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FOREWORD
by Jeff Sutherland

Mitch and I have worked together for many years training developers in Scrum. Study-
ing this book can help users overcome the biggest challenges that have occurred in re-
cent years as agile practices (75 percent of which are Scrum) have become the primary 
mode of software development worldwide.

Ten years after the Agile Manifesto was published, some of the original signatories 
and a larger group of agile thought leaders met at Snowbird, Utah, this time to do a 
retrospective on ten years of agile software development. They celebrated the success 
of the agile approach to product development and reviewed the key impediments to 
building on that success. And they came to unanimous agreement on four key success 
factors for the next ten years.

1. Demand technical excellence.
2. Promote individual change and lead organizational change.
3. Organize knowledge and improve education.
4. Maximize value creation across the entire process.

Let’s see how Mitch’s book can help you become an agile leader.

Demand Technical Excellence

The key factor driving the explosion of the Internet and the applications on smart-
phones has been deploying applications in short increments and getting rapid feed-
back from end users. This process is formalized in agility by developing products in 
short sprints, always a month or less and most often two weeks in length. We framed 
this issue in the Agile Manifesto by saying that “we value working software over com-
prehensive documentation.”

The Ten Year Agile Retrospective of the Manifesto concluded that the majority 
of agile teams are still having difficulty developing products in short sprints (usually 
because the management, the business, the customers, and the development teams do 
not demand technical excellence).

Engineering practices are fundamental to software development, and 17 percent 
of Scrum teams implement Scrum with XP engineering practices. The first Scrum 
team did so in 1993 before XP was even born. It is only common sense to profes-
sional engineers.



xx Foreword by Jeff Sutherland

Mitch says in the first chapter that he considers certain XP practices to be man-
datory—sustainable pace, collective code ownership, pair programming, test-driven 
development, continuous integration, coding standards, and refactoring. These are 
fundamental to technical excellence, and the 61 percent of agile teams using Scrum 
without implementing these practices should study Mitch’s book carefully and follow 
his guidance. Neglecting to use these mandatory XP practices is the reason they do not 
have shippable code at the end of their sprints!

Mitch’s book contains much more guidance on technical excellence, and agile 
leaders, whether they are in management or engineering, need to demand the techni-
cal excellence that Mitch articulates so well.

Promote Individual Change and 
Lead Organizational Change

Agile adoption requires rapid response to changing requirements along with technical 
excellence. This was the fourth principle of the Agile Manifesto—“respond to change 
over following a plan.” However, individuals adapting to change is not enough. Or-
ganizations must be structured for agile response to change. If not, they prevent the 
formation of, or destroy, high-performing teams because of failure to remove impedi-
ments that block progress.

Mitch steps through the Harvard Business School key success factors for change. 
A sense of urgency is needed. Change is impossible without it. Agile leaders need to 
live it. A guiding coalition for institutional transformation is essential. Agile leaders 
need to make sure management is educated, trained, on board, and participating in 
the Scrum implementation.

Creating a vision and empowering others is fundamental. Arbitrary decisions 
and command and control mandates will kill agile performance. Agile leaders need to 
avoid these disasters by planning for short-term wins, consolidating improvements, 
removing impediments, and institutionalizing new approaches. Agile leaders need to 
be part of management or must train management as well as engineering, and Mitch’s 
book can help you see what you need to do and how to do it.

Organize Knowledge and Improve Education

A large body of knowledge on teams and productivity is relatively unknown to most 
managers and many developers. Mitch talks about these issues throughout the book.

Software Development Is Inherently Unpredictable

Few people are aware of Ziv’s law: Software development is unpredictable. The large 
failure rate on projects worldwide is largely due to lack of understanding of this 
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problem and the proper approach to deal with it. Mitch describes the need to expect 
and adapt to constant change. The strategies in this book help you avoid many pitfalls 
and remove many blocks to your Scrum implementation.

Users Do Not Know What They Want until They See 
Working Software

Traditional project management erroneously assumes that users know what they want 
before software is built. This problem was formalized as Humphrey’s law, yet this law 
is systematically ignored in university and industry training of managers and project 
leaders. This book can help you work with this issue and avoid being blindsided.

The Structure of the Organization Will Be Embedded in the Code

A third example of a major problem that is not generally understood is Conway’s law: 
The structure of the organization will be reflected in the code. A traditional hierar-
chical organizational structure negatively impacts object-oriented design, resulting in 
brittle code, bad architecture, poor maintainability and adaptability, along with exces-
sive costs and high failure rates. Mitch spends a lot of time explaining how to get the 
Scrum organization right. Listen carefully.

Maximize Value Creation Across the Entire Process

Agile practices can easily double or triple the productivity of a software development 
team if the product backlog is ready and software is done at the end of a sprint. This 
heightened productivity creates problems in the rest of the organization. Their lack of 
agility will become obvious and cause pain.

Lack of Agility in Operations and Infrastructure

As soon as talent and resources are applied to improve product backlog, the flow of 
software to production will at least double—and in some cases be five to ten times 
higher. This exposes the fact that development operations and infrastructure are crip-
pling production and must be fixed.

Lack of Agility in Management, Sales, Marketing, 
and Product Management

At the front end of the process, business goals, strategies, and objectives are often not 
clear. This lack of clarity results in a flat or decaying revenue stream even when pro-
duction of software doubles.

For this reason, everyone in an organization needs to be educated about and trained 
on how to optimize performance across the whole value stream. Agile individuals need 
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to lead this educational process by improving their ability to organize knowledge and 
train the whole organization.

