475
11.4 Period-Based Loop 481
11.5 More Temporal Arithmetic 482
11.6 Using Default Date and Time Formatters 488
11.7 Using Predefined Format Styles with Time-Based Values 492
11.8 Using Predefined Format Styles with Date-Based Values 493
11.9 Using Predefined Format Styles with Date and Time-Based Values 494

11.10 Formatting and Parsing with Letter Patterns 497
11.11 Formatting with Date/Time Letter Patterns 499



This page intentionally left blank 



xxvii

Foreword

Java is now over twenty years old and the current release, JDK 8, despite its name,
is really the eleventh significant release of the platform. Whilst staying true to the
original ideas of the platform, there have been numerous developments adding a
variety of features to the language syntax as well as a huge number of APIs to the
core class libraries. This has enabled developers to become substantially more pro-
ductive and has helped to eliminate a variety of common situations that can easily
result in bugs.

Java has continued to grow in popularity, which is in large part attributable to the
continued evolution of the platform, which keeps it fresh and addresses things that
developers want. According to some sources, there are more than nine million Java
programmers across the globe and this number looks set to continue to grow as
most universities use Java as a primary teaching language. 

With so many Java programmers available to employers, how do they ensure that
candidates have the necessary skills to develop high-quality, reliable code? The
answer is certification: a standardized test of a developer’s knowledge about the
wide variety of features and techniques required to use Java efficiently and effec-
tively. Originally introduced by Sun Microsystems, the certification process and
exam has been updated to match the features of each release of Java. Oracle has
continued this since acquiring Sun in 2010.

Taking and passing the exams is not a simple task. To ensure that developers meet
a high standard of knowledge about Java, the candidate must demonstrate the
ability to understand a wide variety of programming techniques, a clear grasp of
the Java syntax, and a comprehensive knowledge of the standard class library
APIs. With the release of JDK 8, not only do Java developers need to understand
the details of imperative and object-oriented programming, they now need to have
a grasp of functional programming so they can effectively use the key new fea-
tures: lambda expressions and the Streams API.

Which is why, ultimately, you need this book to help you prepare for the exam. The
authors have done a great job of presenting the material you need to know to pass



xxviii FOREWORD

the exam in an approachable and easy-to-grasp way. The book starts with the fun-
damental concepts and language syntax and works its way through what you need
to know about object-oriented programming before addressing more complex topics
like generic types. The latter part of the book addresses the most recent changes in
JDK 8, that of lambda expressions, the Streams API, and the new Date and Time API.

Having worked with Java almost since it was first released, both at Sun Microsystems
and then at Oracle Corporation, I think you will find this book an invaluable guide
to help you pass the Oracle Certified Associate Exam for Java SE 8. I wish you the
best of luck!

—Simon Ritter
Deputy CTO, Azul Systems



xxix

Preface

Writing This Book

Dear Reader, what you hold in your hand is the result of a meticulous high-tech
operation that took many months and required inspecting many parts, removing
certain parts, retrofitting some old parts, and adding many new parts to our previ-
ous book on an earlier Java programmer certification exam, until we were com-
pletely satisfied with the result. After you have read the book and passed the exam,
we hope that you will appreciate the TLC (tender loving care) that has gone into
this operation. This is how it all came about.

Learning the names of Java certifications and the required exams is the first item
on the agenda. This book provides coverage for the exam to earn Oracle Certified
Associate (OCA), Java SE 8 Programmer Certification (also know as OCAJP8). The
exam required for this certification has the name Java SE 8 Programmer I Exam
(Exam number 1Z0-808). It is the first of two exams required to obtain Oracle Certi-
fied Professional (OCP), Java SE 8 Programmer Certification (also known as OCPJP8).
The second exam required for this professional certification has the name Java SE 8
Programmer II Exam (Exam number 1Z0-809). To reiterate, this book covers only
the topics for the Java SE 8 Programmer I Exam that is required to obtain OCAJP8
certification.

A book on the new Java SE 8 certification was a long time coming. The mantle of
Java had been passed on to Oracle and Java 7 had hit the newsstand. We started
out to write a book to cover the topics for the two exams required to earn the Oracle
Certified Professional, Java SE 7 Programmer Certification. Soon after the release of
Java 8, Oracle announced the certification for Java SE 8. We decided to switch to
the new version. It was not a difficult decision to make. Java 8 marks a watershed
when the language went from being a pure object-oriented language to one that also
incorporates features of functional-style programming. As the saying goes, Java 8
changed the whole ballgame. Java passed its twentieth birthday in 2015. Java 8,
released a year earlier, represented a significant milestone in its history. There was
little reason to dwell on earlier versions.



xxx PREFACE

The next decision concerned whether it would be best to provide coverage for the two
Java SE 8 Programmer Certification exams in one or two books. Pragmatic reasons dic-
tated two books. It would take far too long to complete a book that covered both
exams, mainly because the second exam was largely revamped and would require a
lot of new material. We decided to complete the book for the first exam. Once that deci-
sion was made, our draft manuscript went back on the operating table.

Our approach to writing this book has not changed from the one we employed for
our previous books, mainly because it has proved successful. No stones were left
unturned to create this book, as we explain here.

The most noticeable changes in the exam for OCAJP8 are the inclusion of the core
classes in the new Date and Time API and the writing of predicates using lambda
expressions. The emphasis remains on analyzing code scenarios, rather than indi-
vidual language constructs. The exam continues to require actual experience with
the language, not just mere recitation of facts. We still claim that proficiency in the
language is the key to success.

Since the exam emphasizes the core features of Java, this book provides in-depth
coverage of topics related to those features. As in our earlier books, supplementary
topics are also included to aid in mastering the exam topics.

This book is no different from our previous books in one other important aspect: It
is a one-stop guide, providing a mixture of theory and practice that enables readers
to prepare for the exam. It can be used to learn Java and to prepare for the exam.
After the exam is passed, it can also come in handy as a language guide.

Apart from including coverage of the new topics, our discussions of numerous
topics from the previous exam were extensively revised. All elements found in our
previous books (e.g., sections, examples, figures, tables, review questions, mock
exam questions) were closely scrutinized. New examples, figures, tables, and
review questions were specifically created for the new topics as well as for the
revised ones. We continue to use UML (Unified Modeling Language) extensively
to illustrate concepts and language constructs, and all numbered examples con-
tinue to be complete Java programs ready for experimenting. 

Feedback from readers regarding our previous books was invaluable in shaping
this book. Every question, suggestion, and comment received was deliberated
upon. We are grateful for every single email we have received over the years; that
input proved invaluable in improving this book. 

Dear Reader, we wish you all the best should you decide to go down the path of
Java certification. May your loops terminate and your exceptions get caught!

About This Book

This book provides extensive coverage of the core features of the Java program-
ming language and its core application programming interface (API), with particular



PREFACE xxxi

emphasis on its syntax and usage. The book is primarily intended for professionals
who want to prepare for the Java SE 8 Programmer I exam, but it is readily accessible
to any programmer who wants to master the language. For both purposes, it pro-
vides in-depth coverage of essential features of the language and its core API.

The demand for well-trained and highly skilled Java programmers remains
unabated. Oracle offers many Java certifications that professionals can take to val-
idate their skills (see http://education.oracle.com). The certification provides mem-
bers of the IT industry with a standard to use when hiring such professionals, and
it allows professionals to turn their Java skills into credentials that are important
for career advancement.

The book provides extensive coverage of all the objectives defined by Oracle for
the Java SE 8 Programmer I exam. The exam objectives are selective, however, and
do not include many of the essential features of Java. This book covers many addi-
tional topics that every Java programmer should master to be truly proficient. In
this regard, the book is a comprehensive primer for learning the Java programming
language. After mastering the language by working through this book, the reader
can confidently sit for the exam.

This book is not a complete reference for Java, as it does not attempt to list every mem-
ber of every class from the Java SE platform API documentation. The purpose is not to
document the Java SE platform API. The emphasis is more on the Java programming
language features—their syntax and correct usage through code examples—and less
on teaching programming techniques. 

The book assumes little background in programming. We believe the exam is
accessible to any programmer who works through the book. A Java programmer
can easily skip over material that is well understood and concentrate on parts that
need reinforcing, whereas a programmer new to Java will find the concepts
explained from basic principles. 

Each topic is explained and discussed thoroughly with examples, and backed by
review questions and exercises to reinforce the concepts. The book is not biased toward
any particular platform, but provides platform-specific details where necessary.

Using This Book

The reader can choose a linear or a nonlinear route through the book, depending
on his or her programming background. Non-Java programmers wishing to
migrate to Java can read Chapter 1, which provides a short introduction to object-
oriented programming concepts, and the procedure for compiling and running
Java applications. For those preparing for Java SE 8 Programmer I exam, the book
has a separate appendix (Appendix A) providing all the pertinent information on
preparing for and taking the exam.

Cross-references are provided where necessary to indicate the relationships among
the various constructs of the language. To understand a language construct, all

http://education.oracle.com


xxxii PREFACE

pertinent details are provided where the construct is covered, but in addition,
cross-references are provided to indicate its relationship to other constructs. Some-
times it is necessary to postpone discussion of certain aspects of a topic if they
depend on concepts that have not yet been covered in the book. A typical example
is the consequences of object-oriented programming concepts (for example, inher-
itance) on the member declarations that can occur in a class. This approach can
result in forward references in the initial chapters of the book.

The table of contents; listings of tables, examples, and figures; and a comprehen-
sive index facilitate locating topics discussed in the book.

In particular, we draw attention to the following features of the book:

Review Questions

Review questions are provided after every major topic to test and reinforce the
material. The review questions predominantly reflect the kind of multiple-choice
questions that can be asked on the actual exam. On the exam, the exact number of
answers to choose for each question is explicitly stated. The review questions in
this book follow that practice. 

Many questions on the actual exam contain code snippets with line numbers to
indicate that complete implementation is not provided, and that the necessary
missing code to compile and run the code snippets can be assumed. The review
questions in this book provide complete code implementations where possible, so
that the code can be readily compiled and run.

Annotated answers to the review questions are provided in Appendix C.

Programmer I Exam Objectives

0.1 Exam objectives are stated clearly at the beginning of every chapter.
0.2 The number in front of the objective identifies the exam objective, as 

defined by Oracle, and can be found in Appendix B.
0.3 The objectives are organized into major sections, detailing the curriculum 

for the exam.
0.4 The objectives for the Java SE 8 Programmer I exam are reproduced verbatim 

in Appendix B, where for each section of the syllabus, references are 
included to point the reader to relevant topics in the book.

Supplementary Objectives

• Supplementary objectives cover topics that are not on the exam, but which 
we believe are important for mastering the topics that are on the exam.

• Any supplementary objective is listed as a bullet at the beginning of the 
chapter.



PREFACE xxxiii

Example 0.1 Example Source Code

We encourage readers to experiment with the code examples to reinforce the mate-
rial from the book. These examples can be downloaded from the book website 
(see p. xxxiv).

Java code is presented in a monospaced font. Lines of code in the examples or in code
snippets are referenced in the text by a number, which is specified by using a
single-line comment in the code. For example, in the following code snippet, the
call to the method doSomethingInteresting() at (1) does something interesting:

// ...
doSomethingInteresting();                                                 // (1)
// ...

Names of classes and interfaces start with an uppercase letter. Names of packages,
variables, and methods start with a lowercase letter. Constants are in all uppercase
letters. Interface names begin with the prefix I, when it makes sense to distinguish
them from class names. Coding conventions are followed, except when we have
had to deviate from these conventions in the interest of space or clarity.

Chapter Summary

Each chapter concludes with a summary of the topics covered in the chapter, point-
ing out the major concepts that were introduced.

Programming Exercises

Programming exercises at the end of each chapter provide the opportunity to put
concepts into practice. Solutions to the programming exercises are provided in
Appendix D.

Mock Exam

The mock exam in Appendix E should be attempted when the reader feels confi-
dent about the topics on the exam. It is highly recommended to read Appendix A
before attempting the mock exam, as Appendix A contains pertinent information
about the questions to expect on the actual exam. Each multiple-choice question in
the mock exam explicitly states how many answers are applicable for a given ques-
tion, as is the case on the actual exam. Annotated answers to the questions in the
mock exam are provided in Appendix F.

Java SE Platform API Documentation

A vertical gray bar is used to highlight methods and fields found in the classes
of the Java SE Platform API.

Any explanation following the API information is also similarly highlighted.



xxxiv PREFACE

To obtain the maximum benefit from using this book in preparing for the Java SE 8
Programmer I exam, we strongly recommend installing the latest version (Release 8
or newer) of the JDK and its accompanying API documentation. The book focuses
solely on Java 8, and does not acknowledge previous versions.

Book Website

This book is backed by a website providing auxiliary material:
www.ii.uib.no/~khalid/ocajp8/

The contents of the website include the following:

• Source code for all the examples in the book 

• Solutions to the programming exercises in the book

• Annotated answers to the reviews questions in the book

• Annotated answers to the mock exam in the book

• Table of contents, sample chapter, and index from the book

• Errata for the book

• Links to miscellaneous Java resources (e.g., certification, discussion groups, 
tools)

Information about the Java Standard Edition (SE) and its documentation can be
found at the following website:

www.oracle.com/technetwork/java/javase/overview/index.html

The current authoritative technical reference for the Java programming language,
The Java® Language Specification: Java SE 8 Edition (also published by Addison-Wesley),
can be found at this website:

http://docs.oracle.com/javase/specs/index.html

Request for Feedback

Considerable effort has been made to ensure the accuracy of the content of this
book. All code examples (including code fragments) have been compiled and
tested on various platforms. In the final analysis, any errors remaining are the sole
responsibility of the authors.

Any questions, comments, suggestions, and corrections are welcome. Let us know
whether the book was helpful (or not) for your purpose. Any feedback is valuable.
The principal author can be reached at the following email address:

khalid.mughal@uib.no

http://www.ii.uib.no/~khalid/ocajp8/
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://docs.oracle.com/javase/specs/index.html


PREFACE xxxv

Register your copy of A Programmer's Guide to Java® SE 8 Oracle Certified Associate (OCA)
at informit.com for convenient access to downloads, updates, and corrections as
they become available. To start the registration process, go to informit.com/register
and log in or create an account. Enter the product ISBN (9780132930215) and click
Submit. Once the process is complete, you will find any available bonus content
under “Registered Products.”

About the Authors

Khalid A. Mughal

Khalid A. Mughal is an associate professor at the Department of Informatics at the
University of Bergen, Norway, where he has been responsible for designing and
implementing various courses in informatics. Over the years, he has taught pro-
gramming (primarily Java), software engineering (object-oriented system develop-
ment), databases (data modeling and database management systems), compiler
techniques, web application development, and software security courses. For 15
years, he was responsible for developing and running web-based programming
courses in Java, which were offered to off-campus students. He has also given
numerous courses and seminars at various levels in object-oriented programming
and system development using Java and Java-related technologies, both at the
University of Bergen and for the IT industry.

Mughal is the principal author and solely responsible for the contents of this book.
He is also the principal author of three books on previous versions of the Java pro-
grammer certification—A Programmer's Guide to Java™ SCJP Certification: A Compre-
hensive Primer, Third Edition (0321556054); A Programmer's Guide to Java™ Certification:
A Comprehensive Primer, Second Edition (0201728281); and A Programmer's Guide to
Java™ Certification (0201596148)—and three introductory textbooks on program-
ming in Java: Java Actually: A First Course in Programming (1844804186); Java Actually:
A Comprehensive Primer in Java Programming (1844809331); and Java som første program-
meringsspråk/Java as First Programming Language, Third Edition (8202245540).

Mughal currently works on security issues related to mobile data collection sys-
tems for delivering health services in low- and middle-income countries. 

Rolf W. Rasmussen

Rolf W. Rasmussen is a system development manager at Vizrt, a company that
develops solutions for the TV broadcast industry, including real-time 3D graphic
renderers, and content and control systems. Rasmussen works mainly on control
and automation systems, video processing, typography, and real-time visualiza-
tion. He has worked on clean-room implementations of the Java class libraries in
the past and is a contributor to the Free Software Foundation.



xxxvi PREFACE

Over the years, Rasmussen has worked both academically and professionally with
numerous programming languages, including Java. He was primarily responsible
for developing the review questions and answers, the programming exercises and
their solutions, the mock exam, and all the practical aspects related to taking the
exam in our three previous books on Java programmer certification. Selected ear-
lier content has been utilized in this book. Together with Mughal, he is also a co-
author of three introductory textbooks on programming in Java. 

Acknowledgments

At Addison-Wesley, Greg Doench was again our editor, who effectively  managed the
process of publishing this book. Regular dialog with him in recent months helped
to keep this project on track. Julie Nahil was the in-house contact at Addison-Wesley,
who professionally managed the production of the book. Anna Popick was the proj-
ect editor, who diligently handled the day-to-day project management for this book.
Jill Hobbs did a truly marvelous job copy editing the book. The folks at The CIP
Group performed the typesetting wizardry necessary to materialize the book. We
would like to extend our sincere thanks to Greg, Julie, Anna, Jill, the folks at The
CIP Group, and all those behind the scenes at Addison-Wesley, who helped to put
this publication on the bookshelf.

For the technical review of the book, we were lucky that Roel De Nijs agreed to take
on the task. If you drop in on CodeRanch.com, you are bound to find him executing
his duties as a Sheriff, especially helping greenhorns find their bearing in the Java
certification corrals. He is a freelance Java developer with many IT companies as
clients and a multitude of Java certification accolades under his belt (SCJA, SCJP,
SCJD, OCAJP7). And not least, he is a Technical Reviewer Par Excellence. Without
doubt, Roel has a meticulous eye for detail. It is no exaggeration to say that his
exhaustive feedback has been invaluable in improving the quality of this book at
all levels. Roel, you have our most sincere thanks for your many excellent com-
ments and suggestions, and above all, for weeding out numerous pesky errors in
the manuscript.