The Bottom Line

Many Scrum implementations make only minor improvements and find it difficult to 
remove impediments that embroil them in constant struggle. Work can be better than 
this. All teams can be good, and many can be great! Work can be fun, business can be 
profitable, and customers can be really happy!

If you are starting out, Mitch’s book can help you. If you are struggling along the 
way, this book can help you even more. And if you are already great, Mitch can help 
you be greater. Improvement never ends, and Mitch’s insight is truly helpful.

—Jeff Sutherland
Scrum Inc.
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FOREWORD
by Kenneth S. Rubin

In 1988, I was the first employee hired by ParcPlace Systems after the Smalltalk re-
search team was spun out of Xerox PARC (Palo Alto Research Center). Our mission 
was to commercialize the use of object-oriented technology. During those early days 
of the object-technology movement, we often discussed writing a sort of recipe book 
to help companies get started with object technology. The idea was to collect the most 
important situations/issues that we saw companies encountering and present them as 
a set of patterns or recipes in the format, “If you find yourself in this situation, try do-
ing the following. . . .” We never did write that particular book.

Fast-forward over 20 years to the era of agile development, and Mitch Lacey has 
written his own recipe book: a field guide on the topic of Scrum. In it, he shares his 
wealth of Scrum experience with companies that are gearing up to use Scrum or those 
that are still in the nascent stages of applying it. 

I first met Mitch in 2007, shortly after I became the very first managing director 
of the worldwide Scrum Alliance. At that time, Mitch was already a Certified Scrum 
Trainer (CST) and had been applying Scrum for some number of years both inside 
Microsoft, where he was first exposed to Scrum, and later with both large and small 
companies as a Scrum trainer and coach. 

I could tell from our first meeting that Mitch was passionate about helping people 
be successful with Scrum. At that first encounter, he took out his laptop and started 
walking me through data he had been collecting. His goal was to reinforce anecdotal 
success stories with real data drawn from his experiences. In hindsight, this exchange 
was foreshadowing for what was to become The Scrum Field Guide.

When you read this book, you will experience what I did during that 2007 conver-
sation and in numerous discussions and debates I have had with Mitch ever since—
that he has a keen ability to collect and analyze real-world experiences and synthesize 
them into actionable advice. You will benefit from this advice in each and every chap-
ter! Each chapter begins with a story that captures the culmination of Mitch’s experi-
ences on a specific topic. I find this technique to be very effective, since I like a good 
story and Mitch is quite an effective storyteller. But don’t just stop after reading a 
chapter’s intro story! Following each story is an expansion and interpretation of the 
concepts presented in the story that amplify the advice being offered.

One thing you will notice while reading this book is that Mitch isn’t trying to teach 
you theory. He’s trying to save your bacon. Even the major section names convey this 
intent: “Getting Prepared,” “Field Basics,” “First Aid,” “Advanced Survival Techniques,” 
and “Wilderness Essentials.” A true field guide indeed! 
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You also have the benefit of reading the second edition of this book. Mitch has 
not been sitting still since the first edition was published in 2012. This new edition 
includes updated versions of many of the original chapters as well as five completely 
new chapters in the new section “Wilderness Essentials.” These chapters address topics 
as diverse as “getting to done,” the relationship of story points to hours, techniques for 
interviewing and hiring, how to align incentives with outcomes, and the all-important 
topic of managing risk during agile development. If you are already familiar with the 
first edition, I am sure you will benefit from the changes and additions Mitch has made 
to this latest edition!

It is an honor to have Mitch and The Scrum Field Guide, Second Edition, in the 
same book series as my Essential Scrum book: The Mike Cohn Signature Series. I 
have high regard for the authors and books in this series. They all pass my litmus test: 
“Would I recommend a book in the series to my clients without reservations?” I am 
happy to say that I can definitely recommend Mitch’s book!

And, for those readers who are familiar with my book, Essential Scrum: A Practical 
Guide to the Most Popular Agile Process, I am confident that you will find my book and 
this book to be good complements to one another, even (and especially) where the two 
differ on particular issues or approaches. And, apparently, many others agree! A quick 
look on Amazon.com at the first edition of The Scrum Field Guide shows that the book 
most frequently purchased along with it is my Essential Scrum book. So, like fine wine 
and cheese, I hope you enjoy the pairing!

—Kenneth S. Rubin
Managing Principal, Innolution, LLC,

and author of Essential Scrum: 
A Practical Guide to the Most Popular Agile Process
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PREFACE

Welcome to the Second Edition 
of The Scrum Field Guide 

When I mentioned that I was thinking of updating the original Field Guide, my wife 
questioned my sanity. After all, she reminded me, the first book had nearly done me 
in. Yet as I reflected on my first effort, I felt that not only did I have more to say, but I 
also wanted to adjust some of the content I’d already published. Put simply, I wanted 
to refactor, add some new features, and release a 2.0 version. So here we are. 

You should still read this book in the same way you did the first edition: Pick a 
chapter that addresses a problem you see in your company—and read it. Then go ap-
ply my advice and see what happens. 

Agile is a journey. I’ve learned a great deal since the first edition was published in 
2012. If you have read this book before, you will immediately see that I have added new 
ideas and concepts to the original chapters. Many chapters have been rewritten by more 
than 80 percent; others by only 10 percent. You will see a new section: Part V, “Wil-
derness Essentials,” containing additional tips for the field, inspired by my firsthand 
experience working with organizations around the globe. These new chapters include 
managing risks, interviewing, the fallacy of getting it right the first time, and more. 

How This Book Came to Be

When my daughter Emma was born, I felt out of my depth. We seemed to be at the 
doctor’s office much more than we had been with our other children. I kept asking my 
wife, “Is this normal?” One night, I found my wife’s copy of What to Expect the First 
Year on my pillow with a note from her: “Read this. You’ll feel better.”

And I did. Knowing that everything we were experiencing was normal for my 
child, even if it wasn’t typical for me or observed before, made me feel more confident 
and secure. This was around the same time I was starting to experiment with Scrum 
and agile. As I encountered obstacles and ran into unfamiliar situations, I began to 
realize that what I really needed was a What to Expect book for the first year (and even 
beyond) of Scrum and XP.

The problem is, unlike a What to Expect book, I can’t tell you exactly what your 
team should be doing or worrying about during months 1 to 3 or 9 to 12. Teams, 
unlike most children, don’t develop at a predictable rate. Instead, they often tumble, 
stumble, and bumble their way through their first year, taking two steps forward and 
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one step back as they learn to function as a team, adopt agile engineering practices, 
build trust with their customers, and work in an incremental and iterative fashion.

With this in mind, I chose to structure this book with more of an “I’ve got a pain 
here, what should I do” approach. I’ve collected stories about teams I’ve been a part 
of or witnessed in their first year of agile life. As I continued down my agile path, I 
noticed that the stories and the patterns in companies were usually similar. I would 
implement an idea in one company and tweak it for the next. In repeating this process, 
I ended up with a collection of real-world solutions that I now carry in my virtual tool 
belt. In this book, I share with you some of the most common pains and solutions. 
When your team is hurting or in trouble, you can turn to the chapter that most closely 
matches your symptoms and find, if not a cure, at least a way to relieve the pain.

The Scrum Field Guide, Second Edition, is meant to help you fine-tune your own 
implementation, navigate some of the unfamiliar terrain, and more easily scale the 
hurdles we all encounter along the way.

Who Should Read This Book

If you are thinking about getting started with Scrum or agile, are at the beginning of 
your journey, or have been at it a year or so but feel like you’ve gotten lost along the 
way, this book is for you. I’m officially targeting companies that are within six months 
of starting a project to those that are a year into their implementation—an 18-month 
window.

This is a book for people who are pragmatic. If you are looking for theory and 
esoteric discussions, grab another of the many excellent books on Scrum and agile. 
If, on the other hand, you want practical advice and real data based on my experience 
running projects both at Microsoft and while coaching teams and consulting at large 
Fortune 100 companies, this book fits the bill.

How to Read This Book

The book is designed for you to be able to read any chapter, in any order, at any time. 
Each chapter starts out with a story pulled from a team, company, or project that I 
worked on or coached. As you might expect, I’ve changed the names to protect the in-
nocent (and even the guilty). Once you read the story, which will likely sound familiar 
in some fashion, I walk you through the model. The model is what I use in the field to 
help address the issues evident in the story. Some of the models might feel uncomfort-
able, or you might believe they won’t work for your company. I urge you to fight the 
instinct to ignore the advice or to modify the model. Try it at least three times and see 
what happens. You might be surprised. At the end of each chapter, I summarize the 
keys to success—those factors that can either make or break your implementation.
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This book is organized in five parts.

 � Part I, “Getting Prepared,” gives you advice on getting started with Scrum, 
helping you set up for success. If you are just thinking about Scrum or are just 
beginning to use it, start there.

 � Part II, “Field Basics,” discusses items that, once you get started down the agile 
path, help you over some of the initial stumbling blocks that teams and orga-
nizations encounter. If you’ve gotten your feet wet with Scrum but are running 
into issues, you might want to start here.

 � Part III, “First Aid,” is where I deal with some of the larger, deeper issues that 
companies face, such as adding people to projects or fixing dysfunctional daily 
standup meetings. These are situations you’ll likely find yourself in at one 
point or another during your first year. These chapters help you triage and 
treat the situation, allowing your team to return to a healthy state.

 � Part IV, “Advanced Survival Techniques,” contains a series of items that teams 
seem to struggle with regardless of where they are in their adoption—things 
such as costing projects, writing contacts, and addressing documentation in 
agile and Scrum projects.

 � Part V, “Wilderness Essentials,” contains chapters that focus on overlooked, 
yet just as costly, problems that most organizations face when they are in the 
middle of their agile adoption, such as managing risks, interviewing, getting it 
right the first time, and more. 

If you are starting from scratch and have no idea what Scrum is, I’ve included a 
short description in the appendix to help familiarize you with the terms. You might 
also want to do some more reading on Scrum before diving into this book.

Why You Should Read This Book

Regardless of where we are on our agile journey, we all need a friendly reminder that 
what we are experiencing is normal, some suggestions on how to deal with issues, and 
a few keys for success. This book gives you all that in a format that allows you to read 
only the chapter you need, an entire section, or the whole thing. Its real-life situations 
will resonate with you, and its solutions can be applied by any team. Turn the page and 
read the stories. This field guide will become a trusted companion as you experience 
the highs and lows of Scrum and Extreme Programming.

Supplemental Material for This Book

Throughout this book, you may find yourself thinking, “I wish I had a tool or down-
loadable template to help me implement that concept.” In many cases, you do. If you 
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go to http://www.mitchlacey.com/supplements/, you will find a list of various files, im-
ages, spreadsheets, and tools that I use in my everyday Scrum projects. While some 
of the information is refined, most of the stuff is pretty raw. Why? For my projects, I 
don’t need it to be pretty; I need it to be functional and to work. What you get from my 
website supplements will be raw, true, and from the trenches.

http://www.mitchlacey.com/supplements/
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Chapter 27

DOCUMENTATION 
IN SCRUM PROJECTS

We’ve all heard the common myth, Agile means no documentation. While other agile 
fallacies exist, this is a big one, and it could not be farther from the truth. Good agile 
teams are disciplined about their documentation but are also deliberate about how 
much they do and when. In this chapter’s story, we find a duo struggling to explain 
that while they won’t be fully documenting everything up front, they will actually be 
more fully documenting the entire project from beginning to end.