Over the years, we have also been lucky to have our own personal manuscript
quality controller: Marit Seljeflot Mughal. As diligently as with our previous
books, she tirelessly proofread several chapter drafts for this book, and put her fin-
ger on many unmentionable mistakes and errors in the manuscript. Her valuable
comments and suggestions have also been instrumental in improving the quality
of this book. If Marit, who has no IT background, could make sense of the Java jar-
gon we wrote, then we were confident our readers would as well. Our most sincere
thanks. 

Great effort has been made to eliminate mistakes and errors in this book. We accept
full responsibility for any remaining oversights. We hope that when our Dear
Readers find any, they will bring them to our attention.



PREFACE xxxvii

Many family occasions have been missed while working on this book. Without
family support, this book would not have seen the light of day. Khalid is ever grate-
ful to his family for their love, support, and understanding—but especially when
he is working on a book. Now that this book is out the door, he is off to play with
his three grandchildren.

—Khalid A. Mughal

17 May 2016
Bergen, Norway



This page intentionally left blank 



47

3Declarations

Programmer I Exam Objectives

[1.2]   Define the structure of a Java class §3.1, p. 48

[4.1]   Declare, instantiate, initialize, and use a one-dimensional 
array

§3.4, p. 58

[4.2]   Declare, instantiate, initialize, and use multi-dimensional 
array

§3.4, p. 64

[6.1]   Create methods with arguments and return values; 
including overloaded methods
❍ For return statement, see §6.4, p. 224.
❍ For covariant return, see §7.2, p. 273.
❍ For overloaded method resolution, see §7.10, p. 316.
❍ For overriding methods, see §7.2, p. 268.

§3.2, p. 49
§3.5, p. 72

[6.3]   Create and overload constructors; including impact on 
default constructors
❍ For constructor chaining, see §7.5, p. 282.

§3.3, p. 53

[6.6]   Determine the effect upon object references and primitive 
values when they are passed into methods that change the 
values
❍ For conversions in assignment and method invocation 

contexts, see §5.2, p. 147.

§3.5, p. 72

[7.4]   Use super and this to access objects and constructors
❍ For the super reference, see §7.4, p. 276.
❍ For using this() and super(), see §7.5, p. 282.

§3.2, p. 50

Supplementary Objectives

• Sorting and searching arrays §3.4, p. 68
§3.4, p. 69

• Declaring and calling methods with a variable arity 
parameter

§3.6, p. 81

• Passing values to a Java application as program arguments 
on the command line

§3.7, p. 85

• Basic introduction to declaring and using enum types §3.8, p. 87



48 CHAPTER 3: DECLARATIONS

3.1 Class Declarations

A class declaration introduces a new reference type. For the purpose of this book,
we will use the following simplified syntax of a class declaration:

class_modifiers class class_name 
                               extends_clause 
                               implements_clause // Class header

{ // Class body
    field_declarations
   method_declarations
   constructor_declarations

}

In the class header, the name of the class is preceded by the keyword class. In
addition, the class header can specify the following information: 

• An accessibility modifier (§4.5, p. 118)

• Additional class modifiers (§4.6, p. 120)

• Any class it extends (§7.1, p. 264)

• Any interfaces it implements (§7.6, p. 290)

The class body, enclosed in braces ({}), can contain member declarations. In this
book, we discuss the following two kinds of member declarations:

• Field declarations (§2.3, p. 40)

• Method declarations (§3.2, p. 49)

Members declared static belong to the class and are called static members. Non-
static members belong to the objects of the class and are called instance members. In
addition, the following declarations can be included in a class body:

• Constructor declarations (§3.3, p. 53)

The declarations can appear in any order in the class body. The only mandatory
parts of the class declaration syntax are the keyword class, the class name, and the
class body braces ({}), as exemplified by the following class declaration:

class X { }

To understand which code can be legally declared in a class, we distinguish
between static context and non-static context. A static context is defined by static
methods, static field initializers, and static initializer blocks. A non-static context
is defined by instance methods, non-static field initializers, instance initializer
blocks, and constructors. By static code, we mean expressions and statements in a
static context; by non-static code, we mean expressions and statements in a non-
static context. One crucial difference between the two contexts is that static code
can refer only to other static members.



3.2: METHOD DECLARATIONS 49

3.2 Method Declarations

For the purpose of this book, we will use the following simplified syntax of a
method declaration:

method_modifiers return_type method_name 
               (formal_parameter_list) throws_clause // Method header

{ // Method body
local_variable_declarations
statements

}

In addition to the name of the method, the method header can specify the follow-
ing information:

• Scope or accessibility modifier (§4.7, p. 123)

• Additional method modifiers (§4.8, p. 131)

• The type of the return value, or void if the method does not return any value
(§6.4, p. 224)

• A formal parameter list

• Any exceptions thrown by the method, which are specified in a throws clause
(§6.9, p. 251)

The formal parameter list is a comma-separated list of parameters for passing infor-
mation to the method when the method is invoked by a method call (§3.5, p. 72). An
empty parameter list must be specified by ( ). Each parameter is a simple variable
declaration consisting of its type and name:

optional_parameter_modifier type parameter_name

The parameter names are local to the method (§4.4, p. 117). The optional parameter
modifier final is discussed in §3.5, p. 80. It is recommended to use the @param tag in
a Javadoc comment to document the formal parameters of a method.

The signature of a method comprises the name of the method and the types of the
formal parameters only.

The method body is a block containing the local variable declarations (§2.3, p. 40) and
the statements of the method.

The mandatory parts of a method declaration are the return type, the method
name, and the method body braces ({}), as exemplified by the following method
declaration:

void noAction() {}

Like member variables, member methods can be characterized as one of two types:

• Instance methods, which are discussed later in this section

• Static methods, which are discussed in §4.8, p. 132



50 CHAPTER 3: DECLARATIONS

Statements

Statements in Java can be grouped into various categories. Variable declarations
with explicit initialization of the variables are called declaration statements (§2.3, p. 40,
and §3.4, p. 60). Other basic forms of statements are control flow statements (§6.1, p. 200)
and expression statements.

An expression statement is an expression terminated by a semicolon. Any value
returned by the expression is discarded. Only certain types of expressions have
meaning as statements:

• Assignments (§5.6, p. 158)

• Increment and decrement operators (§5.9, p. 176)

• Method calls (§3.5, p. 72)

• Object creation expressions with the new operator (§5.17, p. 195)

A solitary semicolon denotes the empty statement, which does nothing.

A block, {}, is a compound statement that can be used to group zero or more local dec-
larations and statements (§4.4, p. 117). Blocks can be nested, since a block is a state-
ment that can contain other statements. A block can be used in any context where a
simple statement is permitted. The compound statement that is embodied in a block
begins at the left brace, {, and ends with a matching right brace, }. Such a block must
not be confused with an array initializer in declaration statements (§3.4, p. 60). 

Labeled statements are discussed in §6.4 on page 220.

Instance Methods and the Object Reference this

Instance methods belong to every object of the class and can be invoked only on
objects. All members defined in the class, both static and non-static, are accessible
in the context of an instance method. The reason is that all instance methods are
passed an implicit reference to the current object—that is, the object on which the
method is being invoked. The current object can be referenced in the body of the
instance method by the keyword this. In the body of the method, the this reference
can be used like any other object reference to access members of the object. In fact,
the keyword this can be used in any non-static context. The this reference can be
used as a normal reference to reference the current object, but the reference cannot
be modified—it is a final reference (§4.8, p. 133).

The this reference to the current object is useful in situations where a local variable
hides, or shadows, a field with the same name. In Example 3.1, the two parameters
noOfWatts and indicator in the constructor of the Light class have the same names
as the fields in the class. The example also declares a local variable location, which
has the same name as one of the fields. The reference this can be used to distin-
guish the fields from the local variables. At (1), the this reference is used to identify
the field noOfWatts, which is assigned the value of the parameter noOfWatts. Without
the this reference at (2), the value of the parameter indicator is assigned back to



3.2: METHOD DECLARATIONS 51

this parameter, and not to the field by the same name, resulting in a logical error.
Similarly at (3), without the this reference, it is the local variable location that is
assigned the value of the parameter site, and not the field with the same name.

Example 3.1 Using the this Reference

public class Light {
  // Fields:
  int     noOfWatts;      // Wattage
  boolean indicator;      // On or off
  String  location;       // Placement

  // Constructor
  public Light(int noOfWatts, boolean indicator, String site) {
    String location;

    this.noOfWatts = noOfWatts;   // (1) Assignment to field
    indicator = indicator;        // (2) Assignment to parameter
    location = site;              // (3) Assignment to local variable
    this.superfluous();           // (4)
    superfluous();                // equivalent to call at (4)
  }

  public void superfluous() {
    System.out.printf("Current object: %s%n", this); // (5)
  }

  public static void main(String[] args) {
    Light light = new Light(100, true, "loft");
    System.out.println("No. of watts: " + light.noOfWatts);
    System.out.println("Indicator:    " + light.indicator);
    System.out.println("Location:     " + light.location);
  }
}

Probable output from the program:

Current object: Light@1bc4459
Current object: Light@1bc4459
No. of watts: 100
Indicator:    false
Location:     null

If a member is not shadowed by a local declaration, the simple name member is con-
sidered a short-hand notation for this.member. In particular, the this reference can
be used explicitly to invoke other methods in the class. This usage is illustrated at (4)
in Example 3.1, where the method superfluous() is called.

If, for some reason, a method needs to pass the current object to another method,
it can do so using the this reference. This approach is illustrated at (5) in Example 3.1,
where the current object is passed to the printf() method. The printf() method



52 CHAPTER 3: DECLARATIONS

prints the string representation of the current object (which comprises the name of
the class of the current object and the hexadecimal representation of the current
object’s hash code). (The hash code of an object is an int value that can be used to
store and retrieve the object from special data structures called hash tables.)

Note that the this reference cannot be used in a static context, as static code is not
executed in the context of any object.

Method Overloading

Each method has a signature, which comprises the name of the method plus the
types and order of the parameters in the formal parameter list. Several method
implementations may have the same name, as long as the method signatures differ.
This practice is called method overloading. Because overloaded methods have the
same name, their parameter lists must be different.

Rather than inventing new method names, method overloading can be used
when the same logical operation requires multiple implementations. The Java SE
platform API makes heavy use of method overloading. For example, the class
java.lang.Math contains an overloaded method min(), which returns the minimum
of two numeric values.

public static double min(double a, double b)
public static float min(float a, float b)
public static int min(int a, int b)
public static long min(long a, long b)

In the following examples, five implementations of the method methodA are shown:

void methodA(int a, double b) { /* ... */ }      // (1)
int  methodA(int a)           { return a; }      // (2)
int  methodA()                { return 1; }      // (3)
long methodA(double a, int b) { return b; }      // (4)
long methodA(int x, double y) { return x; }      // (5) Not OK.

The corresponding signatures of the five methods are as follows:

The first four implementations of the method named methodA are overloaded cor-
rectly, each time with a different parameter list and, therefore, different signatures.
The declaration at (5) has the same signature methodA(int, double) as the declara-
tion at (1) and, therefore, is not a valid overloading of this method. 

void bake(Cake k)  { /* ... */ }                 // (1)
void bake(Pizza p) { /* ... */ }                 // (2)

int     halfIt(int a) { return a/2; }            // (3)
double  halfIt(int a) { return a/2.0; }          // (4) Not OK. Same signature.

methodA(int, double) 1'
methodA(int) 2': Number of parameters
methodA() 3': Number of parameters
methodA(double, int) 4': Order of parameters
methodA(int, double) 5': Same as 1'



3.3: CONSTRUCTORS 53

The method named bake is correctly overloaded at (1) and (2), with two different
parameter lists. In the implementation, changing just the return type (as shown at
(3) and (4) in the preceding example), is not enough to overload a method, and will
be flagged as a compile-time error. The parameter list in the declarations must be
different. 

Only methods declared in the same class and those that are inherited by the class can
be overloaded. Overloaded methods should be considered to be individual methods
that just happen to have the same name. Methods with the same name are allowed,
since methods are identified by their signature. At compile time, the right implemen-
tation of an overloaded method is chosen, based on the signature of the method call.
Details of method overloading resolution can be found in §7.10 on page 316. Method
overloading should not be confused with method overriding (§7.2, p. 268).

3.3 Constructors 

The main purpose of constructors is to set the initial state of an object, when the
object is created by using the new operator.

For the purpose of this book, we will use the following simplified syntax of a con-
structor:

accessibility_modifier class_name (formal_parameter_list)
                            throws_clause  // Constructor header

{ // Constructor body
local_variable_declarations
statements

}

Constructor declarations are very much like method declarations. However, the
following restrictions on constructors should be noted:

• Modifiers other than an accessibility modifier are not permitted in the con-
structor header. For accessibility modifiers for constructors, see §4.7, p. 123.

• Constructors cannot return a value and, therefore, do not specify a return type,
not even void, in the constructor header. But their declaration can use the return
statement that does not return a value in the constructor body (§6.4, p. 224).

• The constructor name must be the same as the class name.

Class names and method names exist in different namespaces. Thus, there are no
name conflicts in Example 3.2, where a method declared at (2) has the same name
as the constructor declared at (1). A method must always specify a return type,
whereas a constructor does not. However, using such naming schemes is strongly
discouraged.

A constructor that has no parameters, like the one at (1) in Example 3.2, is called a
no-argument constructor.



54 CHAPTER 3: DECLARATIONS

Example 3.2 Namespaces

public class Name {

  Name() {                      // (1) No-argument constructor
    System.out.println("Constructor");
  }

  void Name() {                 // (2) Instance method
    System.out.println("Method");
  }

  public static void main(String[] args) {
    new Name().Name();          // (3) Constructor call followed by method call
  }
}

Output from the program:

Constructor
Method

The Default Constructor

If a class does not specify any constructors, then a default constructor is generated
for the class by the compiler. The default constructor is equivalent to the following
implementation:

class_name() { super(); }   // No parameters. Calls superclass constructor.

A default constructor is a no-argument constructor. The only action taken by the
default constructor is to call the superclass constructor. This ensures that the inher-
ited state of the object is initialized properly (§7.5, p. 282). In addition, all instance
variables in the object are set to the default value of their type, barring those that
are initialized by an initialization expression in their declaration.

In the following code, the class Light does not specify any constructors:

class Light {
  // Fields:
  int     noOfWatts;       // Wattage
  boolean indicator;       // On or off
  String  location;        // Placement

  // No constructors
  //...
}

class Greenhouse {
  // ...
  Light oneLight = new Light();     // (1) Call to default constructor
}



3.3: CONSTRUCTORS 55

In this code, the following default constructor is called when a Light object is cre-
ated by the object creation expression at (1):

Light() { super(); }

Creating an object using the new operator with the default constructor, as at (1), will
initialize the fields of the object to their default values (that is, the fields noOfWatts,
indicator, and location in a Light object will be initialized to 0, false, and null,
respectively).

A class can choose to provide its own constructors, rather than relying on the default
constructor. In the following example, the class Light provides a no-argument con-
structor at (1).

class Light {
  // ...
  Light() {                        // (1) No-argument constructor
    noOfWatts = 50;
    indicator = true;
    location  = "X";
  }
  //...
}

class Greenhouse {
  // ...
  Light extraLight = new Light();   // (2) Call of explicit default constructor
}

The no-argument constructor ensures that any object created with the object cre-
ation expression new Light(), as at (2), will have its fields noOfWatts, indicator, and
location initialized to 50, true, and "X", respectively.

If a class defines any constructor, it can no longer rely on the default constructor to
set the state of its objects. If such a class requires a no-argument constructor, it must
provide its own implementation, as in the preceding example. In the next example
the class Light does not provide a no-argument constructor, but rather includes a
non-zero argument constructor at (1). It is called at (2) when an object of the class
Light is created with the new operator. Any attempt to call the default constructor
will be flagged as a compile-time error, as shown at (3).

class Light {
  // ...
  // Only non-zero argument constructor:
  Light(int noOfWatts, boolean indicator, String location) {          // (1)
    this.noOfWatts = noOfWatts;
    this.indicator = indicator;
    this.location  = location;
  }
  //...
}

class Greenhouse {
  // ...
  Light moreLight  = new Light(100, true, "Greenhouse");// (2) OK
  Light firstLight = new Light();                       // (3) Compile-time error
}



56 CHAPTER 3: DECLARATIONS

Overloaded Constructors

Like methods, constructors can be overloaded. Since the constructors in a class all
have the same name as the class, their signatures are differentiated by their param-
eter lists. In the following example, the class Light now provides explicit imple-
mentation of the no-argument constructor at (1) and that of a non-zero argument
constructor at (2). The constructors are overloaded, as is evident by their signa-
tures. The non-zero argument constructor at (2) is called when an object of the class
Light is created at (3), and the no-argument constructor is likewise called at (4).
Overloading of constructors allows appropriate initialization of objects on
creation, depending on the constructor invoked (see chaining of constructors in
§7.5, p. 282). It is recommended to use the @param tag in a Javadoc comment to doc-
ument the formal parameters of a constructor. 

class Light {
  // ...
  // No-argument constructor:
  Light() {                                                  // (1)
    noOfWatts = 50;
    indicator = true;
    location  = "X";
  }

  // Non-zero argument constructor:
  Light(int noOfWatts, boolean indicator, String location) { // (2)
    this.noOfWatts = noOfWatts;
    this.indicator = indicator;
    this.location  = location;
  }
  //...
}

class Greenhouse {
  // ...
  Light moreLight  = new Light(100, true, "Greenhouse");     // (3) OK
  Light firstLight = new Light();                            // (4) OK
}

Review Questions

3.1 Which one of these declarations is a valid method declaration?

Select the one correct answer.
(a) void method1         { /* ... */ }
(b) void method2()       { /* ... */ }
(c) void method3(void)   { /* ... */ }
(d) method4()            { /* ... */ }
(e) method5(void)        { /* ... */ }



3.3: CONSTRUCTORS 57

3.2 Which statements, when inserted at (1), will not result in compile-time errors?

public class ThisUsage {
  int planets;
  static int suns;

  public void gaze() {
    int i;
    // (1) INSERT STATEMENT HERE
  }
}

Select the three correct answers.
(a) i = this.planets;
(b) i = this.suns;
(c) this = new ThisUsage();
(d) this.i = 4;
(e) this.suns = planets;

3.3 Given the following pairs of method declarations, which statements are true?

void fly(int distance) {}
int  fly(int time, int speed) { return time*speed; }

void fall(int time) {}
int  fall(int distance) { return distance; }

void glide(int time) {}
void Glide(int time) {}

Select the two correct answers.
(a) The first pair of methods will compile, and overload the method name fly.
(b) The second pair of methods will compile, and overload the method name

fall.
(c) The third pair of methods will compile, and overload the method name glide.
(d) The first pair of methods will not compile.
(e) The second pair of methods will not compile.
(f) The third pair of methods will not compile.

3.4 Given a class named Book, which one of these constructor declarations is valid for
the class Book?

Select the one correct answer.
(a) Book(Book b) {}
(b) Book Book() {}
(c) private final Book() {}
(d) void Book() {}
(e) public static void Book(String[] args) {}
(f) abstract Book() {}



58 CHAPTER 3: DECLARATIONS

3.5 Which statements are true?

Select the two correct answers.
(a) A class must define a constructor.
(b) A constructor can be declared private.
(c) A constructor can return a value.
(d) A constructor must initialize all fields when a class is instantiated.
(e) A constructor can access the non-static members of a class.

3.6 What will be the result of compiling the following program?

public class MyClass {
  long var;

  public void MyClass(long param) { var = param; }  // (1)

  public static void main(String[] args) {
    MyClass a, b;
    a = new MyClass();                              // (2)
    b = new MyClass(5);                             // (3)
  }
}

Select the one correct answer.
(a) A compile-time error will occur at (1).
(b) A compile-time error will occur at (2).
(c) A compile-time error will occur at (3).
(d) The program will compile without errors.

3.4 Arrays

An array is a data structure that defines an indexed collection of a fixed number of
homogeneous data elements. This means that all elements in the array have the
same data type. A position in the array is indicated by a non-negative integer value
called the index. An element at a given position in the array is accessed using the
index. The size of an array is fixed and cannot be changed after the array has been
created.

In Java, arrays are objects. Arrays can be of primitive data types or reference types.
In the former case, all elements in the array are of a specific primitive data type. In
the latter case, all elements are references of a specific reference type. References in
the array can then denote objects of this reference type or its subtypes. Each array
object has a public final field called length, which specifies the array size (i.e., the
number of elements the array can accommodate). The first element is always at
index 0 and the last element at index n – 1, where n is the value of the length field
in the array.



3.4: ARRAYS 59

Simple arrays are one-dimensional arrays—that is, a simple list of values. Since
arrays can store reference values, the objects referenced can also be array objects.
Thus, multidimensional arrays are implemented as array of arrays.

Passing array references as parameters is discussed in §3.5, p. 72. Type conversions
for array references on assignment and on method invocation are discussed in
§7.7, p. 309.

Declaring Array Variables

A one-dimensional array variable declaration has either of the following syntaxes:

element_type[] array_name;

or 

element_type array_name[];

where element_type can be a primitive data type or a reference type. The array vari-
able array_name has the type element_type[]. Note that the array size is not speci-
fied. As a consequence, the array variable array_name can be assigned the reference
value of an array of any length, as long as its elements have element_type.

It is important to understand that the declaration does not actually create an array.
Instead, it simply declares a reference that can refer to an array object. The [] nota-
tion can also be specified after a variable name to declare it as an array variable,
but then it applies to just that variable.

int anIntArray[], oneInteger;
Pizza[] mediumPizzas, largePizzas;

These two declarations declare anIntArray and mediumPizzas to be reference variables
that can refer to arrays of int values and arrays of Pizza objects, respectively. The
variable largePizzas can denote an array of Pizza objects, but the variable oneInteger
cannot denote an array of int values—it is a simple variable of the type int.

An array variable that is declared as a field in a class, but is not explicitly initialized
to any array, will be initialized to the default reference value null. This default ini-
tialization does not apply to local reference variables and, therefore, does not apply
to local array variables either (§2.4, p. 42). This behavior should not be confused
with initialization of the elements of an array during array construction.

Constructing an Array

An array can be constructed for a fixed number of elements of a specific type, using
the new operator. The reference value of the resulting array can be assigned to an
array variable of the corresponding type. The syntax of the array creation expression
is shown on the right-hand side of the following assignment statement:

array_name = new element_type[array_size];



60 CHAPTER 3: DECLARATIONS

The minimum value of array_size is 0; in other words zero-length arrays can be con-
structed in Java. If the array size is negative, a NegativeArraySizeException is thrown
at runtime.

Given the declarations

int anIntArray[], oneInteger;
Pizza[] mediumPizzas, largePizzas;

the three arrays in the declarations can be constructed as follows:

anIntArray   = new int[10];          // array for 10 integers
mediumPizzas = new Pizza[5];         // array of 5 pizzas
largePizzas  = new Pizza[3];         // array of 3 pizzas

The array declaration and construction can be combined.

element_type1[] array_name = new element_type2[array_size];

In the preceding syntax, the array type element_type2[] must be assignable to the
array type element_type1[] (§7.7, p. 309). When the array is constructed, all of its ele-
ments are initialized to the default value for element_type2. This is true for both
member and local arrays when they are constructed.

In the next examples, the code constructs the array, and the array elements are
implicitly initialized to their default values. For example, all elements of the array
anIntArray get the value 0, and all elements of the array mediumPizzas get the value
null when the arrays are constructed.

int[] anIntArray = new int[10];                  // Default element value: 0
Pizza[] mediumPizzas = new Pizza[5];             // Default element value: null

The value of the field length in each array is set to the number of elements specified
during the construction of the array; for example, mediumPizzas.length has the
value 5.

Once an array has been constructed, its elements can also be explicitly initialized
individually—for example, in a loop. The examples in the rest of this section make
use of a loop to traverse the elements of an array for various purposes.

Initializing an Array

Java provides the means of declaring, constructing, and explicitly initializing an
array in one declaration statement:

element_type[] array_name = { array_initialize_list };

This form of initialization applies to fields as well as to local arrays. The
array_initialize_list is a comma-separated list of zero or more expressions. Such an
array initializer results in the construction and initialization of the array.

int[] anIntArray = {13, 49, 267, 15, 215};

In this declaration statement, the variable anIntArray is declared as a reference to
an array of ints. The array initializer results in the construction of an array to hold



3.4: ARRAYS 61

five elements (equal to the length of the list of expressions in the block), where the
first element is initialized to the value of the first expression (13), the second ele-
ment to the value of the second expression (49), and so on.

Pizza[] pizzaOrder = { new Pizza(), new Pizza(), null };

In this declaration statement, the variable pizzaOrder is declared as a reference to an
array of Pizza objects. The array initializer constructs an array to hold three ele-
ments. The initialization code sets the first two elements of the array to refer to two
Pizza objects, while the last element is initialized to the null reference. The refer-
ence value of the array of Pizza objects is assigned to the reference pizzaOrder. Note
also that this declaration statement actually creates three objects: the array object
with three references and the two Pizza objects.

The expressions in the array_initialize_list are evaluated from left to right, and the
array name obviously cannot occur in any of the expressions in the list. In the pre-
ceding examples, the array_initialize_list is terminated by the right brace, }, of the
block. The list can also be legally terminated by a comma. The following array has
length 2, and not 3:

Topping[] pizzaToppings = { new Topping("cheese"), new Topping("tomato"), };

The declaration statement at (1) in the following code defines an array of four
String objects, while the declaration statement at (2) shows that a String object is
not the same as an array of char.

// Array with 4 String objects:
String[] pets = {"crocodiles", "elephants", "crocophants", "elediles"}; // (1)

// Array of 3 characters:
char[] charArray = {'a', 'h', 'a'};    // (2) Not the same as "aha"

Using an Array

The array object is referenced by the array name, but individual array elements are
accessed by specifying an index with the [] operator. The array element access
expression has the following syntax:

array_name [index_expression]

Each individual element is treated as a simple variable of the element type. The
index is specified by the index_expression, whose value should be promotable to an
int value; otherwise, a compile-time error is flagged. Since the lower bound of an
array index is always 0, the upper bound is 1 less than the array size—that is,
array_name.length-1. The ith element in the array has index (i-1). At runtime, the
index value is automatically checked to ensure that it is within the array index
bounds. If the index value is less than 0, or greater than or equal to
array_name.length, an ArrayIndexOutOfBoundsException is thrown. A program can
either check the index explicitly or catch the runtime exception (§6.5, p. 230), but
an illegal index is typically an indication of a programming error.



62 CHAPTER 3: DECLARATIONS

In the array element access expression, the array_name can be any expression that
returns a reference to an array. For example, the expression on the right-hand side
of the following assignment statement returns the character 'H' at index 1 in the
character array returned by a call to the toCharArray() method of the String class:

char letter = "AHA".toCharArray()[1];     // 'H'

The array operator [] is used to declare array types (Topping[]), specify the array
size (new Topping[3]), and access array elements (toppings[1]). This operator is not
used when the array reference is manipulated, such as in an array reference assign-
ment (§7.9, p. 312), or when the array reference is passed as an actual parameter in
a method call (§3.5, p. 77).

Example 3.3 shows traversal of arrays using for loops (§6.3, p. 215 and p. 217). A
for(;;) loop at (3) in the main() method initializes the local array trialArray
declared at (2) five times with pseudo-random numbers (from 0.0 to 100.0), by call-
ing the method randomize() declared at (5). The minimum value in the array is
found by calling the method findMinimum() declared at (6), and is stored in the array
storeMinimum declared at (1). Both of these methods also use a for(;;) loop. The loop
variable is initialized to a start value—0 in (3) and (5), and 1 in (6). The loop condi-
tion tests whether the loop variable is less than the length of the array; this guar-
antees that the loop will terminate when the last element has been accessed. The
loop variable is incremented after each iteration to access the next element.

A for(:) loop at (4) in the main() method is used to print the minimum values from
the trials, as elements are read consecutively from the array, without keeping track
of an index value. 

Example 3.3 Using Arrays

public class Trials {
  public static void main(String[] args) {
    // Declare and construct the local arrays:
    double[] storeMinimum = new double[5];               // (1)
    double[] trialArray = new double[15];                // (2)
    for (int i = 0; i < storeMinimum.length; ++i) {      // (3)
      // Initialize the array.
      randomize(trialArray);

      // Find and store the minimum value.
      storeMinimum[i] = findMinimum(trialArray);
    }

    // Print the minimum values:                            (4)
    for (double minValue : storeMinimum)
      System.out.printf("%.4f%n", minValue);
  }

  public static void randomize(double[] valArray) {      // (5)
    for (int i = 0; i < valArray.length; ++i)
      valArray[i] = Math.random() * 100.0;
  }



3.4: ARRAYS 63

  public static double findMinimum(double[] valArray) {  // (6)
    // Assume the array has at least one element.
    double minValue = valArray[0];
    for (int i = 1; i < valArray.length; ++i)
      minValue = Math.min(minValue, valArray[i]);
    return minValue;
  }
}

Probable output from the program:

6.9330
2.7819
6.7427
18.0849
26.2462

Anonymous Arrays

As shown earlier in this section, the following declaration statement can be used
to construct arrays using an array creation expression:

element_type1[] array_name = new element_type2[array_size];   // (1)

int[] intArray = new int[5];

The size of the array is specified in the array creation expression, which creates the
array and initializes the array elements to their default values. By comparison, the fol-
lowing declaration statement both creates the array and initializes the array ele-
ments to specific values given in the array initializer:

element_type[] array_name = { array_initialize_list };           // (2)

int[] intArray = {3, 5, 2, 8, 6};

However, the array initializer is not an expression. Java has another array creation
expression, called an anonymous array, which allows the concept of the array cre-
ation expression from (1) to be combined with the array initializer from (2), so as
to create and initialize an array object: 

new element_type[] { array_initialize_list }

new int[] {3, 5, 2, 8, 6}

This construct has enough information to create a nameless array of a specific type.
Neither the name of the array nor the size of the array is specified. The construct
returns the reference value of the newly created array, which can be assigned to ref-
erences and passed as argument in method calls. In particular, the following dec-
laration statements are equivalent:

int[] intArray = {3, 5, 2, 8, 6};                               // (1)
int[] intArray = new int[] {3, 5, 2, 8, 6};                     // (2)



64 CHAPTER 3: DECLARATIONS

In (1), an array initializer is used to create and initialize the elements. In (2), an
anonymous array expression is used. It is tempting to use the array initializer as an
expression—for example, in an assignment statement, as a shortcut for assigning
values to array elements in one go. However, this is illegal; instead, an anonymous
array expression should be used. The concept of the anonymous array combines
the definition and the creation of the array into one operation.

int[] daysInMonth;
daysInMonth = {31, 28, 31, 30, 31, 30, 
               31, 31, 30, 31, 30, 31};                   // Compile-time error
daysInMonth = new int[] {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; // OK

In Example 3.4, an anonymous array is constructed at (1), and passed as an actual
parameter to the static method findMinimum() defined at (2). Note that no array
name or array size is specified for the anonymous array.

Example 3.4 Using Anonymous Arrays

public class AnonArray {
  public static void main(String[] args) {
    System.out.println("Minimum value: " +
        findMinimum(new int[] {3, 5, 2, 8, 6}));                   // (1)
  }

  public static int findMinimum(int[] dataSeq) {                   // (2)
    // Assume the array has at least one element.
    int min = dataSeq[0];
    for (int index = 1; index < dataSeq.length; ++index)
      if (dataSeq[index] < min)
        min = dataSeq[index];
    return min;
  }
}

Output from the program:

Minimum value: 2

Multidimensional Arrays

Since an array element can be an object reference and arrays are objects, array
elements can themselves refer to other arrays. In Java, an array of arrays can be
defined as follows:

element_type[][]...[] array_name;

or 

element_type array_name[][]...[];



3.4: ARRAYS 65

In fact, the sequence of square bracket pairs, [], indicating the number of dimen-
sions, can be distributed as a postfix to both the element type and the array name.
Arrays of arrays are often called multidimensional arrays.

The following declarations are all equivalent:

int[][] mXnArray;      // 2-dimensional array
int[]   mXnArray[];    // 2-dimensional array
int     mXnArray[][];  // 2-dimensional array

It is customary to combine the declaration with the construction of the multi-
dimensional array.

int[][] mXnArray = new int[4][5];    // 4 x 5 matrix of ints

The previous declaration constructs an array mXnArray of four elements, where each
element is an array (row) of five int values. The concept of rows and columns is often
used to describe the dimensions of a 2-dimensional array, which is often called a
matrix. However, such an interpretation is not dictated by the Java language. 

Each row in the previous matrix is denoted by mXnArray[i], where 0  i  4. Each
element in the ith row, mXnArray[i], is accessed by mXnArray[i][j], where 0  j  5.
The number of rows is given by mXnArray.length, in this case 4, and the number of
values in the ith row is given by mXnArray[i].length, in this case 5 for all the rows,
where 0  i  4.

Multidimensional arrays can also be constructed and explicitly initialized using
the array initializers discussed for simple arrays. Note that each row is an array
that uses an array initializer to specify its values:

double[][] identityMatrix = {
  {1.0, 0.0, 0.0, 0.0 }, // 1. row
  {0.0, 1.0, 0.0, 0.0 }, // 2. row
  {0.0, 0.0, 1.0, 0.0 }, // 3. row
  {0.0, 0.0, 0.0, 1.0 }  // 4. row 
}; // 4 x 4 floating-point matrix

Arrays in a multidimensional array need not have the same length; when they do
not, they are called ragged arrays. The array of arrays pizzaGalore in the following
code has five rows; the first four rows have different lengths but the fifth row is left
unconstructed:

Pizza[][] pizzaGalore = {
  { new Pizza(), null, new Pizza() },    // 1. row is an array of 3 elements.
  { null, new Pizza()},                  // 2. row is an array of 2 elements.
  new Pizza[1],                          // 3. row is an array of 1 element.
  {},                                    // 4. row is an array of 0 elements.
  null                                   // 5. row is not constructed.
};

When constructing multidimensional arrays with the new operator, the length of
the deeply nested arrays may be omitted. In such a case, these arrays are left
unconstructed. For example, an array of arrays to represent a room on a floor in a
hotel on a street in a city can have the type HotelRoom[][][][]. From left to right, the



66 CHAPTER 3: DECLARATIONS

square brackets represent indices for street, hotel, floor, and room, respectively.
This 4-dimensional array of arrays can be constructed piecemeal, starting with the
leftmost dimension and proceeding to the rightmost successively. 

HotelRoom[][][][] rooms = new HotelRoom[10][5][][];  // Just streets and hotels. 

The preceding declaration constructs the array of arrays rooms partially with ten
streets, where each street has five hotels. Floors and rooms can be added to a par-
ticular hotel on a particular street:

rooms[0][0]       = new HotelRoom[3][]; // 3 floors in 1st hotel on 1st street.
rooms[0][0][0]    = new HotelRoom[8];   // 8 rooms on 1st floor in this hotel.
rooms[0][0][0][0] = new HotelRoom();    // Initializes 1st room on this floor.

The next code snippet constructs an array of arrays matrix, where the first row has
one element, the second row has two elements, and the third row has three
elements. Note that the outer array is constructed first. The second dimension is
constructed in a loop that constructs the array in each row. The elements in the
multidimensional array will be implicitly initialized to the default double value
(0.0D). In Figure 3.1, the array of arrays matrix is depicted after the elements have
been explicitly initialized.

double[][] matrix = new double[3][];      // Number of rows.

for (int i = 0; i < matrix.length; ++i)
  matrix[i] = new double[i + 1];          // Construct a row.

Two other ways of initializing such an array of arrays are shown next. The first
approach uses array initializers, and the second uses an anonymous array of arrays.

double[][] matrix2 = {    // Using array initializers.
  {0.0},                  // 1. row
  {0.0, 0.0},             // 2. row
  {0.0, 0.0, 0.0}         // 3. row
};

double[][] matrix3 = new double[][] { // Using an anonymous array of arrays.
  {0.0},                  // 1. row
  {0.0, 0.0},             // 2. row
  {0.0, 0.0, 0.0}         // 3. row
};

The type of the variable matrix is double[][], a two-dimensional array of double val-
ues. The type of the variable matrix[i] (where 0 imatrix.length) is double[], a
one-dimensional array of double values. The type of the variable matrix[i][j]
(where 0 imatrix.length and 0 jmatrix[i].length) is double, a simple variable
of type double.