The Story

“Hey, you two,” said Ashley, stopping Carter and Noel in the hallway as they passed by 
her office. “I’ve been sensing some resistance from you over the initial project docu-
mentation. I need it by next Friday for project sign off, okay?” Ashley looked back at 
her computer and began typing again, clearly expecting a quick answer.

Carter and Noel looked at each other, then back at Ashley, their manager, before 
replying. They had known this conversation was coming but didn’t realize they’d be 
accosted in the hallway by an obviously harried Ashley when it did.

“Listen, we can document everything up front like you ask,” Noel began, as she 
and Carter moved to stand close to Ashley’s doorway. “But we don’t think it’s the best 
approach. Things change, and we cannot promise you that things will go as planned. 
Further—” Ashley stopped typing and looked up, interrupting Noel mid-stream.

“Look, I don’t want to argue about something as basic as documentation. I just 
need it on my desk by Friday.”

Carter spoke up.
“Ashley,” he began. “Can I have five minutes to communicate a different approach? 

I know you have a full plate, but I think it’s important for you to try to understand this 
point before we table our discussion.”

Ashley glanced at her watch and nodded. “Five minutes. Go.”
“When I was in college, I worked for our university newspaper,” Carter explained. 

“I was a sports photographer and always attended local football games with the sports 
writers. I was on the field, and they were in the stands.

“It probably won’t surprise you to hear that not one of those sports writers came 
to the football game with the story already written. Now, they might have done some 
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research on the players. They might have talked to the coaches about their game plans. 
They might even have asked me to be sure to get some shots of particular players. But 
they never wrote the article before the game even began.

“That’s kind of what you are asking us to do with the software. You want the com-
plete story of how this application will unfold, including the final game score, before 
we’ve even started playing,” said Carter.

Ashley replied, “Well, that’s how we get things done around here. Without the up-
front documentation—design docs, use cases, master requirements docs, architectural 
designs, and release plans—I won’t get project approval, and I can’t be sure that you 
two and the rest of the team understand what we need to build.” 

“Right. I get that,” agreed Carter. “It’s not unreasonable for you to want some in-
formation before we get started. And you should expect to receive frequent updates 
from us on what’s going on with the project. After all, the reporters I used to work with 
would take notes and write snippets of the article about the game as it was unfold-
ing. Periodically, we would get together to discuss the angle they were working on and 
some of the shots I had captured so far.

“But to ask us to tell you what the software will look like, exactly how much it 
will cost, and precisely when we’ll be done is like asking us to predict the final score of 
the football game. We can tell you how we think it’s going to go, but when things are 
changing and unfolding, it’s difficult to predict all the details.”

Ashley nodded. “But things aren’t always that volatile with our projects. We know 
basically what we want this to look like. It’s only some of the features we aren’t sure of.”

“Right,” chimed in Noel. “And on projects where we can nail down most of the 
variables and have a clear picture of the final product, we can give you more up-front 
documentation.”

Carter nodded. “To go back to my sports writer analogy, there were times when 
one team was clearly dominating—the game was a blowout. In those cases, the re-
porters had their stories mostly written by halftime. They’d already come up with the 
headline, filled in a lot of the details, and were just waiting until the end of the game to 
add the final stats and score.

“Most times, though, the games were close and the outcome uncertain. In those 
cases, the reporters would keep filling in the skeleton of the story with the events as 
they happened in real time. They would come down to the field at halftime, and we 
would discuss the unfolding story. We’d strategize and say, ‘If the game goes this way, 
we’ll take this approach. But if it goes that way, we’ll take this other approach.’

“Likewise, the level of detail in our documentation at any given point in the proj-
ect should depend on how certain we are that things aren’t going to change.”

Ashley leaned back in her chair with her hand on her chin, deep in thought. Noel 
decided to go in for the kill.

“Ashley, remember the 1989 San Francisco earthquake, or the quake and tsunami 
in Japan? Or when either Reagan or Kennedy were shot?”

Ashley nodded.
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“Well, you would notice a trend in all these events. In the initial accounts, the 
media headlines conveyed the tragic event, but with very few details. All they could 
tell us at first was generally what had happened (explosion/quake/tsunami/shots 
fired), when, and where. Why? Because the events were still unfolding, and that was 
all anyone knew. As the reporters on scene learned more, they added the new facts and 
changed the headlines.

“All the little updates, facts, and details were important to capture in real time, 
even if they later had to be changed to reflect new information. Without continuous 
briefings, many of the details surrounding the events would have been forgotten in the 
chaos of the devastation. The reporters didn’t try to write more up front than the facts 
they knew. Instead, the reporters recorded what they did know as they went along. 
Later, after the details had solidified, they went back through the various articles and 
wrote a larger, encompassing synopsis that outlined the specific event from the initial 
reports to the current state,” Noel explained.

“That’s what we’re suggesting we do: Make our documentation a story in progress. 
Are we making sense?” asked Carter.

Ashley sat forward.
“I think I get it now. What I originally heard you say was, ‘I can’t give you docu-

mentation.’ But what you’re actually saying is that you will document certain things 
up front, most things in real time, updating them as necessary to reflect reality, and 
some things after the fact. But what does that mean in terms of software exactly? I 
need certain documents to get the project approved, such as the master requirements 
documentation outlining all the use cases.”