Nested loops are a natural match for manipulating multidimensional arrays. In
Example 3.5, a rectangular 4  3 int matrix is declared and constructed at (1). The
program finds the minimum value in the matrix. The outer loop at (2) traverses the
rows (mXnArray[i], where 0 imXnArray.length), and the inner loop at (3) traverses
the elements in each row in turn (mXnArray[i][j], where 0 jmXnArray[i].length).
The outer loop is executed mXnArray.length times, or 4 times, and the inner loop is



3.4: ARRAYS 67

executed(mXnArray.length)  (mXnArray[i].length), or 12 times, since all rows have
the same length 3.

The for(:) loop also provides a safe and convenient way of traversing an array.
Several examples of its use are provided in §6.3, p. 217.

Example 3.5 Using Multidimensional Arrays

public class MultiArrays {

  public static void main(String[] args) {
    // Declare and construct the M X N matrix.
    int[][] mXnArray = {                                           // (1)
        {16,  7, 12}, // 1. row
        { 9, 20, 18}, // 2. row
        {14, 11,  5}, // 3. row
        { 8,  5, 10}  // 4. row
    }; // 4 x 3 int matrix

    // Find the minimum value in a M X N matrix:
    int min = mXnArray[0][0];
    for (int i = 0; i < mXnArray.length; ++i)                      // (2)
      // Find min in mXnArray[i], in the row given by index i:
      for (int j = 0; j < mXnArray[i].length; ++j)                 // (3)
        min = Math.min(min, mXnArray[i][j]);

    System.out.println("Minimum value: " + min);
  }
}

Output from the program:

Minimum value: 5

Figure 3.1 Array of Arrays

matrix:double[][] 

[0] :Ref(double[]) 

[1] :Ref(double[]) 

[2] 

length = 3 

matrix[2]:double[] 

[0] 1.5 
[1] 2.9 
[2] 5.5 

length = 3 

matrix[1]:double[] 

[0] 6.3 
[1] 4.4 

length = 2 

matrix[2][1] 

matrix[0]:double[] 

[0] 8.5 

length = 1 

:Ref(double[]) 



68 CHAPTER 3: DECLARATIONS

Sorting Arrays

Sorting implies ordering the elements according to some ranking criteria, usually
based on the values of the elements. The values of numeric data types can be com-
pared and ranked by using the relational operators. For comparing objects of a
class, the class typically implements the compareTo() method of the Comparable inter-
face. The ordering defined by this method is called the natural ordering for the
objects of the class. The wrapper classes for primitive values and the String class
implement the compareTo() method (§8.3, p. 350, and §8.4, p. 363, respectively).

The java.util.Arrays class provides many overloaded versions of the sort()
method to sort practically any type of array. 

An appropriate import statement should be included in the source code to access
the java.util.Arrays class. In the next code snippet, an array of strings is sorted
according to natural ordering for strings—that is, based on the Unicode values of
the characters in the strings:

String[] strArray =  {"biggest", "big", "bigger", "Bigfoot"};
Arrays.sort(strArray);    // Natural ordering: [Bigfoot, big, bigger, biggest]

The next examples illustrate sorting an array of primitive values (int) at (1), and an
array of type Object containing mutually comparable elements (String) at (2). In (3),
the numerical values are autoboxed into their corresponding wrapper classes (§8.3,
p. 346), but the objects of different wrapper classes and the String class are not
mutually comparable. In (4), the numerical values are also autoboxed into their
corresponding wrapper classes, but again the objects of different wrapper classes
are not mutually comparable. A ClassCastException is thrown when the elements
are not mutually comparable.

int[] intArray = {5, 3, 7, 1};              // int
Arrays.sort(intArray);                      // (1) Natural ordering: [1, 3, 5, 7]

Object[] objArray1 = {"I", "am", "OK"};     // String
Arrays.sort(objArray1);                     // (2) Natural ordering: [I, OK, am]

Object[] objArray2 = {23, "ten", 3.14};     // Not mutually comparable
Arrays.sort(objArray2);                     // (3) ClassCastException

Number[] numbers = {23, 3.14, 10L};         // Not mutually comparable
Arrays.sort(numbers);                       // (4) ClassCastException

void sort(type[] array)

Permitted type for elements includes byte, char, double, float, int, long, short, and
Object. The method sorts the elements in the array according to their natural
ordering. In the case of an array of objects being passed as argument, the objects
must be mutually comparable; that is, it should be possible to compare any two
objects in the array according to the natural ordering defined by the compareTo()
method of the Comparable interface.



3.4: ARRAYS 69

Searching Arrays

A common operation on an array is to search the array for a given element, called the
key. The java.util.Arrays class provides overloaded versions of the binarySearch()
method to search in practically any type of array that is sorted.

An appropriate import statement should be included in the source code to access
the java.util.Arrays class. In the code that follows, the return value –3 indicates
that the key would have been found at index 2 had it been in the list:

// Sorted String array (natural ordering): [Bigfoot, big, bigger, biggest]
// Search in natural ordering:
int index1 = Arrays.binarySearch(strArray, "bigger");   // Successful:    2
int index2 = Arrays.binarySearch(strArray, "bigfeet");  // Unsuccessful: -3
int index3 = Arrays.binarySearch(strArray, "bigmouth"); // Unsuccessful: -5

Results are unpredictable if the array is not sorted, or if the ordering used in the
search is not the same as the sort ordering. Searching in the strArray using natural
ordering when the array is sorted in reverse natural ordering gives the wrong result:

// Sorted String array (inverse natural ordering): [biggest, bigger, big, Bigfoot]
// Search in natural ordering:
int index4 = Arrays.binarySearch(strArray, "big");  //  -1 (INCORRECT)

A ClassCastException is thrown if the key and the elements are not mutually
comparable:

int index5 = Arrays.binarySearch(strArray, 4); // Key: 4 => ClassCastException

However, this incompatibility is caught at compile time in the case of arrays with
primitive values:

// Sorted int array (natural ordering): [1, 3, 5, 7]
int index6 = Arrays.binarySearch(intArray, 4.5);//Key: 4.5 => compile-time error!

The method binarySearch() derives its name from the divide-and-conquer algorithm
that it uses to perform the search. It repeatedly divides the remaining elements to be
searched into two halves and selects the half containing the key to continue the
search in, until either the key is found or there are no more elements left to search. 

int binarySearch(type[] array, type key)

Permitted type for elements include byte, char, double, float, int, long, short,
and Object. The array must be sorted in ascending order before calling this
method, or the results are unpredictable. In the case where an array of objects
is passed as argument, the objects must be sorted in ascending order according
to their natural ordering, as defined by the Comparable interface.
The method returns the index to the key in the sorted array, if the key exists.
The index is then guaranteed to be greater or equal to 0. If the key is not found,
a negative index is returned, corresponding to –(insertion point + 1), where
insertion point is the index of the element where the key would have been
found, if it had been in the array. If there are duplicate elements equal to the
key, there is no guarantee which duplicate’s index will be returned. The ele-
ments and the key must be mutually comparable.



70 CHAPTER 3: DECLARATIONS

Review Questions

3.7 Given the following declaration, which expression returns the size of the array,
assuming that the array reference has been properly initialized?

int[] array;

Select the one correct answer.
(a) array[].length() 
(b) array.length() 
(c) array[].length 
(d) array.length 
(e) array[].size() 
(f) array.size()
(g) array[].size
(h) array.size

3.8 Is it possible to create arrays of length zero?

Select the one correct answer.
(a) Yes, you can create arrays of any type with length zero.
(b) Yes, but only for primitive data types.
(c) Yes, but only for arrays of reference types.
(d) No, you cannot create zero-length arrays, but the main() method may be 

passed a zero-length array of Strings when no program arguments are 
specified.

(e) No, it is not possible to create arrays of length zero in Java.

3.9 Which one of the following array declaration statements is not legal?

Select the one correct answer.
(a) int []a[] = new int [4][4]; 
(b) int a[][] = new int [4][4]; 
(c) int a[][] = new int [][4]; 
(d) int []a[] = new int [4][]; 
(e) int [][]a = new int [4][4]; 

3.10 Which of these array declaration statements are not legal?

Select the two correct answers.
(a) int[] i[] = { { 1, 2 }, { 1 }, {}, { 1, 2, 3 } };
(b) int i[] = new int[2] {1, 2};
(c) int i[][] = new int[][] { {1, 2, 3}, {4, 5, 6} };
(d) int i[][] = { { 1, 2 }, new int[ 2 ] };
(e) int i[4] = { 1, 2, 3, 4 };



3.4: ARRAYS 71

3.11 What would be the result of compiling and running the following program?

public class MyClass {
  public static void main(String[] args) {
    int size = 20;
    int[] arr = new int[ size ];

    for (int i = 0; i < size; ++i) {
      System.out.println(arr[i]);
    }
  }
}

Select the one correct answer.
(a) The code will not compile, because the array type int[] is incorrect.
(b) The program will compile, but will throw an ArrayIndexOutOfBoundsException

when run.
(c) The program will compile and run without error, but will produce no output.
(d) The program will compile and run without error, and will print the numbers

0 through 19.
(e) The program will compile and run without error, and will print 0 twenty

times.
(f) The program will compile and run without error, and will print null twenty

times.

3.12 What would be the result of compiling and running the following program?

public class DefaultValuesTest {
  int[] ia = new int[1];
  boolean b;
  int i;
  Object o;

  public static void main(String[] args) {
    DefaultValuesTest instance = new DefaultValuesTest();
    instance.print();
  }

  public void print() {
    System.out.println(ia[0] + " " + b + " " + i + " " + o);
  }
}

Select the one correct answer.
(a) The program will fail to compile because of uninitialized variables.
(b) The program will throw a java.lang.NullPointerException when run.
(c) The program will print 0 false NaN null.
(d) The program will print 0 false 0 null.
(e) The program will print null 0 0 null.
(f) The program will print null false 0 null.



72 CHAPTER 3: DECLARATIONS

3.5 Parameter Passing

Objects communicate by calling methods on each other. A method call is used to
invoke a method on an object. Parameters in the method call provide one way of
exchanging information between the caller object and the callee object (which need
not be different). 

Declaring methods is discussed in §3.2, p. 49. Invoking static methods on classes is
discussed in §4.8, p. 132.

The syntax of a method call can be any one of the following:

object_reference.method_name(actual_parameter_list)

class_name.static_method_name(actual_parameter_list)

method_name(actual_parameter_list)

The object_reference must be an expression that evaluates to a reference value denot-
ing the object on which the method is called. If the caller and the callee are the
same, object reference can be omitted (see the discussion of the this reference in §3.2,
p. 50). The class_name can be the fully qualified name (§4.2, p. 97) of the class. The
actual_parameter_list is comma separated if there is more than one parameter. The
parentheses are mandatory even if the actual parameter list is empty. This distin-
guishes the method call from field access. One can specify fully qualified names for
classes and packages using the dot operator (.).

objRef.doIt(time, place);         // Explicit object reference
int i = java.lang.Math.abs(-1);   // Fully qualified class name
int j = Math.abs(-1);             // Simple class name
someMethod(ofValue);              // Object or class implicitly implied
someObjRef.make().make().make();  // make() returns a reference value

The dot operator (.) has left associativity. In the last code line, the first call of the
make() method returns a reference value that denotes the object on which to execute
the next call, and so on. This is an example of call chaining.

Each actual parameter (also called an argument) is an expression that is evaluated,
and whose value is passed to the method when the method is invoked. Its value
can vary from invocation to invocation. Formal parameters are parameters defined
in the method declaration (§3.2, p. 49) and are local to the method (§2.4, p. 44).

In Java, all parameters are passed by value—that is, an actual parameter is evaluated
and its value is assigned to the corresponding formal parameter. Table 3.1 summa-
rizes the value that is passed depending on the type of the parameters. In the case
of primitive data types, the data value of the actual parameter is passed. If the
actual parameter is a reference to an object, the reference value of the denoted
object is passed and not the object itself. Analogously, if the actual parameter is an
array element of a primitive data type, its data value is passed, and if the array ele-
ment is a reference to an object, then its reference value is passed.



3.5: PARAMETER PASSING 73

It should also be stressed that each invocation of a method has its own copies of the
formal parameters, as is the case for any local variables in the method (§6.5, p. 230).

The order of evaluation in the actual parameter list is always from left to right. The
evaluation of an actual parameter can be influenced by an earlier evaluation of an
actual parameter. Given the following declaration:

int i = 4;

the method call

leftRight(i++, i);

is effectively the same as

leftRight(4, 5);

and not the same as

leftRight(4, 4);

An overview of the conversions that can take place in a method invocation context
is provided in §5.2, p. 148. Method invocation conversions for primitive values are
discussed in the next subsection (p. 73), and those for reference types are discussed
in §7.10, p. 315. Calling variable arity methods is discussed in §3.6, p. 81.

For the sake of simplicity, the examples in subsequent sections primarily show
method invocation on the same object or the same class. The parameter passing
mechanism is no different when different objects or classes are involved.

Passing Primitive Data Values

An actual parameter is an expression that is evaluated first, with the resulting
value then being assigned to the corresponding formal parameter at method invo-
cation. The use of this value in the method has no influence on the actual parame-
ter. In particular, when the actual parameter is a variable of a primitive data type,
the value of the variable is copied to the formal parameter at method invocation.
Since formal parameters are local to the method, any changes made to the formal
parameter will not be reflected in the actual parameter after the call completes.

Legal type conversions between actual parameters and formal parameters of prim-
itive data types are summarized here from Table 5.1, p. 147:

• Widening primitive conversion

• Unboxing conversion, followed by an optional widening primitive conversion

Table 3.1 Parameter Passing by Value

Data type of the formal parameter Value passed

Primitive data type Primitive data value of the actual parameter

Reference type (i.e., class, interface, 
array, or enum type)

Reference value of the actual parameter



74 CHAPTER 3: DECLARATIONS

These conversions are illustrated by invoking the following method

static void doIt(long i) { /* ... */ }

with the following code:

Integer intRef = 34;
Long longRef = 34L;
doIt(34);         // (1) Primitive widening conversion: long <-- int
doIt(longRef);    // (2) Unboxing: long <-- Long
doIt(intRef);     // (3) Unboxing, followed by primitive widening conversion:
                  //     long <-- int <-- Integer

However, for parameter passing, there are no implicit narrowing conversions for
integer constant expressions (§5.2, p. 148).

Example 3.6 Passing Primitive Values

public class CustomerOne {
  public static void main (String[] args) {
    PizzaFactory pizzaHouse = new PizzaFactory();
    int pricePrPizza = 15;
    System.out.println("Value of pricePrPizza before call: " + pricePrPizza);
    double totPrice = pizzaHouse.calcPrice(4, pricePrPizza);             // (1)
    System.out.println("Value of pricePrPizza after call: " + pricePrPizza);
  }
}

class PizzaFactory {
  public double calcPrice(int numberOfPizzas, double pizzaPrice) {       // (2)
    pizzaPrice = pizzaPrice / 2.0;       // Changes price.
    System.out.println("Changed pizza price in the method: " + pizzaPrice);
    return numberOfPizzas * pizzaPrice;
  }
}

Output from the program:

Value of pricePrPizza before call: 15
Changed pizza price in the method: 7.5
Value of pricePrPizza after call: 15

In Example 3.6, the method calcPrice() is defined in the class PizzaFactory at (2). It
is called from the CustomerOne.main() method at (1). The value of the first actual
parameter, 4, is copied to the int formal parameter numberOfPizzas. Note that the
second actual parameter pricePrPizza is of the type int, while the corresponding
formal parameter pizzaPrice is of the type double. Before the value of the actual
parameter pricePrPizza is copied to the formal parameter pizzaPrice, it is implicitly
widened to a double. The passing of primitive values is illustrated in Figure 3.2.

The value of the formal parameter pizzaPrice is changed in the calcPrice()
method, but this does not affect the value of the actual parameter pricePrPizza on



3.5: PARAMETER PASSING 75

return: It still has the value 15. The bottom line is that the formal parameter is a
local variable, and changing its value does not affect the value of the actual parameter.

Passing Reference Values

If the actual parameter expression evaluates to a reference value, the resulting ref-
erence value is assigned to the corresponding formal parameter reference at
method invocation. In particular, if an actual parameter is a reference to an object,
the reference value stored in the actual parameter is passed. Consequently, both the
actual parameter and the formal parameter are aliases to the object denoted by this
reference value during the invocation of the method. In particular, this implies that
changes made to the object via the formal parameter will be apparent after the call
returns.

Type conversions between actual and formal parameters of reference types are
discussed in §7.10, p. 315.

In Example 3.7, a Pizza object is created at (1). Any object of the class Pizza created
using the class declaration at (5) always results in a beef pizza. In the call to the
bake() method at (2), the reference value of the object referenced by the actual
parameter favoritePizza is assigned to the formal parameter pizzaToBeBaked in the
declaration of the bake() method at (3).

Example 3.7 Passing Reference Values

public class CustomerTwo {
  public static void main (String[] args) {
    Pizza favoritePizza = new Pizza();              // (1)
    System.out.println("Meat on pizza before baking: " + favoritePizza.meat);
    bake(favoritePizza);                            // (2)
    System.out.println("Meat on pizza after baking: " + favoritePizza.meat);
  }

Figure 3.2 Parameter Passing: Primitive Data Values

15.OD

15.OD

15

4

4

, double pizzaPrice

, pricePrPizza  );

 ) {

double totPrice = pizzaHouse.calcPrice(

public double calcPrice(int numberOfPizzas
        pizzaPrice = pizzaPrice / 2.0;
        return numberOfPizzas * pizzaPrice;
}

Formal Parameters

Method Call

Method Definition

Actual Parameters

Primitive widening conversion



76 CHAPTER 3: DECLARATIONS

  public static void bake(Pizza pizzaToBeBaked) {   // (3)
    pizzaToBeBaked.meat = "chicken";  // Change the meat on the pizza.
    pizzaToBeBaked = null;                          // (4)
  }
}

class Pizza {                                       // (5)
  String meat = "beef";
}

Output from the program:

Meat on pizza before baking: beef
Meat on pizza after baking: chicken

One particular consequence of passing reference values to formal parameters is
that any changes made to the object via formal parameters will be reflected back in
the calling method when the call returns. In this case, the reference favoritePizza
will show that chicken has been substituted for beef on the pizza. Setting the for-
mal parameter pizzaToBeBaked to null at (4) does not change the reference value in
the actual parameter favoritePizza. The situation at method invocation, and just
before the return from method bake(), is illustrated in Figure 3.3.

Figure 3.3 Parameter Passing: Reference Values

favoritePizza:Ref(Pizza) 

Actual Parameter

pizzaToBeBaked:Ref(Pizza) 

Formal Parameter

meat = "beef" 

:Pizza Copying of reference
value creates aliases.

Actual Parameter

pizzaToBeBaked:Ref(Pizza) 

Formal Parameter

meat = "chicken" 

:Pizza After return, the actual parameter still denotes
the same object whose state has changed.

(a) At method call

(b) Just before return

favoritePizza:Ref(Pizza) 



3.5: PARAMETER PASSING 77

In summary, the formal parameter can only change the state of the object whose
reference value was passed to the method.

The parameter passing strategy in Java is call by value and not call by reference,
regardless of the type of the parameter. Call by reference would have allowed
values in the actual parameters to be changed via formal parameters; that is, the
value in pricePrPizza would be halved in Example 3.6 and favoritePizza would be
set to null in Example 3.7. However, this cannot be directly implemented in Java.

Passing Arrays

The discussion of passing reference values in the previous section is equally valid
for arrays, as arrays are objects in Java. Method invocation conversions for array
types are discussed along with those for other reference types in §7.10, p. 315.

In Example 3.8, the idea is to repeatedly swap neighboring elements in an integer
array until the largest element in the array percolates to the last position in the array.

Example 3.8 Passing Arrays

public class Percolate {

  public static void main (String[] args) {
    int[] dataSeq = {8,4,6,2,1};    // Create and initialize an array.

    // Write array before percolation:
    printIntArray(dataSeq);

    // Percolate:
    for (int index = 1; index < dataSeq.length; ++index)
      if (dataSeq[index-1] > dataSeq[index])
        swap(dataSeq, index-1, index);                    // (1)

    // Write array after percolation:
    printIntArray(dataSeq);
  }

  public static void swap(int[] intArray, int i, int j) { // (2)
    int tmp = intArray[i]; intArray[i] = intArray[j]; intArray[j] = tmp;
  }

  public static void swap(int v1, int v2) {               // (3) Logical error!
    int tmp = v1; v1 = v2; v2 = tmp;
  }

  public static void printIntArray(int[] array) {         // (4)
    for (int value : array)
      System.out.print(" " + value);
    System.out.println();
  }
}



78 CHAPTER 3: DECLARATIONS

Output from the program:

8 4 6 2 1
4 6 2 1 8

Note that in the declaration of the method swap() at (2), the formal parameter
intArray is of the array type int[]. The swap() method is called in the main() method
at (1), where one of the actual parameters is the array variable dataSeq. The refer-
ence value of the array variable dataSeq is assigned to the array variable intArray at
method invocation. After return from the call to the swap() method, the array vari-
able dataSeq will reflect the changes made to the array via the corresponding formal
parameter. This situation is depicted in Figure 3.4 at the first call and return from
the swap() method, indicating how the values of the elements at indices 0 and 1 in
the array have been swapped.

However, the declaration of the swap() method at (3) will not swap two values. The
method call

swap(dataSeq[index-1], dataSeq[index]);

will have no effect on the array elements, as the swapping is done on the values of
the formal parameters.

The method printIntArray() at (4) also has a formal parameter of array type int[].
Note that the formal parameter is specified as an array reference using the [] nota-
tion, but this notation is not used when an array is passed as an actual parameter. 

Array Elements as Actual Parameters

Array elements, like other variables, can store values of primitive data types or ref-
erence values of objects. In the latter case, they can also be arrays—that is, arrays
of arrays (§3.4, p. 63). If an array element is of a primitive data type, its data value
is passed; if it is a reference to an object, the reference value is passed. The method
invocation conversions apply to the values of array elements as well.

Figure 3.4 Parameter Passing: Arrays

Actual Parameter

Formal Parameter

:int[] 

[0] 8 
[1] 4 
[2] 6 
[3] 2 
[4] 1 

(a) At first call to the swap() method

Actual Parameter

Formal Parameter
[0] 4 
[1] 8 
[2] 6 
[3] 2 
[4] 1 

(b) Just before first return from the swap() method

dataSeq:Ref(int[]) dataSeq:Ref(int[]) 
:int[] 

 
intArray:Ref(int[]) intArray:Ref(int[]) 



3.5: PARAMETER PASSING 79

Example 3.9 Array Elements as Primitive Data Values

public class FindMinimum {

  public static void main(String[] args) {
    int[] dataSeq = {6,4,8,2,1};

    int minValue = dataSeq[0];
    for (int index = 1; index < dataSeq.length; ++index)
      minValue = minimum(minValue, dataSeq[index]);            // (1)

    System.out.println("Minimum value: " + minValue);
  }

  public static int minimum(int i, int j) {                    // (2)
    return (i <= j) ? i : j;
  }
}

Output from the program:

Minimum value: 1

In Example 3.9, the value of all but one element of the array dataSeq is retrieved and
passed consecutively at (1) to the formal parameter j of the minimum() method
defined at (2). The discussion in §3.5, p. 73, on passing primitive values also applies
to array elements that have primitive values.

In Example 3.10, the formal parameter seq of the findMinimum() method defined at (4)
is an array variable. The variable matrix denotes an array of arrays declared at (1)
simulating a multidimensional array, which has three rows, where each row is a
simple array. The first row, denoted by matrix[0], is passed to the findMinimum()
method in the call at (2). Each remaining row is passed by its reference value in the
call to the findMinimum() method at (3).

Example 3.10 Array Elements as Reference Values

public class FindMinimumMxN {

  public static void main(String[] args) {
    int[][] matrix = { {8,4},{6,3,2},{7} };                  // (1)

    int min = findMinimum(matrix[0]);                        // (2)
    for (int i = 1; i < matrix.length; ++i) {
      int minInRow = findMinimum(matrix[i]);                 // (3)
      min = Math.min(min, minInRow);
    }
    System.out.println("Minimum value in matrix: " + min);
  }



80 CHAPTER 3: DECLARATIONS

  public static int findMinimum(int[] seq) {                 // (4)
    int min = seq[0];
    for (int i = 1; i < seq.length; ++i)
      min = Math.min(min, seq[i]);
    return min;
  }
}

Output from the program:

Minimum value in matrix: 2

final Parameters

A formal parameter can be declared with the keyword final preceding the para-
meter declaration in the method declaration. A final parameter is also known as a
blank final variable; that is, it is blank (uninitialized) until a value is assigned to it,
(e.g., at method invocation) and then the value in the variable cannot be changed
during the lifetime of the variable (see also the discussion in §4.8, p. 133). The com-
piler can treat final variables as constants for code optimization purposes. Declar-
ing parameters as final prevents their values from being changed inadvertently. A
formal parameter's declaration as final does not affect the caller’s code. 

The declaration of the method calcPrice() from Example 3.6 is shown next, with
the formal parameter pizzaPrice declared as final:

public double calcPrice(int numberOfPizzas, final double pizzaPrice) {  // (2’)
  pizzaPrice = pizzaPrice/2.0;                       // (3) Not allowed
  return numberOfPizzas * pizzaPrice;
}

If this declaration of the calcPrice() method is compiled, the compiler will not
allow the value of the final parameter pizzaPrice to be changed at (3) in the body
of the method.

As another example, the declaration of the method bake() from Example 3.7 is
shown here, with the formal parameter pizzaToBeBaked declared as final:

public static void bake(final Pizza pizzaToBeBaked) { // (3)
  pizzaToBeBaked.meat = "chicken";                    // (3a) Allowed
  pizzaToBeBaked = null;                              // (4) Not allowed
}

If this declaration of the bake() method is compiled, the compiler will not allow the
reference value of the final parameter pizzaToBeBaked to be changed at (4) in the
body of the method. Note that this applies to the reference value in the final para-
meter, but not to the object denoted by this parameter. The state of the object can
be changed as before, as shown at (3a).



3.6: VARIABLE ARITY METHODS 81

3.6 Variable Arity Methods

A fixed arity method must be called with the same number of actual parameters
(also called arguments) as the number of formal parameters specified in its declara-
tion. If the method declaration specifies two formal parameters, every call of this
method must specify exactly two arguments. We say that the arity of this method
is 2. In other words, the arity of such a method is fixed, and it is equal to the num-
ber of formal parameters specified in the method declaration.

Java also allows declaration of variable arity methods, meaning that the number of
arguments in its call can be varied. As we shall see, invocations of such a method
may contain more actual parameters than formal parameters. Variable arity meth-
ods are heavily employed in formatting text representation of values, as demon-
strated by the variable arity method System.out.printf() that is used in many
examples for this purpose.

The last formal parameter in a variable arity method declaration is declared as follows:

type... formal_parameter_name

The ellipsis (...) is specified between the type and the formal_parameter_name. The
type can be a primitive type, a reference type, or a type parameter. Whitespace can
be specified on both sides of the ellipsis. Such a parameter is usually called a vari-
able arity parameter (also known as varargs).

Apart from the variable arity parameter, a variable arity method is identical to a
fixed arity method. The method publish() is a variable arity method:

public static void publish(int n, String... data) {      // (int, String[])
  System.out.println("n: " + n + ", data size: " + data.length);
}

The variable arity parameter in a variable arity method is always interpreted as
having an array type:

type[]

In the body of the publish() method, the variable arity parameter data has the type
String[], so it is a simple array of Strings. 

Only one variable arity parameter is permitted in the formal parameter list, and it
is always the last parameter in the formal parameter list. Given that the method
declaration has n formal parameters, and the method call has k actual parameters,
k must be equal to or greater than n – 1. The last k – n + 1 actual parameters are eval-
uated and stored in an array whose reference value is passed as the value of the
actual parameter. In the case of the publish() method, n is equal to 2, so k can be 1,
2, 3, and so on. The following invocations of the publish() method show which
arguments are passed in each method call:

publish(1);                  // (1, new String[] {})
publish(2, "two");           // (2, new String[] {"two"})
publish(3, "two", "three");  // (3, new String[] {"two", "three"})



82 CHAPTER 3: DECLARATIONS

Each method call results in an implicit array being created and passed as an argu-
ment. This array can contain zero or more argument values that do not correspond
to the formal parameters preceding the variable arity parameter. This array is ref-
erenced by the variable arity parameter data in the method declaration. The pre-
ceding calls would result in the publish() method printing the following output:

n: 1, data size: 0
n: 2, data size: 1
n: 3, data size: 2

To overload a variable arity method, it is not enough to change the type of the vari-
able arity parameter to an explicit array type. The compiler will complain if an
attempt is made to overload the method transmit(), as shown in the following
code:

public static void transmit(String... data) {  }  // Compile-time error!
public static void transmit(String[] data)  {  }  // Compile-time error!

These declarations would result in two methods with equivalent signatures in the
same class, which is not permitted. 

Overloading and overriding of methods with variable arity are discussed in §7.10,
p. 316.

Calling a Variable Arity Method

Example 3.11 illustrates various aspects of calling a variable arity method. The
method flexiPrint() in the VarargsDemo class has a variable arity parameter:

public static void flexiPrint(Object... data) { // Object[]
  //...
}

The variable arity method prints the name of the Class object representing the
actual array that is passed at runtime. It prints the number of elements in this array
as well as the text representation of each element in the array. 

The method flexiPrint() is called in the main() method. First with the values of
primitive types and Strings ((1) to (8)), then it is called with the program arguments
(p. 85) supplied in the command line, ((9) to (11)).

Compiling the program results in a warning at (9), which we ignore for the time
being. The program can still be run, as shown in Example 3.11. The numbers at the
end of the lines in the output relate to numbers in the code, and are not printed by
the program.



3.6: VARIABLE ARITY METHODS 83

Example 3.11 Calling a Variable Arity Method

public class VarargsDemo {
  public static void flexiPrint(Object... data) { // Object[]
    // Print the name of the Class object for the varargs parameter.
    System.out.print("Type: " + data.getClass().getName());

    System.out.println("  No. of elements: " + data.length);

    System.out.print("Element values: ");
    for(Object element : data)
      System.out.print(element + " ");
    System.out.println();
  }

  public static void main(String... args) {
    int    day       = 13;
    String monthName = "August";
    int    year      = 2009;

    // Passing primitives and non-array types:
    flexiPrint();                      // (1) new Object[] {}
    flexiPrint(day);                   // (2) new Object[] {Integer.valueOf(day)}
    flexiPrint(day, monthName);        // (3) new Object[] {Integer.valueOf(day),
                                       //                   monthName}
    flexiPrint(day, monthName, year);  // (4) new Object[] {Integer.valueOf(day),
                                       //                   monthName,
                                       //                   Integer.valueOf(year)}
    System.out.println();

    // Passing an array type:
    Object[] dateInfo = {day,          // (5) new Object[] {Integer.valueOf(day),
                         monthName,    //                   monthName,
                         year};        //                   Integer.valueOf(year)}
    flexiPrint(dateInfo);              // (6) Non-varargs call
    flexiPrint((Object) dateInfo);     // (7) new Object[] {(Object) dateInfo}
    flexiPrint(new Object[]{dateInfo});// (8) Non-varargs call
    System.out.println();

    // Explicit varargs or non-varargs call:
    flexiPrint(args);                  // (9) Warning!
    flexiPrint((Object) args);         // (10) Explicit varargs call
    flexiPrint((Object[]) args);       // (11) Explicit non-varargs call
  }
}

Compiling the program:

>javac VarargsDemo.java
VarargsDemo.java:41: warning: non-varargs call of varargs method with inexact 
argument type for last parameter;
    flexiPrint(args);                  // (9) Warning!
               ^
  cast to Object for a varargs call
  cast to Object[] for a non-varargs call and to suppress this warning
1 warning



84 CHAPTER 3: DECLARATIONS

Running the program:

>java VarargsDemo To arg or not to arg
Type: [Ljava.lang.Object;  No. of elements: 0                (1)
Element values: 
Type: [Ljava.lang.Object;  No. of elements: 1                (2)
Element values: 13
Type: [Ljava.lang.Object;  No. of elements: 2                (3)
Element values: 13 August
Type: [Ljava.lang.Object;  No. of elements: 3                (4)
Element values: 13 August 2009

Type: [Ljava.lang.Object;  No. of elements: 3                (6)
Element values: 13 August 2009
Type: [Ljava.lang.Object;  No. of elements: 1                (7)
Element values: [Ljava.lang.Object;@1eed786
Type: [Ljava.lang.Object;  No. of elements: 1                (8)
Element values: [Ljava.lang.Object;@1eed786

Type: [Ljava.lang.String;  No. of elements: 6                (9)
Element values: To arg or not to arg
Type: [Ljava.lang.Object;  No. of elements: 1                (10)
Element values: [Ljava.lang.String;@187aeca
Type: [Ljava.lang.String;  No. of elements: 6                (11)
Element values: To arg or not to arg 

Variable Arity and Fixed Arity Method Calls

The calls in (1) to (4) in Example 3.11 are all variable arity calls, as an implicit Object
array is created, in which the values of the actual parameters are stored. The refer-
ence value of this array is passed to the method. The printout shows that the type
of the parameter is actually an array of Objects ([Ljava.lang.Object;). 

The call at (6) differs from the previous calls, in that the actual parameter is an array
that has the same type (Object[]) as the variable arity parameter, without having to
create an implicit array. In such a case, no implicit array is created, and the reference
value of the array dateInfo is passed to the method. See also the result from this call
at (6) in the output. The call at (6) is a fixed arity call (also called a non-varargs call),
where no implicit array is created: 

flexiPrint(dateInfo);              // (6) Non-varargs call

However, if the actual parameter is cast to the type Object as in (7), a variable arity
call is executed:

flexiPrint((Object) dateInfo);     // (7) new Object[] {(Object) dateInfo}

The type of the actual argument is now not the same as that of the variable arity
parameter, resulting in an array of the type Object[] being created, in which the
array dateInfo is stored as an element. The printout at (7) shows that only the text
representation of the dateInfo array is printed, and not its elements, as it is the sole
element of the implicit array.



3.7: THE MAIN() METHOD 85

The call at (8) is a fixed arity call, for the same reason as the call in (6). Now, how-
ever, the array dateInfo is explicitly stored as an element in an array of the type
Object[] that matches the type of the variable arity parameter: 

flexiPrint(new Object[]{dateInfo});// (8) Non-varargs call

The output from (8) is the same as the output from (7), where the array dateInfo
was passed as an element in an implicitly created array of type Object[].

The compiler issues a warning for the call at (9): 

flexiPrint(args);                  // (9) Warning!

The actual parameter args is an array of the type String[], which is a subtype of
Object[]—the type of the variable arity parameter. The array args can be passed in
a fixed arity call as an array of the type String[], or in a variable arity call as an ele-
ment in an implicitly created array of the type Object[]. Both calls are feasible and
valid in this case. Note that the compiler chooses a fixed arity call rather than a
variable arity call, but also issues a warning. The result at (9) confirms this course
of action.

The array args of the type String[] is explicitly passed as an Object in a variable
arity call at (10), similar to the call at (7):

flexiPrint((Object) args);         // (10) Explicit varargs call

The array args of type String[] is explicitly passed as an array of the type Object[] in
a fixed arity call at (11). This call is equivalent to the call at (9), where the widening
reference conversion is implicit, but now without a warning at compile time. The
two calls print the same information, as is evident from the output at (9) and (11):

flexiPrint((Object[]) args);       // (11) Explicit non-varargs call

3.7 The main() Method

The mechanics of compiling and running Java applications using the JDK are out-
lined in §1.10, p. 16. The java command executes a method called main in the class
specified on the command line. Any class can have a main() method, but only the
main() method of the class specified in the java command starts the execution of a
Java application.