Noel answered, “We will provide that MRD, but it will be in the form of a product 
backlog, with stories at different levels of detail. Some of the stories will be headlines 
only. Others will be fully fleshed out, maybe to the point of use cases. For example, 
the team has a good idea of the architectural direction, which gives us insight into 
what stories to build for the first six or so sprints, but after that, things get fuzzy. We 
know that you want us to capture the details, and we have those details for the higher-
priority stories, but we don’t have them for the stories off in the distance. For those, we 
might only have headline-level information.”

Ashley asked, “But if we don’t capture details up front, won’t they get lost? And 
don’t you then have to spend a significant amount of time getting and documenting 
that information during the project, if they can be found at all? How can you ensure 
that what is being built is correct?”

“Remember, like any good journalist, we will document as we go, as soon as we 
can, without doing too much. That way when we get to the point where the UI stabi-
lizes, let’s say, we can create the more detailed documentation that the company needs 
and that we need to deliver in the form of user manuals and such. We won’t lose our 
details because we’ll be going over those details every sprint with the team, document-
ing them as part of our definition of done, and checking with the stakeholders to en-
sure we’re on track, to ensure that what is being asked is what we are building and 
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matches what the customers meant. Keeping documentation up to date a little at a 
time is just part of the cost of building working software. If things change along the 
way, we will update what we have written to reflect the change. It’s a balance between 
stability and volatility. The more volatile something is, the more careful we need to be 
in what level we document. If it’s stable, we can do something such as a large database 
diagram model in a tool. If it’s volatile, we might just draw a picture on the white-
board—again, both are documents, database models to be exact, but they are very dif-
ferent in terms of formality,” finished Noel.

“So, are we on the same page?” asked Carter.
“Yes,” said Ashley. “I get it now. I think this is a good approach and something that 

I will advocate, provided you give me regular feedback so I can update executive man-
agement. But I still need the big headlines by Friday. Agreed?”

“Agreed,” said Carter and Noel together.
And that was that.

The Model

Many people can quote the part of the Agile Manifesto that states, “Working software 
over comprehensive documentation,” but they fail to mention the very important ex-
planatory component that follows: “While there is value in the items on the right, we 
value the items on the left more” [BECK]. Scrum teams still value documentation; 
they just change the timing of that documentation to be more consistent with their 
level of knowledge.

For example, imagine you are in a university world history class. You get to the 
point in the class when it’s time to discuss Western European history. Your professor 
says, “I want each of you to buy my new book Western European History: The 30th Cen-
tury. Come prepared for an exam on the first five chapters in two weeks.”

You would probably look around the room, wondering if what you just heard was 
correct and ask a fellow student, “Did he just say thirtieth century history?”

Common sense tells you that without time machines, it is impossible to read a 
factual account of future events—they haven’t happened yet! Sure, there are predic-
tors and indicators that suggest what might happen, but nothing is certain. This then 
begs the question: If this approach is wrong for a university class that may reach a few 
thousand, why is the exact same approach accepted when developing software that has 
the potential to reach millions?

Before we’ve begun any work on a project, we are often asked for exact details as to 
what will be delivered, by when, and at what cost. To determine these things, teams of-
ten write volumes of documents detailing how the system will work, the interfaces, the 
database table structures—everything. They are, in essence, writing a history of things 
that have yet to occur. And it’s just as ludicrous for a software team to do it as it would 
be for your history professor.
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That doesn’t mean we should abandon documents, and it doesn’t mean that we 
should leave everything until the end, either. A certain amount of documentation is 
essential at each stage of a project. Up front, we use specifications or user stories to 
capture ideas and concepts on paper so that we can communicate project goals and 
strategies. When we sign off on these plans, we agree that what we have documented is 
the right thing to do.

The question, then, is not whether we should document, but what we should doc-
ument and when. The answer has everything to do with necessity, volatility, and cost.

Why Do We Document?

Every project needs a certain amount of documentation. In a 1998 article on Salon.com 
titled “The Dumbing-Down of Programming,” author Ellen Ullman notes how 
large computer systems “represented the summed-up knowledge of human beings” 
[ ULLMAN]. When it comes to system documentation, we need to realize that we’re 
not building or writing for us; we are writing for the future. I think Ullman summa-
rizes it best with this snippet from the same article:

Over time, the only representation of the original knowledge becomes the code 
itself, which by now is something we can run but not exactly understand. It has 
become a process, something we can operate but no longer rethink deeply. Even if 
you have the source code in front of you, there are limits to what a human reader 
can absorb from thousands of lines of text designed primarily to function, not to 
convey meaning. When knowledge passes into code, it changes state; like water 
turned to ice, it becomes a new thing, with new properties. We use it; but in a hu-
man sense we no longer know it.

Why is Ullman’s concept of code as a process that changes state important? Be-
cause we need to realize that, in a human sense, we use the system and we know the 
system. That is why we document.

So, what is essential to document, and what is needless work? Much of that de-
pends on the type of system you are building and the way in which you work. Teams 
that are colocated need to document less than do teams distributed across continents 
and time zones. Teams that are building banking systems need to satisfy more regula-
tory requirements than do teams building marketing websites. The key is to document 
as much as you need and nothing more.

What Do We Document?

The list of essential documents is different for every project. Going through my list of 
past projects, some frequent documentation items include the following:

 � End-user manual
 � Operations user guide
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 � Troubleshooting guide
 � Release and update manual
 � Rollback/failover manual
 � User stories and details
 � Unit tests
 � Network architecture diagram
 � Database architecture diagram
 � System architecture diagram
 � Acceptance test cases
 � Development API manual
 � Threat models
 � UML (Unified Modeling Language) diagrams
 � Sequence diagrams

We didn’t write all these documents before the project began. And we didn’t wait 
until the final sprint to start them either. We did them as the information became 
available. Many of the user stories, for instance, were written up front. But some of 
them were changed, and others were added as the project progressed and requirements 
became clearer. Our unit tests were written as we coded. And at the end of every sprint, 
we updated the end-user manual to reflect new functionality. We included in our defi-
nition of done what we would document and when we would write it (see Chapter 7, 
“How Do You Know You’re Done?”).