The main() method must have public accessibility so that the JVM can call this
method (§4.7, p. 123). It is a static method belonging to the class, so that no object
of the class is required to start the execution (§4.8, p. 132). It does not return a value;
that is, it is declared as void (§6.4, p. 224). It always has an array of String objects
as its only formal parameter. This array contains any arguments passed to the pro-
gram on the command line (see the next subsection). The following method header
declarations fit the bill, and any one of them can be used for the main() method:

public static void main(String[] args)    // Method header
public static void main(String... args)   // Method header



86 CHAPTER 3: DECLARATIONS

The three modifiers can occur in any order in the method header. The requirements
given in these examples do not exclude specification of additional modifiers (§4.8,
p. 131) or any throws clause (§6.9, p. 251). The main() method can also be overloaded
like any other method (§3.2, p. 52). The JVM ensures that the main() method having
the previously mentioned method header is the starting point of program execution.

Program Arguments

Any arguments passed to the program on the command line can be accessed in the
main() method of the class specified on the command line:

>java Colors red green blue

These arguments are called program arguments. Note that the command name, java,
and the class name Colors are not passed to the main() method of the class Colors, nor
are any other options that are specified on the command line passed to this method.

Since the formal parameter of the main() method is an array of String objects, indi-
vidual String elements in the array can be accessed by using the [] operator.

In Example 3.12, the three arguments red, green, and blue can be accessed in the
main() method of the Colors class as args[0], args[1], and args[2], respectively. The
total number of arguments is given by the field length of the String array args. Note
that program arguments can be passed only as strings, and must be explicitly con-
verted to other values by the program, if necessary.

When no arguments are specified on the command line, an array of zero String ele-
ments is created and passed to the main() method. Thus the reference value of the
formal parameter in the main() method is never null.

Program arguments supply information to the application, which can be used to
tailor the runtime behavior of the application according to user requirements.

Example 3.12 Passing Program Arguments

public class Colors {
  public static void main(String[] args) {
    System.out.println("No. of program arguments: " + args.length);
    for (int i = 0; i < args.length; i++)
      System.out.println("Argument no. " + i + " (" + args[i] + ") has " +
                          args[i].length() + " characters.");
  }
}

Running the program:

>java Colors red green blue
No. of program arguments: 3
Argument no. 0 (red) has 3 characters.
Argument no. 1 (green) has 5 characters.
Argument no. 2 (blue) has 4 characters.



3.8: ENUMERATED TYPES 87

3.8 Enumerated Types

In this section we provide a basic introduction to enumerated types. An enumerated
type defines a finite set of symbolic names and their values. These symbolic names are
usually called enum constants or named constants. 

One way to define constants is to declare them as final, static variables in a class
(or interface) declaration:

public class MachineState {
  public static final int BUSY = 1;
  public static final int IDLE = 0;
  public static final int BLOCKED = -1;
}

Such constants are not type-safe, as any int value can be used where we need to use
a constant declared in the MachineState class. Such a constant must be qualified by
the class (or interface) name, unless the class is extended (or the interface is imple-
mented). When such a constant is printed, only its value (for example, 0), and not
its name (for example, IDLE), is printed. A constant also needs recompiling if its
value is changed, as the values of such constants are compiled into the client code.

An enumerated type in Java is a special kind of class type that is much more pow-
erful than the approach outlined earlier for defining collections of named constants.

Declaring Type-safe Enums

The canonical form of declaring an enum type is shown here:

public enum MachineState        // Enum header
{                               // Enum body
  BUSY, IDLE, BLOCKED           // Enum constants
}

The keyword enum is used to declare an enum type, as opposed to the keyword
class for a class declaration. The basic notation requires the enum type name in
enum header, and a comma-separated list of enum constants can be specified in the
enum body. Optionally, an access modifier can also be specified in the enum
header, as for a (top-level) class. In the example enum declaration, the name of the
enum type is MachineState. It defines three enum constants with explicit names. An
enum constant can be any legal Java identifier, but the convention is to use upper-
case letters in the name. Essentially, an enum declaration defines a reference type
that has a finite number of permissible values referenced by the enum constants, and
the compiler ensures they are used in a type-safe manner. 

Other member declarations can be specified in the body of an enum type, but the
canonical form suffices for the purpose of this book. Analogous to a class declara-
tion, an enum type is compiled to Java bytecode that is placed in a separate class
file.



88 CHAPTER 3: DECLARATIONS

The enum types java.time.Month and java.time.DayOfWeek are two examples of
enum types from the Java SE platform API. As we would expect, the Month enum
type represents the months from JANUARY to DECEMBER, and the DayOfWeek enum type
represents the days of the week from MONDAY to SUNDAY. Examples of their usage can
be found in §11.2, p. 462.

Some additional examples of enum types follow:

public enum MarchingOrders { LEFT, RIGHT }

public enum TrafficLightState { RED, YELLOW, GREEN }

enum MealType { BREAKFAST, LUNCH, DINNER }

Using Type-safe Enums

Example 3.13 illustrates the use of enum constants. An enum type is essentially
used in the same way as any other reference type. Enum constants are actually
public, static, final fields of the enum type, and they are implicitly initialized with
instances of the enum type when the enum type is loaded at runtime. Since the
enum constants are static members, they can be accessed using the name of the
enum type—analogous to accessing static members in a class or an interface.

Example 3.13 shows a machine client that uses a machine whose state is an enum
constant. In this example, we see that an enum constant can be passed as an argu-
ment, as shown as (1), and we can declare references whose type is an enum type,
as shown as (3), but we cannot create new constants (that is, objects) of the enum
type MachineState. An attempt to do so, at (5), results in a compile-time error.

The string representation of an enum constant is its name, as shown at (4). Note
that it is not possible to pass a type of value other than a MachineState enum con-
stant in the call to the method setState() of the Machine class, as shown at (2).

Example 3.13 Using Enums

// File: MachineState.java
public enum MachineState { BUSY, IDLE, BLOCKED }

// File: Machine.java
public class Machine {

  private MachineState state;

  public void setState(MachineState state) { this.state = state; }
  public MachineState getState() { return this.state; }
}

// File: MachineClient.java
public class MachineClient {
  public static void main(String[] args) {



3.8: ENUMERATED TYPES 89

    Machine machine = new Machine();
    machine.setState(MachineState.IDLE);            // (1) Passed as a value.
    // machine.setState(1);                         // (2) Compile-time error!

    MachineState state = machine.getState();        // (3) Declaring a reference.
    System.out.println(
        "Current machine state: " + state           // (4) Printing the enum name.
    );

    // MachineState newState = new MachineState();  // (5) Compile-time error!

    System.out.println("All machine states:");
    for (MachineState ms : MachineState.values()) { // (6) Traversing over enum
      System.out.println(ms + ":" + ms.ordinal());  //     contants.
    }

    System.out.println("Comparison:");
    MachineState state1 = MachineState.BUSY;
    MachineState state2 = state1;
    MachineState state3 = MachineState.BLOCKED;

    System.out.println(state1 + " == " + state2 + ": " +
                       (state1 == state2));                           // (7)
    System.out.println(state1 + " is equal to " + state2 + ": " +
                       (state1.equals(state2)));                      // (8)
    System.out.println(state1 + " is less than " + state3 + ": " +
                       (state1.compareTo(state3) < 0));               // (9)
  }
}

Output from the program:

Current machine state: IDLE
All machine states:
BUSY:0
IDLE:1
BLOCKED:2
Comparison:
BUSY == BUSY: true
BUSY is equal to BUSY: true
BUSY is less than BLOCKED: true

Selected Methods for Enum Types

All enum types implicitly have the following useful method:

The loop at (6) in Example 3.13 illustrates traversing over all the MachineState enum
constants in the order they are specified. An array containing all the MachineState
constants is obtained by calling the static method values() on the enum type.

static EnumTypeName[] values()

Returns an array containing the enum constants of this enum type, in the order
they are specified.



90 CHAPTER 3: DECLARATIONS

All enum types are subtypes of the java.lang.Enum class, which provides the default
behavior. All enum types inherit the following selected methods from the
java.lang.Enum class:

Note that the equality test implemented by the equals() method is based on refer-
ence equality (==) of the enum constants, not on value equality. An enum type has
a finite number of distinct objects. Comparing two enum references for equality
means determining whether they store the reference value of the same enum con-
stant—in other words, whether the references are aliases. Thus, for any two enum
references state1 and state2, the expressions state1.equals(state2) and state1 ==
state2 are equivalent, as shown at (7) and (8) in Example 3.13. 

The ordinal value of the constants in an enum type determines the result of compar-
ing such constants with the compareTo() method, as shown at (9) in Example 3.13.

Review Questions

3.13 What will the following program print when run?

public class ParameterPass {
  public static void main(String[] args) {
    int i = 0;
    addTwo(i++);
    System.out.println(i);
  }

  static void addTwo(int i) {
    i += 2;
  }
}

final boolean equals(Object other)

This method returns true if the specified object is equal to this enum constant. 

final int compareTo(E other)

The natural order of the enum constants in an enum type is based on their ordinal
values (see the ordinal() method next). The compareTo() method of the Comparable
interface returns the value zero if this enum constant is equal to the other enum
constant, a value less than zero if this enum constant is less than the other
enum constant, or a value greater than zero if this enum constant is greater
than the other enum constant.

final int ordinal()

This method returns the ordinal value of this enum constant (that is, its position
in its enum type declaration). The first enum constant is assigned an ordinal
value of zero. If the ordinal value of an enum constant is less than the ordinal
value of another enum constant of the same enum type, the former occurs
before the latter in the enum type declaration.



3.8: ENUMERATED TYPES 91

Select the one correct answer.
(a) 0
(b) 1
(c) 2
(d) 3

3.14 What will be the result of compiling and running the following program?

public class Passing {
  public static void main(String[] args) {
    int a = 0; int b = 0;
    int[] bArr = new int[1]; bArr[0] = b;

    inc1(a); inc2(bArr);

    System.out.println("a=" + a + " b=" + b + " bArr[0]=" + bArr[0]);
  }

  public static void inc1(int x) { x++; }

  public static void inc2(int[] x) { x[0]++; }
}

Select the one correct answer.
(a) The code will fail to compile, since x[0]++; is not a legal statement.
(b) The code will compile and will print a=1 b=1 bArr[0]=1 at runtime.
(c) The code will compile and will print a=0 b=1 bArr[0]=1 at runtime.
(d) The code will compile and will print a=0 b=0 bArr[0]=1 at runtime.
(e) The code will compile and will print a=0 b=0 bArr[0]=0 at runtime.

3.15 Which statements, when inserted at (1), will result in a compile-time error?

public class ParameterUse {
  static void main(String[] args) {
    int a = 0;
    final int b = 1;
    int[] c = { 2 };
    final int[] d = { 3 };
    useArgs(a, b, c, d);
  }

  static void useArgs(final int a, int b, final int[] c, int[] d) {
    // (1) INSERT STATEMENT HERE.
  }
}

Select the two correct answers.
(a) a++;
(b) b++;
(c) b = a;
(d) c[0]++;
(e) d[0]++;
(f) c = d;



92 CHAPTER 3: DECLARATIONS

3.16 Which of the following method declarations are valid declarations?

Select the three correct answers.
(a) void compute(int... is) { }
(b) void compute(int is...) { }
(c) void compute(int... is, int i, String... ss) { }
(d) void compute(String... ds) { }
(e) void compute(String... ss, int len) { }
(f) void compute(char[] ca, int... is) { }

3.17 Given the following code:

public class RQ810A40 {
  static void print(Object... obj) {
    System.out.println("Object...: " + obj[0]);
  }
  public static void main(String[] args) {
    // (1) INSERT METHOD CALL HERE.
  }
}

Which method call, when inserted at (1), will not result in the following output
from the program:

Object...: 9

Select the one correct answer.
(a) print("9", "1", "1");
(b) print(9, 1, 1);
(c) print(new int[] {9, 1, 1});
(d) print(new Integer[] {9, 1, 1});
(e) print(new String[] {"9", "1", "1"});
(f) print(new Object[] {"9", "1", "1"});

(g) None of the above.

Chapter Summary

The following topics were covered in this chapter:

• An overview of declarations that can be specified in a class

• Declaration of methods, usage of the this reference in an instance method, and
method overloading

• Declaration of constructors, usage of the default constructor, and overloading
of constructors

• Explanation of declaration, construction, initialization, and usage of both one-
dimensional and multidimensional arrays, including anonymous arrays

• Sorting and searching arrays



PROGRAMMING EXERCISE 93

• Parameter passing, both primitive values and object references, including
arrays and array elements; and declaring final parameters

• Declaring and calling methods with variable arity

• Declaration of the main() method whose execution starts the application

• Passing program arguments to the main() method

• Declaring and using simple enum types

Programming Exercise

3.1 Write a program to grade a short multiple-choice quiz. The correct answers for the
quiz are

1. C    5. B
2. A    6. C
3. B    7. C
4. D    8. A

Assume that the passing marks are at least 5 out of 8. The program stores the cor-
rect answers in an array. The submitted answers are specified as program argu-
ments. Let X represent a question that was not answered on the quiz. Use an enum
type to represent the result of answering a question.

Example of running the program:

>java QuizGrader C B B D B C A X
Question  Submitted Ans. Correct Ans.  Result
    1         C              C        CORRECT
    2         B              A          WRONG
    3         B              B        CORRECT
    4         D              D        CORRECT
    5         B              B        CORRECT
    6         C              C        CORRECT
    7         A              C          WRONG
    8         X              A     UNANSWERED
No. of correct answers:      5
No. of wrong answers:        2
No. of questions unanswered: 1
The candidate PASSED.



This page intentionally left blank 



Index

Symbols
- 169
-- 176
^ 184, 189
^= 185
_ 32
; 50
: 110
! 184
!= 181, 342
?: 194
. 7, 72, 97, 108
... 81, 85
' 32, 33
" 34
[] 59, 61, 195
{} 50, 60, 117
@FunctionalInterface 442, 443
@Override 270
@param 49, 56
@return 225
@throws 253
* 100, 163, 167
*= 172
/ 167
/* and */ 35
/** and */ 36
// 35
/= 172
\ 33
& 184, 189
&& 186
&= 185
% 167, 168
%= 172
+ 169, 174

+ concatenation 364
++ 176
+= 172
< 180
<= 180
<> 414, 415, 416
-= 172
= 158
== 181, 342, 351, 359
-> 195, 439, 444
> 180
>= 180
| 184, 189
|= 185
|| 186
~ 189

A
ability interfaces

see marker interfaces
abrupt method completion 232
absolute adjusters 470
abstract

classes 120
interfaces 290
methods 136, 291, 442

abstract 120, 136, 290, 291, 442
abstract method declarations 442

in interfaces 290, 291
abstraction 2, 10
accessibility 7, 17, 114

default 118, 127
members 114, 120, 123
modifiers 118
package 118



620 INDEX

private 128
protected 126
public 124
UML notation 124

accessibility modifiers 48, 53
activation frame 384

see method execution 230
actual parameter 72
actual parameter list 72, 315
adding to class 264
additive operators 169
aggregation 10, 12, 267

hierarchy 267
versus inheritance 331

aliases 6, 75, 182, 183
see also references

ambiguous call 316
analyzing program code 512
and operator 189
annotations

@Override 270
anonymous arrays 63, 66

[] 63
anonymous classes 436
anonymous functions 439
API (application programming interface) 

22
apostrophe 33
application 16
architecture neutral 23
argument

see actual parameter
arguments to main method 85
arithmetic compound assignment 

operators 172
ArithmeticException 236
arity 81
array creation expression 59, 63
array initializer 60, 63, 66
array store check 311
array types

see arrays
ArrayIndexOutOfBoundsException 61, 236
ArrayList 366, 414

add collection 419
add element 417, 419
autoboxing 421
capacity 416
clear list 420
comparison with arrays 425
constructing 415
constructors 418

converting to array 424
element search 423
element type 415
filtering 434
import 415
inheritance hierarchy 415
initial capacity 417
insertion order 414
list of lists 417
membership test 422
modifying 419
nested lists 417
object value equality 422
open range-view operations 414
ordered 414
position-based access 415
positional index 422
positional order 414
positional retrieve 422
querying 422
references 415
remove collection 420
remove element 419
replace element 419
size 416, 422
sorting 425
subtype relationship 418
textual representation 417
traversing 423
trim to size 420
type-safety 416, 417, 418
unchecked conversion warning 416
zero-based index 414

arrays 58, 342
[] 59, 61
{} 60
anonymous 63, 66
array creation expression 59
array initialize list 60, 63
array initializer 60, 66
array name 59
array size 60
array store check 311
ArrayIndexOutOfBoundsException 61
bounds 61
construction 59
declarations 59
default initialization 59, 60
dynamic 415
element access expression 61
element default value 310
element type 59



INDEX 621

elements 58, 61
index 58
index expression 61
initialization 60, 65
iterating over 217
length 58
multidimensional 63, 65
objects 342
ragged 65
reference 59, 62, 311
searching 69
sorting 68
subtype covariance 309
traverse an array 62
using 61

arrays of arrays 59, 65
multidimensional 65

ArrayStoreException 311, 418, 424
arrow -> 195, 439, 444
ASCII 32, 38
AssertionError 237
assignable 147, 314
assignment compatible 148, 314, 416
assignment conversions 147
assignment operator 5
assignments

arithmetic compound operators 172
bitwise 192
cascading 159
compound operators 185, 192
expression statement 159
implicit narrowing 160
multiple 159
numeric conversions 160
operator 151, 158
primitive values 159
references 159
widening reference conversions 267

association 12
aggregation 267
composition 267
realization 296

associativity 152
atomic values 13
attributes see properties
autoboxing 68, 348

for(:) statement 218
AutoCloseable 387
automatic garbage collection 6, 384
automatic variables see local variables

B
backslash 33
backspace 33
base 30, 349, 352
base class 264
basic for statement

 215
Before Current Era (BCE) 464
behavior 433
behavior parameterization 434, 441
binary

numeric promotion 150
operators 151

binary search
arrays 69

bit mask 190
bit patterns 154
bitwise

and operator 189
assignment 192
complement 189
compound assignment 192
operators 189
or operator 189
xor 189

bitwise AND
& 189

bitwise complement
~ 189

bitwise exclusive OR
^ 189

bitwise OR
| 189

bitwise XOR
^ 189

blank final variable 80, 134
blocks 49, 50, 117

scope 117, 448
try 240

boilerplate code 436
Boolean

condition 200
Boolean wrapper class 355
booleans 37, 39

casting 149
expressions 180
literals 32

boxing conversions 145, 146
break statement 205, 206, 221
BS see backspace
building abstractions 10
byte 30, 38



622 INDEX

bytecode 16, 23

C
C 137
C++ 23, 137
cache 139
call by reference 77
call by value 77
call chaining 72
call signature 316
call stack

see JVM stack 230
callee 72
caller 72, 224
capacity 416
carriage return 33, 35
cascading assignments 159
cascading if-else statements 203
case labels 203, 205
case sensitivity 28
cast operator 145, 148, 151, 162, 172, 182, 

320
casting 147, 148, 149

see also conversions
catch clause 240

uni- 239
catching exceptions 230
catch-or-declare 251
CertView 509
chaining 406

constructors 287, 406
finalizers 391

char 38
character case 364
character sequences

see strings and string builders
character set

ASCII 32, 38
ISO Latin-1 32, 38
Unicode 32, 38

Character wrapper class 354
characters 38

literals 32
searching for 367

CharSequence interface 360, 365, 369
checked exceptions 237
child class 264
choosing between String and StringBuilder 

class 374
Class class 343
class file 16

class hierarchy
see inheritance hierarchy

class inheritance
see implementation inheritance

class method 10
class modifiers 48
class path 107

absolute pathnames 110
entries order 110
entry-separator character 110
fully qualified package name 109
path-separator character 110
relative pathnames 110
search in a named package 109
searching for classes 107
whitespace 110

class search path
see class path

class variable 10
ClassCastException 236, 321
classes

abstract 120
accessibility 118
adding to 264
base 264
body 48
child 264
cohesion 335
concrete 121, 122, 436
constructors 53, 282
coupling 336
declarations 48, 96
definitions 2, 5
derived 264
diagram 8, 9
encapsulation 335
extending 122, 264
final 122
final vs. abstract 122
fully qualified name 107
fully qualified package name 98
generalized 266
grouping 97
header 48
implementing interfaces 291
initialization 409
instance members 48
instances 4
members 7
methods 132
modifiers 120
name 97



INDEX 623

normal 121
Object 342
parent 264
runtime 343
scope 114
searching for 107
specialized 266
static members 48
subclass 10, 264
superclass 10, 264
variables 132
wrappers 342, 346

ClassLoader class 342
ClassNotFoundException 235
CLASSPATH environment variable

see class path
-classpath option

see class path
clauses

catch 240
extends 264
finally 240, 245
implements 291
throws 251

cleaning up 386
clean-up code 245
client 7, 16
Cloneable interface 343
CloneNotSupportedException 343
cloning objects 343
code optimizations 134
code reuse 23, 264, 334
CodeRanch 508
cohesion 335

coincidental 335
functional 335
high 335

coincidental cohesion 335
Collection 414
collections 414

as single entity 414
elements 414
ordered 414
sorting 414

command 17
java 17
javac 17

command line 17, 86
command prompt 17
comments 35
communication 7, 72
Comparable interface 350, 363, 376, 425

comparing objects 342
comparing strings 363
comparison 180
compilation unit 98
compiling Java source code 17
complement

~ 189
completes abruptly

see exception propagation 232
composite object 10
composition 12, 267
compound statement 50
concatenation of strings 364
concatenation operator 174
concrete classes 436
concrete method 134
ConcurrentModificationException 424
condition

Boolean 200
expressions 200

conditional 180
and 186
operators 186, 194
or 186
statements 200

conditional expressions 194
associativity 195
nested 195
precedence 194
short-circuit evaluation 194
side effects 194

conditions 180
connecting punctuation character 28
const 29
constant declarations 290
constant expression 147, 160, 161, 176
constant field values

case labels 208
constant string expressions 208
constant values 30, 133
constant variable 161
constants 302
constituent objects 10
constituents 12
constructing array 59
constructor chaining 283, 287, 406
constructors 3, 53, 282

accessibility 124
accessibility modifier 53
body 53
chaining 283, 287
class name 53



624 INDEX

declaration 48
default 54
header 53
implicit default 54
local declarations 53
no-argument 53, 54, 283, 287
non-zero argument 55, 287, 288
overloading 56
superclass constructor 54

constructs 28
high-level 28
loops see iteration statements

container
see collections

contains characters 368
continue statement 223
contract 2, 291, 293, 334, 335
control flow

break 205, 221
continue 223
do-while 214
for(;;) 215
for(:) 217
if 200
if-else 201
iteration see iteration statements
loops see iteration statements
return 224
statements 50, 200
switch 203
throw 249
transfer statements 219
while 213

control transfer 219
conversion categories 147
conversion contexts 147
conversions 144, 311

assignment 147
contexts 147
identity 172
implicit narrowing 173
method invocation 148
narrowing reference 320
number systems 157
numeric promotions 149
parameters 73
reference casting 320
string concatenation 175
to strings 369
truncation 161
type-safe 315
unsafe casts 321

widening reference 267, 320
converting number systems 157
converting values 348, 349, 350, 352, 353, 

355, 369
counter-controlled loops 215
coupling 336

loose 336
covariant return 269, 273
-cp option

see class path
CR see carriage return
crab 217
creating

objects 195
criteria object 436
currency symbol 28
current directory

. 108
Current Era (CE) 464
current object 50

D
-d option 106
dangling references 384
data structures 414
data types see types
date

see temporal objects
date units 474
date/time formatters

customized 486, 495
format styles 490
formatting 487
immutability 487
ISO-based default 486, 487
ISO-based predefined 486, 488
letter pattern 495
localized 486, 490
parsing 487
pattern letters 495, 496
thread-safety 487

date-based values 462
date-time

see temporal objects
DateTimeException 463
DateTimeFormatter class

see date/time formatters
DateTimeParseException 477, 491
DayOfWeek enum type 468
declaration statement 4, 41, 171, 177, 187, 

216



INDEX 625

declarations
arrays 59, 196
classes 48, 96
interfaces 96
local 50
main method 85
methods 49
multidimensional arrays 63
packages 96, 98
statements 50
variable arity method 81

declared type 268, 274, 275, 315
declared-type parameters 445
declaring see declarations
decoupling 330
decrement operator 176
deep copying 343
default

accessibility 118, 124, 127
constructor 54
exception handler 232
method 297
values 42, 400, 406

default 297
label 204
method 297

default constructor 54
default method 297, 442, 443

multiple inheritance 298
overriding 298

default package 98
deferred execution 451
definitions

inheritance 296
interfaces 290

delegating requests 334
derived class 264
destination directory 106
destination stream 18
destroying objects 390
diagrams

class 3
object 5
see also UML

diamond operator (<>) 416
dictionary order 363
distributed 23
divide-and-conquer algorithm 69
dividend 168
division

floating-point 167
integer 167

division operator
/ 167

divisor 168
documentation 35
documentation comment 35, 36

tags 36
documenting see documentation
dot 97
double 31, 39
double quote 33
do-while statement 214
downcasting 145
duplicating objects 343
Duration class 476

time-based 476
dynamic 23
dynamic arrays 415
dynamic binding

see dynamic method lookup
dynamic method lookup 277, 329, 330
dynamic type 268, 274, 275

E
effectively final 448
element type 59, 415
elements 58, 414
eligible for garbage collection 385
ellipsis 81
else clause matching 203
embedded applications 22
empty statement 50
empty string 358
encapsulation 22, 97, 335
encapsulation of implementation 334
ends with characters 368
enhanced for loop 213
enterprise applications 22
enum constant 87

symbolic names 87
values 87

enum types 87, 103, 209, 303
declaring 87
finalization 391
named constants 87
natural order 90
ordinal value 90, 209
switch expression 204
using 88

enumerated types
see enum types

EOFException 235



626 INDEX

equality 181, 342
equals method 183, 342
object value 183
objects 183
primitive values 181
reference values 182

equals method 183, 342
Error 237
escape sequences 33
evaluation order 152, 187

arithmetic expressions 164
evaluation short-circuits 187
exam 507

multiple-choice 513
program 510
questions 511
registration 508
result 511
testing locations 510
voucher 509

exam objectives
OCAJP8 515

Exception class 236
exception handler 230

see also exceptions
exception handling

advantages 254
exceptions 230, 239

customized 238
default handler 232
handler 230
ignored 390
propagation 230
situations 235
throw 249
throwing see throwing exceptions
thrown by JVM 235
thrown by method 49
thrown programmatically 235
throws 251
types 233
uncaught 232
unchecked 237

exchanging information 72
explicit

garbage collection 393
explicit traversal 452
exponent 31
expression statements 50, 159, 177, 216, 

217, 446
expressions 205

actual parameters 72

boolean 180
case labels 205
conditional 194
deterministic evaluation 150
label 205
return 224
statements 50
throw 249

extending
classes 264
interfaces 294

extends clause
see extending

extensions
.class 16
.java 16

external libraries 403
extracting substrings 369

F
fall-through 204, 205
false literal 32
FF see form feed
field declarations 48
field hiding 275
field initialization 406
fields 2
file name 96
file path 105

separator character 105
filtering 434
final

classes 122
members 133
parameters 80

finalization 385
finalization mechanism 385
finalize method 343, 390
finalizer chaining 391
finalizer see finalize method
finally clause 240, 245
fixed arity method 81
fixed arity method call 84
float 31, 39
floating-point 37

double 39
float 39
literals 31

floating-point arithmetic 165
strictfp 166

floating-point data types 31



INDEX 627

floating-point division 167
floating-point remainder 169
flow control see control flow
for(;;) statement 215

backward 216
forward 215
traverse array 62

for(:) statement 217
traverse array 62

for-each loop 213
form feed 33, 35
formal parameters 49, 53, 72, 117, 315

modifier 49
name 49
type 49

formal type parameter 290
format specifications 18, 370
format specifier 19
format styles 486, 490
FormatStyle enum type 486, 490
formatted output 18

format specifier 19
formatted string 370
formatting 35, 462, 486
forward reference 400, 401, 403, 405, 406
fractional signed numbers 37
fully qualified class name 107
fully qualified package name 97, 98, 100
fully qualified type name 97, 101
function 451
function type 450
functional cohesion 335
functional interface 438

@FunctionalInterface 442, 443
abstract method 442
function type 450
functional method 442
general-purpose 443
generic 441
Predicate<T> 440, 451
primitive values 444
target type 450
see also lambda expressions

functional method 442
functional programming 24
functionality 433
functional-style programming 433

G
garbage collection 387, 389, 390, 393

automatic 384

facilitate 387
general abstractions 266
general loops 215
generalization 10
generalized classes 266
generic method 423
generic type 414
goto 29, 220
grammar rules 28
grouping 97

H
handles see references
has-a relationship 267
hash code 52, 343
hash tables 52
heap 384
hiding internals 335
high cohesion 335
high-performance 24
horizontal tab 33
hotspots 24
HT see horizontal tab

I
IDE (integrated development 

environment) 508
identifiers 28

predefined 29
reserved 29
variable 40

identity conversion 146, 172
identity of object 5
IEEE 754-1985 38
if block 200
if-else statement 201
ignored exceptions 390
IllegalArgumentException 236, 495
immediate superclass 285
immutable 462
immutable objects 346, 357
immutable strings 357
implementation inheritance 264
implementations 2, 266, 335

inheritance hierarchy 122
implementing

interfaces 291
implements clause 291
implicit

inheritance 264



628 INDEX

narrowing conversions 173
implicit default constructor 54
import

declaration 100
see also static import
single-type-import declaration 100
statement 96
type-import-on-demand declaration 100

importing
enum constants 103
reference types 99
static members 101

increment operator 176
index 58
index expression 61
IndexOutOfBoundsException 361, 369, 375, 

376, 419, 422
individual array elements 61
inequality 181

see also equality
inferred-type parameters 445
infinite loop 217
infinity 165, 349

negative 165
positive 165

information hiding 335
inheritance 10, 267

hierarchy 266
supertype–subtype relationship 267

initial capacity 417
initial state of object 406
initialization

arrays 60, 65
code 60
default values 42
for statement 215
objects 5
references 41
variables 41

initializer 399
declaration-before-reading rule 401
static 400, 401, 405, 409

initializer block
instance 404
static 402

initializer expression 400
initializers

non-static block 48
non-static field 48
static block 48
static field 48

initializing see initialization

insertion order 414
insertion point 69
instance

members 9, 48
methods 9, 49, 50
variable initialization 42
variables 9, 44
see also object

instance initializer block 404
instance methods 6
instance variables 6, 406
instanceof operator 195, 320, 321
instantiation 4
int 30, 38
integer arithmetic 165
integer bitwise operators 189
integer constant expressions 148
integer data types 30
integer division 167
integer remainder operation 168
integers 38

and operator 189
byte 38
complement 189
data types 38
int 38
literals 30
long 38
or operator 189
representation 154
short 38
types 38
xor 189

integral types 37, 38, 144
interface constant antipattern 102
interfaces 290

abstract 290
abstract methods 291
accessibility 118
body 290
constants 302
declarations 96
default methods 297
extending 294
header 290
implementing 291
initialization 409
marker 291
realization 296
references 296
static methods 300
subinterfaces 294



INDEX 629

superinterfaces 294
UML 295
variables 302

internal traversal 452
interned strings 358, 359
interned values 351
interpackage accessibility 335
interpreter 17
intraclass dependencies 336
invocation stack

see JVM stack
invoker 224
invoking garbage collection 393
IOException 235
is-a relationship 266, 267, 334
ISO Latin-1 32, 38
ISO standard 486, 487, 488
Iterable interface 366, 424
iteration 215
iteration statements 213

next iteration 223
termination 213, 222

iterators 414, 424

J
Java

Native Interface see JNI
java 17
Java bytecode 16
Java Collections Framework 414
Java compiler 17
Java Development Kit (JDK) 21
Java ecosystem 21
Java EE (Enterprise Edition) 22
Java ME (Micro Edition) 22
Java Native Interface see JNI
Java Platforms 22
Java Runtime Environment (JRE) 22
Java SE (Standard Edition) 22
Java Virtual Machine see JVM
java.time package 462
java.time.format package 462
java.util package 414
java.util.function<T> package 444
javac 17
Javadoc comment 35

@param tag 49, 56
@return tag 225
@throws tag 253

javadoc utility 36
JDK 17, 508

JNI 137
just-in-time (JIT) 23
JVM 17, 22, 384, 393
JVM stack 230, 384

K
key 69
keywords 29

abstract 120, 136, 291, 442
boolean 39
break statement 221
byte 38
case 203
catch 240
char 38
class 48, 290
const 29
continue 223
default 204, 297
do 214
double 39
else 201
extends 264
final 80, 122, 133
finally 245
float 39
for 215, 217
if 200
implements 291
import 100
instanceof 195, 320, 321
int 38
interface 290
long 38
native 137
new see new operator
null 149, 183, 320
package 98
private 128
protected 126
public 124
reserved words 29
return 224
short 38
static 17, 101, 132, 300, 402
strictfp 166
super 54, 272, 276, 285, 299
switch 203
synchronized 136
this 50
throw 249



630 INDEX

throws 251
transient 138
try 240
unused words 29
void 17, 347
volatile 139
while 213, 214

L
labeled break statement 222
labels 220, 222

break 222
case 203
default 204
expressions 205
labeled statement 220
switch statement 203

lambda body 439, 444, 445
lambda expressions 433, 438, 444

access class members 446
anonymous functions 439
arrow -> 439, 444
as values 439
blocks

scope 448
declared-type parameters 445
deferred execution 451
expression 445
expression statements 446
function 451
inferred-type parameters 445
lambda body 439, 444, 445
lambda parameters 445
non-void return 445
parameter list 439, 444
single expression 439, 445
statement block 439, 446
target type 450
target typing 451
type checking 450
variable capture 449
void return 445

lambda parameters 445
late binding

see dynamic method lookup
least significant bit 155
left associativity 152
legal assignments 314
length method 361
letter pattern 495
lexical scope

see blocks: scope
lexical tokens 28
lexicographical ordering 363, 425
LF see linefeed
libraries 403
lifetime 385

see scope 44
line separator 19
line terminator 35
linear implementation inheritance 266
linefeed 33
LinkageError 237
LinkedList 417
List 414
lists

see ArrayList
literals 30

boolean 32
character 32
default type 30, 31
double 31
escape sequences 33
false 32
float 31
floating-point 31
integer 30
null 30
predefined 29
prefix 30
quoting 32
scientific notation 31
string 34
suffix 30, 31
true 32

litmus test
design by inheritance 266

local 43
chaining of constructors 283, 406
variables 44, 117

local declarations 49, 50
local variables 53

blocks
scope 448

LocalDate class
see temporal objects

LocalDateTime class
see temporal objects

locale 364, 490, 492
localizing information 335
LocalTime class

see temporal objects
locations



INDEX 631

see class path
logical AND

& 184
logical complement

! 184
logical exclusive OR

^ 184
logical inclusive OR

| 184
logical XOR

^ 184
long 30, 38

suffix 30
loop body 213, 215
loop condition 213, 215
loops see iteration statements
loose coupling 336
loss of precision 144

M
magnitude 144
main method 17, 18, 85

arguments 86
modifiers 85

manifest constant 134
marker interfaces 291
Math class 52
MAX_VALUE constant 351
member declarations 48, 290
members 3, 114

access 50
accessibility 120, 123
default values 42
final 133
inheritance 264
instance 48
modified 264
modifiers 131
of objects 7
scope 114
short-hand 51
static 7, 48, 132
terminology 9
variables see fields

memory management 384
memory organization 384
message

receiver 7
method call 7, 49, 72

chaining 376, 378
fixed arity 84

variable arity 84
method chaining 471, 474, 479
method declaration 48
method header 136, 137
method invocation conversions 148, 315
method modifiers 49
method overloading 52, 273
method overriding 268, 273, 407
method signature 49, 269
method type 450
methods 3