When and How Do We Document?

So, if we don’t do it all up front and we don’t save it all for the end, how does documen-
tation happen in an agile project? Documentation, any documentation, costs money. 
The more time it takes to write and update, the more it costs. What agile projects strive 
to do is minimize write time, maintenance time, rework costs, and corrections.

Let’s look at a few approaches we can take when documenting our projects:

 � Document heavily in the beginning.
 � Document heavily in the end.
 � Document as we go along.

Document Heavily in the Beginning
Traditional projects rely on early documentation. As you can see from the diagram in 
Figure 27-1, a typical waterfall team must capture requirements, build a project plan, 
document the system architecture, write test plans, and do other such documentation 
at the beginning of the project. If we were to overlay a line that represented working 
software, it would not begin to move up until the gray line started to flatten.
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The benefit of this approach is that people feel more secure about the system being 
built. The major drawback is that this sense of security is misleading. In point of fact, 
though a great deal of time, effort, and money has gone into writing the documents, 
no working software has yet been created. The chances of getting everything right up 
front are marginal on stable projects and next to zero on volatile projects. That means 
factoring in costly rework and extra time. Chances are good that these high-priced, 
feel-good documents will turn into dusty artifacts on the project bookcase.

Document Heavily at the End
When we document heavily at the end, we document as little as possible as the soft-
ware is developed and save all the material needed to release, sustain, and maintain the 
system over time until the end of the project. Figure 27-2 illustrates this approach.

The benefits of this approach are that working software is created quickly and that 
what is eventually written should reflect what the system does.

There are many problems with this approach. People often forget what was done 
and when, and what decisions were made and why. Team members on the project at 
the end are not necessarily the people on the project in the beginning; departing team 
members take much of their knowledge with them when they go. After the code for 
a project is complete, there is almost always another high-priority project that needs 
attention. What usually happens is that most of the team members move on to the 
new project, leaving the remaining team members to create the documentation for the 
system by themselves. Countless hours are spent hunting for data and trying to track 
down and access old team members, who are busy with new work and no longer have 
time for something “as insignificant as documentation.”

FIGURE 27-1 Traditional project with up-front documentation
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Though saving documentation until the end is cheaper in the beginning because 
more time is spent on actual software development, it is usually expensive in the end 
because it can hold up a release or cause support and maintenance issues, as it will 
likely contain gaps and faulty information.

Document as We Go Along
Agile projects do things differently. We acknowledge that while we can’t know every-
thing up front, we do want to know some things. We also maintain that documenta-
tion should be part of each story’s definition of done, so that it is created, maintained, 
and updated in real time, as part of the cost of creating working software. Figure 27-3 
illustrates the document-as-we-go approach.

FIGURE 27-2 Documenting heavily at the end of the project
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FIGURE 27-3 Documenting as you go

early in the project late in the projecttime

e
f
f
o
r
t

definition of done reqs



  The Model 321

The product owner works with the stakeholders and customers to build the re-
quirements while the team works with the product owner to achieve emergent de-
sign and architecture. The team keeps the code clean, creates automated tests, and uses 
code comments and other tools to slowly build other required documentation for the 
system, such as the user manuals, operations guide, and more.

The one drawback is that it does take a little longer to code when you document 
as you go than it would to fly through the code without having to write a comment or 
update an architectural diagram. This drawback is more than offset, though, by the 
benefits. There is less waste, less risk of eleventh-hour holdups, and more emphasis on 
working software. Much of the documentation is updated automatically as changes 
are made to the code, reducing maintenance and rework costs. Just as news reports 
capture the details of a story for posterity, real-time documentation of decisions and 
behavior minimizes gaps in knowledge and creates a living history of the software for 
future teams and projects.

Documenting in an Agile Project

So, we agree that in most cases, agile teams will want to document as they go. What 
exactly does that look like on a typical software project? To illustrate, let’s use a docu-
ment that is familiar to almost everyone: the user manual. A waterfall approach would 
be to write the entire manual at the end. We’ve discussed why this method is a work-
able but risky solution. The more agile way to approach a user manual is to include 
“update the user manual” as one of the acceptance criteria for a story that has to do 
with user-facing functionality. By doing that, the manual is updated each time work-
ing software is produced.

Let’s say, for example, that I’m writing the user manual for an update to Adobe 
Lightroom (my current favorite piece of software). I’m in sprint planning, and the 
product owner explains that the story with the highest priority is “As an Adobe Light-
room user, I can export a series of photographs to Adobe Photoshop so I can stitch 
them together to make a panorama.” As we’re talking through that story, I recommend 
that we add “update user manual to reflect new functionality” as one of the acceptance 
criteria for that story.

As I write the code or as I finish the feature, I would also edit a document that 
provides the user instructions on how to use the feature. Depending on how stable 
the feature is, I might even include screenshots that walk the user through the instruc-
tions for both Lightroom and Photoshop. If the feature is less stable, meaning the core 
components are built but the user interface team is still hashing out the user inter-
face through focus groups, I would document the behavior but probably only include 
placeholders for the screenshots. The key here is that the story would not be done until 
the user manual is updated.