@Override 270
abstract 136, 291, 442
abstract method declarations 291
accessibility 49
ambiguous call 316
automatic variables see local variables
behavior 433
blocks 49
body 49, 117
call chaining 72
call see method call
calling variable arity method 82
chained 365
clone 343
concrete 134
declaration 49, 72
default 297
dynamic lookup 330
equals 183, 342
exceptions 49
final 134
finalize 343, 390
fixed arity 81
functional 442
getClass 343
header 49
implementation 136
invocation see method call
local declarations 49
local variables
main see main method
method invocation conversions 315
method type 450
modifiers 49
most specific 316, 422
name 72
native 137, 251
objects 50
overloaded resolution 316
overloading see method overloading
overriding see method overriding



632 INDEX

overriding vs. overloading 273
parameters 49
recursive 237
return 224
return value 49
signature 49, 52, 273
static 132, 300
synchronized 136
termination 224
throws clause 251
toString 343
variable arity 81

MIN_VALUE constant 351
minimizing overhead 386
mobile applications 22
modifiers

abstract 120, 136, 291
accessibility 118, 123
classes 120
default 297
final 133
members 131
native 137
static 132, 300
strictfp 166
synchronized 136
transient 138
volatile 139

Month enum type 465
most specific method 316, 422
multicore 441
multicore architectures 24
multidimensional arrays 63, 65
multiple assignments 159
multiple catch clauses 239
multiple implementation inheritance 290
multiple inheritance 298
multiple interface inheritance 290
multiple-line comment 35
multiplication operator

* 167
multiplicative operators 167
multithreaded 24
mutable character sequences 374
mutually comparable 68, 69
mutually exclusive

actions 202
MVC 335

N
name 28

named constants 134
namespaces 53
NaN 166, 349
narrower range 144
narrowing conversions

primitive 144
reference 145

narrowing reference conversions 320
native libraries 403
native methods 137, 251

header 137
natural ordering 68, 69, 425
negative zero 165
nested lists 417
nested loops 66
new operator 5, 53, 59, 195, 406
newline see linefeed
NL see newline
no-argument constructor 53, 54, 283, 287
non-associativity 151
non-static code 48

see non-static context 48
non-static context 48
non-static field 9
non-static field initializers 48
non-static initializer block 48
non-varargs call

see fixed arity call
non-void return 445
non-zero argument constructor 55, 287, 

288
normal class 121
normal execution 232
notifying threads 344
null reference 30

casting 320
null reference literal

casting 149
equality comparison 183

nulling references 387
NullPointerException 236
Number class 351
number systems

base 30
converting 157
decimal 30
hexadecimal 30
octal 30
radix 30

NumberFormatException 236, 347, 348
numeric promotions 149

assignment 160



INDEX 633

binary 150
unary 149

numeric wrapper classes 351
numerical literals

using underscore 32

O
object 4
Object class 266, 342
object hierarchy 267
object references 4, 40
object state 6, 53, 77, 406
object-oriented design 334

cohesion 335
object-oriented paradigm 22
object-oriented programming 2
objects 13

aggregate 12
alive 385
arrays 58
callee 72
caller 72
Class class 343
cleaning up 386
cloning 343
communication 72
comparing 342
composite 385
constituent 12, 385
constructing 406
contract 335
decoupling 330
destroying 390
eligible 387
equality 183, 342
exchanging information 72
finalization 385
garbage collection 384
identity 5
immutable 346
implementation 335
initial state 406
initialization 5, 53
initializer block 404
internals 335
lifetime 385
members 7
methods 50
Object class 342
persistence 138
reachable 384, 385

resurrection 385
services 335
state 133

see object state
value equality 183

OCAJP8 507
exam objectives 515
exam question assumptions 511

OCPJP8 507
one-dimensional arrays 59
operands 148

evaluation order 152
operations 2
operators 150

- 163, 169
-- 176
^ 184, 189
^= 185, 192
! 184
!= 181, 182
? : 194
. 7, 97
[] 61, 195
* 163, 167
*= 172
/ 163, 167
/= 172
& 184, 189
&& 186
&= 185, 192
% 163, 167, 168
%= 172
+ 163, 169, 174
++ 176
+= 172
< 180
<= 180
-= 172
= 158
== 181, 182
-> 195
> 180
>= 180
| 184, 189
|= 185, 192
|| 186
~ 189
arithmetic compound assignment 172
assignment 151, 158
associativity 150
binary 151
bitwise 189



634 INDEX

boolean 180, 181, 184
cast 151
comparisons 180
compound assignment 185, 192
conditional 186, 194
decrement 176
dot 7
equality 181
execution order 152
floating-point 165
floating-point division 167
floating-point remainder 169
increment 176
instanceof 195, 320, 321
integer 189
integer arithmetic 165
integer division 167
integer remainder 168
logical 184
multiplicative 167
new see new operator
overflow 165
overloaded 164, 167
postfix 151
precedence 150
relational 180
short-circuited 186
string concatenation 174
ternary 151
unary 150, 151, 167
unary - 167
unary + 167

optimizations 24
or operator 189
Oracle University 509
ordinal value 90, 209
OutOfMemoryException 395
output 18
overflow 155, 165
overloaded 164
overloaded method resolution 316
overloading

constructors 56
method resolution 316
methods 52, 273

overloading vs. overriding 273
overriding 253

equals 183
finalizers 390
methods 268, 273
toString 175

overriding methods

covariant return 273
overriding vs. overloading 273
ownership 12

P
package accessibility 118, 124
package directory 106
package statement 96, 98
packages 97

accessibility see package accessibility
declaration 96
definition 98
destination directory 106
hierarchy 97
java.lang 342
members 97
naming scheme 98
package directory 106
running code from 106
short-hand 100
statement see package statement
subpackages 97
unnamed 98
using 99

palindromes 382, 434
parallel code 441
parameter

variable arity 81
parameter list 439, 444
parameter list see formal parameters
parameter passing

by value 72
variable arity 81

parameters 49
actual 72
array elements 78
final 80
fixed arity 81
formal see formal parameters
implicit 50
main method 86
passing 72
primitives 73
program 86
references 75
this 50
variable arity 81

parent class 264
parentheses 150
parseType method 352
parsing 462, 486



INDEX 635

parsing numeric values 352
partial implementation 293
pass by value 72
passing

parameters 72
references 75
variable arity parameter 81

paths
see class path

path-separator character 110
pattern letters 486, 495, 496
Pearson VUE 509
performance 24
period 462, 476

creating 476
date-based 476
equality 478
get methods 478
immutable 476
normalization 479
parsing 477
period-based loop 481
plus/minus methods 479
querying 478
temporal arithmetic 479
textual representation 477
thread-safe 476
with methods 479

Period class
see period

persistent objects 138
polymorphism 311, 329, 334
portability 23
positional order 414
positive zero 165
postfix operators 151
precedence rules 151
precision 160
predefined identifiers 29
predefined literals 29
predicate 436
Predicate<T> 440, 451
prefix 30

0 30
0x 30

primitive data types
see primitive types

primitive types 13, 144
autoboxing 348
unboxing 350
see also primitive values

primitive values

assignment 159
equality 181
passing 73

printing values 18
private 11
private members 128
process of elimination 510
program

application 16
arguments 86
command line 86
compiling 17
formatting 35
running 17

program arguments 86
program output 18
programming to an interface 417
proleptic year 464
promotion 149
properties 2

see also class members
protected 11
protected members 126
public 17
public members 124
punctuators 29

Q
quotation mark 33, 34
quotient 168

R
radix

prefix 30
see base 349

ragged arrays 65
range

character values 38
floating-point values 39
integer values 38

range of date-based values 464
range of time-based values 464
ranking criteria 414
realization 296
reclaiming memory 384
reducing complexity 335
reference types 41, 267

classes 48
enum types 87

reference values 4



636 INDEX

reference variables 40
references 4, 9, 40, 41, 72

abstract types 121
aliases 75, 183
array 59, 62, 311
assignment 159
casting 149, 320
dangling 384
declared type 268
downcasting 145
dynamic type 268
equality 182
field 385
interface type 296
local 384
narrowing conversions 145
null see null reference
passing 75
reachable 384, 385
super 276
this 50
upcasting 145
widening conversions 145

relational operators 180
relative adjusters 474
reliability 24
remainder 168
remainder operator

% 168
remove whitespace 369
replacing characters 367
reserved identifiers 29
reserved keywords 29

const 29
goto 220

reserved literals
false 32
null see null reference
true 32

resources 387
resurrecting objects 385, 391
return statement 224

@return tag 225
return type

covariant
return value 7
reuse of code 264, 334
right associativity 152
rightmost bit 155
ripple effect 334
robustness 24, 254
role relationship 334

root
see inheritance hierarchy

running a Java application 17
runtime

bounds checking 61
runtime checks 148, 418
Runtime class 342, 393
runtime class 343
runtime environment 384
runtime stack

see JVM stack
RuntimeException 236

S
scientific notation 31
scope 114

block 117
catch clause 244
class 114
disjoint 118

searching
arrays 69

searching in string 367
secure 24
SecurityManager class 342
selection statements 200
semantic definition 28
semicolon 50
separators 29, 151
serialization 138
services 335
shadowing 446
shallow copying 343
short 30, 38
short-circuit 186

evaluation 187
signature 52, 273
simple

assignment operator 158
if 200
statement 50

simple type name 97
simplicity 23
single expression 439
single implementation inheritance 266, 

290, 296
single quote (') 32, 33
single static import 101
single-line comment 3, 35
skeletal source file 96
sorting arrays 68



INDEX 637

source
file 15, 98
file name 96
file structure 96

spaces 35
special character values 33
specialization 10
specialized classes 266
stack 3
stack frame

see method execution
stack trace 232, 235

see method execution
StackOverflowError 237
standard error stream 235
standard out 18
starts with characters 368
state see object state
statement block 439, 446
statements 50

break 221
compound 50
conditional 200
continue 223
control flow 50, 200
control transfer 219
declaration 171, 177, 187
declarations 50
do-while 214
empty 50
expression 50, 177
for(;;) 215
for(:) 217
if 200
if-else 201
iteration 213
labeled 220
return 224
selection 200
simple 50
simple if 200
switch 203
throw 249
transfer 219
try 240
while 213

static
members see static members
methods 7, 10, 49
variable initialization 42
variables see static variables

static 101, 132, 300

static code
see static context 48

static context 48
static field 10
static field initializers 48
static import 101

conflicts 104
on demand 101
shadow static members 103
single static import 101

static initializer block 48, 137, 402
static keyword 402
static members 7, 9, 10, 48
static type

see declared type
static variables 7, 10, 44
storing objects 138
strictfp 166
string builders 176

appending 376
capacity 374, 378
constructing 374
deleting 376
differences with strings 376
individual characters 375
inserting 376
joining 366
length 375
thread-safety 374

String class
see strings

string conversion 146, 175
string conversions 370
string literal pool 358

interned 358
string literals 357

case labels 208
hash value 208
interned 358

StringBuffer class 374
see string builders
thread-safe 374

StringBuilder class 374, 434
see string builders

strings
appending 376
buffers 374
builders 374
capacity 378
changing case 364
compareTo 363
comparing 363



638 INDEX

concatenation 174, 364
concatenation operator + 176
constructing 374
contains 368
conversions 370
convert to character array 361
copying characters 361
creating 357
deleting 376
differences with string builders 376
empty 358
ends with 368
equals 363
extracting substrings 369
finding index 367
formatted 370
ignoring case in comparison 363
immutable 357
individual characters 361, 375
initializing 357
inserting 376
interned 358
joining 365, 366
length 361, 375
lexicographical ordering 363
literals 34, 357
mutable 374
read character at index 361
replacing 367
searching 367
starts with 368
string literal pool 358
substrings 369
trimming 369

strongly typed language 148
subclass 10, 11, 264
subinterface 294
subpackages 97
subsequence 361
substring searching 367
substrings 367, 369
subtype covariance 309, 310
subtype relationship 418
subtypes 293
subtype–supertype relationship 145
suffix

D 31
F 31
L 30

super 299
construct 285
keyword 272, 276

reference 276
superclass 10, 11, 264
superclass constructor 54
superclass–subclass relationship 266
superinterfaces 294
supertypes 293
supertype–subtype relationship 267
supplementary characters 357
suppressed exceptions 235
switch statement 203

break 205, 206
default clause 204
enum types 209
using strings 208

synchronized
methods 136

syntactically legal 28
System

out 18
System class 342
system clock 466

T
TAB see horizontal tab
tabs 35
tabulators 35
tags 36
target type 450
target typing 451
telephone directory order 363
temporal arithmetic 474, 479
temporal objects

before/after methods 469
combining date and time 466
common method prefix 463
comparing 470
creating with factory methods 464
date 462
date units 474
date-based values 462
date-time 462
formatting 486
get methods 468
immutable 462
method naming convention 463
parsing 486
plus/minus methods 474
querying 468
range of date-based values 464
range of time-based values 464
temporal arithmetic 474, 479, 480



INDEX 639

temporal values 464
thread-safe 462
time 462
time units 474
time-based values 462
with methods 470

temporal values 464
TemporalAmount interface 479
terminating loops 221
ternary conditional expressions

see also conditional expressions 194
ternary conditional operator 151, 194
textual representation 343
this

reference 50
this() constructor call 282, 406
ThreadDeath 237
threads 24, 342, 384

death 232
exception propagation 232
JVM stack 385
live 384
notifying 344
synchronization 136
waiting 344

thread-safe 357, 374, 415, 462
throw statement 249
Throwable 233, 342
throw-and-catch paradigm 230
throwing exceptions 230
throws clause 251
time

see temporal objects
time units 474
time-based values 462
tokens 28
toString method 343, 349
transfer statements 219
transient variables 138
transitive relation 267
trim method 369
true literal 32
truth-values 32, 39
try block 240
try-catch-finally construct 238
two’s complement 154
type

declared 274
dynamic 274

type cast 148
type cast expression 320
type checking 450

type declarations 96
type hierarchy 145, 267
type import

see import
type parameter 290, 414, 441
types

boolean 37, 39
byte 30, 38
casting 148
char 38
classes see classes
comparing 321
compatibility 148
double 39
exceptions 233
float 39
floating-point 37, 38
int 30, 38
integers 38
integral types 37
interface 290
long 30, 38
parsing 352
short 30, 38
wrappers 346
see also classes

type-safe 315
type-safety 416, 417, 418
typeValue method 350, 352

U
UML 2

accessibility 124
aggregation 12
associations 12
classes 3
composition 12
inheritance 10
see also diagrams

unary arithmetic operators 167
unary numeric promotion 149
unary operators 150, 151
unboxing 350

do-while statement 214
for(;;) statement 215
for(:) statement 218
if statement 200
if-else statement 202
switch statement 204
while statement 213

unboxing conversions 145, 146



640 INDEX

uncaught exceptions 232
unchangeable variables 134
unchecked conversion warning 416
unchecked conversions 146
unchecked exceptions 237
unchecked warnings 145
underflow 155, 165
uni-catch clause 239
Unicode 32, 38, 354, 357, 363, 434
Unified Modeling Language see UML
unreachable code 244
unsafe casts 321
unsigned integer 353
UnsupportedTemporalTypeException 480, 490
unused keywords 29
upcasting 145
update expression 215
using arrays 61
using packages 99
using variables 41
UTF-16 357

supplementary characters 357

V
valueOf method 348, 349, 369
values 155

constants 30
overflow 155
underflow 155
wrap-around 155
see also variables

varargs 81
variable arity call 84
variable arity method 81
variable arity parameter 81
variable capture 449
variable declarations 41, 117
variable initialization 8, 43
variables 4, 41

blank final 80, 134
constant values 133
default values 42
effectively final 448
final 133
identifiers 40
in interfaces 302
initialization see variable initialization
lifetime 44
local 117
parameters 49, 72
reference variable 41

references 41
static 7
storing 138
transient 138
volatile 139

virtual method invocation
see dynamic method lookup

VirtualMachineError 237
void 17, 224, 347
void return 445
Void wrapper class 346
volatile variables 139
voucher 509

W
waiting threads 344
while statement 213
whitespace 35, 369
whole–part relationship 267
widening conversions

primitive 144
references 145

widening reference conversions 267, 320
wider range 144
withers 470
wrapper classes 38, 342, 343, 346, 347

interned values 351
wrapper type 146, 164, 177

X
xor 189

Z
zero

negative 165
positive 165

zero-based index 414


	Cover
	Title Page
	Copyright Page
	About the Authors
	Acknowledgments
	Contents
	Figures
	Tables
	Examples
	Foreword
	Preface
	3 Declarations
	3.1 Class Declarations
	3.2 Method Declarations
	Statements
	Instance Methods and the Object Reference this
	Method Overloading

	3.3 Constructors
	The Default Constructor
	Overloaded Constructors

	Review Questions
	3.4 Arrays
	Declaring Array Variables
	Constructing an Array
	Initializing an Array
	Using an Array
	Anonymous Arrays
	Multidimensional Arrays
	Sorting Arrays
	Searching Arrays

	Review Questions
	3.5 Parameter Passing
	Passing Primitive Data Values
	Passing Reference Values
	Passing Arrays
	Array Elements as Actual Parameters
	final Parameters

	3.6 Variable Arity Methods
	Calling a Variable Arity Method
	Variable Arity and Fixed Arity Method Calls

	3.7 The main() Method
	Program Arguments

	3.8 Enumerated Types
	Declaring Type-safe Enums
	Using Type-safe Enums
	Selected Methods for Enum Types

	Review Questions
	Chapter Summary
	Programming Exercise

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 0
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /None
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
  >>
  /ExportLayers /ExportVisiblePrintableLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        13.500000
        13.500000
        13.500000
        13.500000
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /WorkingCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 30
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