Updating the user manual would be appropriate to do at the story level, as I de-
scribed, but could also be accomplished at the sprint level. For instance, if we have 
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several stories that revolve around user-facing functionality, we might add a story dur-
ing sprint planning that says, “As a user, I want to be able to learn about all the new 
functionality added during this sprint in my user manual.”

What I am doing is balancing stability versus volatility of the feature to determine 
how deep I go and when. It would not, for example, be prudent to make updating the 
user manual part of the definition of done for a task. Too much might change before 
the story is complete. Nor would it be acceptable to wait to update the user manual 
until right before a release. That’s far too late to start capturing the details of the new 
behaviors.

When determining when to document your own systems, you also should balance 
cost, volatility, and risk. (For more on determining your definition of done, refer to 
Chapter 7.)

Starting Projects without Extensive Documentation

One challenge you will face is to help stakeholders and customers understand why you 
are not documenting everything up front. Tell them a story similar to the one Carter 
told at the beginning of this chapter (or share that story with them). Remind them 
that while documenting heavily up front drives down the perceived risk, you never 
know what you don’t know until a working solution is in place.

Eschewing extensive documentation up front does not mean you are off the hook 
for a project signoff piece. But it does mean that the piece will look different to your 
stakeholders than it has on other projects. Rather than give them the specific artifacts 
they request, answer the questions they are asking in regard to schedules and require-
ments in the most lightweight way possible for your project and situation. A PMO 
might, for instance, ask for a Microsoft Project plan, but what the PMO really wants to 
know is what will be done by about when. By the same token, a stakeholder might ask 
you for a detailed specification, when what she really wants to know is, “Are you and I 
on the same page with regard to what I’m asking you to do?”

Signoff and approval will occur early and often. The product owner will hold 
many story workshops to build the product backlog, work with the team to build the 
release plan, and then communicate that information to all interested parties, solicit-
ing enough feedback to ensure that the team will deliver what the stakeholders had in 
mind (which is rarely exactly what they asked for). The documents the product owner 
uses for these tasks are only a mode of transportation for ideas and concepts, and a 
document is not the only way to transfer those ideas. Up-front documentation can just 
as easily take the form of pictures of whiteboard drawings, sketches, mockups, and the 
like—it does not need to be a large formal document.

The beginning of the project is when you know the least about what you are build-
ing and when you have the most volatility. What your stakeholders need is the peace 
of mind that comes from knowing you understand what they need and can give them 
some idea of how long it will take to deliver. Expend the least amount of effort possible 
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while still giving them accurate information and reassurance. At this point in the proj-
ect, everything can and will change.

Keys to Success

The keys to success are simple:

 � Decide—Determine what you need to document for your project and when 
it makes the most sense to produce that documentation. Some things, such as 
code comments, are easy to time. Other items, such as threat models, are more 
difficult. Work as a team with your product owner to determine the must-have 
documents at each stage of your project.

 � Commit—Once you have a documentation plan, stick to it. Put it in your 
definition of done. Hold yourselves accountable. Documentation is never fun, 
even when it’s broken into small chunks. Remind your team that a little bit of 
pain will eliminate a great deal of risk come release time.

 � Communicate—If this is the first project to move forward without extensive 
up-front documentation, the stakeholders will be nervous. Help them out, 
especially at the beginning of the project, by sending frequent updates, pic-
tures of whiteboards, and any other documents that are produced. Do as your 
math teacher always told you: show your work. Seeing working software and 
physical artifacts goes a long way toward calming the fears of even the most 
anxious executives.

 � Invest in automation—Documentation is easier and ultimately cheaper if you 
invest a little time in automating either the system or the documentation itself. 
For example, if you can create an automated script to compile all the code 
comments and parse them into documentation, you’ve saved a manual step 
and instantly made your documentation more in sync with the actual code. 
It’s also much easier to document acceptance test results and API documents 
automatically than it is to do it manually. On the flip side, you might find that 
automating the features themselves can save you a lot of documentation work. 
For example, a manual installation process might require a 40-page installa-
tion guide; an automated installation process, on the other hand, probably 
needs only a one-page guide and is better for the end user as well. Whenever 
possible, automate either your documentation or the features it supports. The 
results are well worth the investment.

Being agile does not equate to no documentation; it means doing timely, accurate, 
responsible documentation. Make sure that documentation is equally represented in 
your team’s definition of done alongside things like code and automation. Remem-
ber that when change happens, it’s not just the code that changes—the entire software 
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package that you are delivering changes, documentation included. Lastly, remember 
that as much as you might wish otherwise, documentation is a part of every software 
project. When you do a little at a time and automate as much as possible, you’ll find 
that while it’s still an obligation, it’s not nearly as much of a chore.
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Product owner role
canceling the sprint, 259–260
combining with other roles, 75–77
definition, 428
estimating team velocity, 57
responsibilities, 73
risk management, 421, 423

Progress reporting. See Daily Scrum meetings; 
 Retrospective meetings; Sprint review meet-
ings; Value, optimizing and measuring.

Project contracts, 360–361
Project management

duties mapped to roles, 74–75
successful outsourcing, 335–336
true costs of outsourcing, 329–330

Project portfolios, prioritizing, 414–416
Projects

anarchic, 14
complex, 14
complicated, 14
cost estimation. See Estimating project cost.
duration, sprint length, 85–86
ranking complexity, 14
simple, 14
size and complexity, estimating team velocity, 

57
technology and requirements, 14



  Index 443

Promiscuous pairing, 225–227
Provost, Peter, 224, 227–228
Punctuality, daily Scrum meeting, 209
Putnam, Lawrence, 45

Quality. See Value.
Questions, daily Scrum meetings

fourth question, 217–221, 432
keys to success, 220–221
standard three questions, 432
a story, 217–220

Questions, sprint retrospective meetings, 
433–434

Quiz for determining sprint length, 88–90

Rambling, in daily Scrum meetings, 210–211
Range, Estimate, Focus, Learn, Effort, Communi-

cation, Team (REFLECT), 393–394
Ranges and changes model for contracts. See 

 Contracts, ranges and changes model.
Ranges in estimates. See Story points.
Rants, retrospective meetings, 194
Rate-limiting paths. See Critical paths.
Rating the sprint, retrospective meetings, 200
Real data, estimating team velocity, 61–64
Rebellion, team culture, 247–249
Refactoring old code, 13, 125–126
Reference stories, 303
REFLECT (Range, Estimate, Focus, Learn, Effort, 

Communication, Team), 393–394
Relative estimates

in cost estimation, 307–308
Fibonacci sequence, 59, 303

Release planning
contractual agreement, 360
degree of confidence, 148–151
delivering working software, 155–156
determining the end game, 153–154
estimating project costs, 309–310
inputs, 147–148
keys to success, 154–155
maintaining the plan, 151–152
outcomes, 153–154
a preliminary release plan, 147–148
prioritizing work items, 155
project cost, 152–153
refining estimates, 155
Scrum planning, 155–156
a story, 143–146
updating the plan, 155

Removing impediments, role of the ScrumMaster, 
113

Reporting
progress. See Daily Scrum meetings; Retrospec-

tive meetings; Sprint review meetings; 
Value, optimizing and measuring.

team performance, role of the ScrumMaster, 113
Resolving problems, role of the ScrumMaster, 113
Respect, Scrum value, 8
Retreatism, team culture, 247–249
Retrofitting legacy systems, 182
Retrospective meetings

attendance, 198
basic principles, 201
benefits of, 196–197
“Buy a Feature” game, 199
communication, 197
data collection, 198–199
description, 433–434
due diligence, 196–197
ground rules, 198
importance of, 200–201
keys to success, 200–201
physical environment, 197–198
planning, 197–198
prioritizing issues, 194–195, 199–200
purpose of, 200–202
rants, 194
rating the sprint, 200
role of the ScrumMaster, 198–199
running, 198–200
scheduling, 201–202
standard two questions, 433–434
standing versus sitting, 197
a story, 193–196
successful outsourcing, 334
team consultants, 47
timing, 197

Review meetings. See Sprint review meetings.
Rework, delivering working software, 285–286
Rhythm, daily Scrum meeting, 209–210
Risk management

adding team members, 239
core team, 423–424
customer risk, 421, 423
keys to success, 424–425
prioritizing, 283, 429–430
product owner, 421, 423
by role, 422
ScrumMaster, 423
social risk, 423
a story, 419–420
technical risk, 423–424
typical software project risks, 420–421
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Ritualism, team culture, 247–249
ROI cutoff, 363
Roles

choosing, 74–75
descriptions, 428–429.  See also specific roles.
key competencies, 74–75
keys to success, 78–79
mapped to project manager duties, 74–75
mixing, 75–78
a story, 69–72

Rothman, Johanna, 171
Roughly right versus precisely wrong, 307

Satir, Virginia, 15
Satir’s Stages of Change, 15–17
Scenarios. See Stories.
Scheduling. See also Done, defining.

daily Scrum meeting, 208–209
retrospective meetings, 201–202
undone work, 101

Schwaber, Ken, 7, 23, 92, 272, 431
Screening candidates. See Immersive interviewing, 

candidate screening.
Scrum

artifacts, types of, 429–431.  See also specific 
artifacts.

definition, 6–7
evaluating your need for, 13–14
getting started. See Implementing Scrum.
planning, 155–156.  See also Release planning.

Scrum Emergency Procedures, 257
Scrum framework, successful outsourcing, 

333–334
Scrum meetings, types of, 431–434. See also specific 

meetings.
Scrum roles. See Roles.
Scrum values

commitment, 8
courage, 8
focus, 8
openness, 8
respect, 8

ScrumMaster
combining with other roles, 75–77
definition, 428
responsibilities, 73
in retrospective meetings, 198–199
risk management, 423
rotating among team members, 79

ScrumMaster, as full-time job
breaking up fights, 113
day-to-day tasks, 112–114
driving organizational change, 115

educating the organization, 115
employee costs, 109–112
facilitating team activities, 114
helping out, 114
impact on the team, 106–112
key functions, 104
managing people, 113
removing impediments, 113
reporting team performance, 113–114
resolving problems, 113
servant leadership, 114
a story, 103–106

Senior-level people, interviewing, 402–403
Sense of urgency, enlisting support for Scrum, 

30–31
Servant leadership, role of the ScrumMaster, 114
Shippable code. See Potentially shippable code.
Shore, James, 129
Shortening sprints, 377–378
Short-term wins, enlisting support for Scrum, 33
Simple projects, technology and requirements, 14
Size

core teams, 45–46
team consultant pools, 45–46
user stories, 301–305, 307–308

Skills and competencies
core teams, 42–43
focusing interviews on competencies, 405
immersive interviewing, 400, 405–406
key competencies for roles, 74–75
team consultants, 42–43
testing competencies in new team members, 234, 

237–238
Slides

a story, 184–186
template for, 187–188

Sliger, Michele, 372
Social deviance, team culture, 246
Social risk, 423
Software development. See Projects.
SOLID class design principles, 126
Sorting issues, definition of done, 98–100
Spikes, 293–294
Sponsors, enlisting support for Scrum, 31
Sprint backlog, 430–431. See also Product backlog.
Sprint length

choosing, 84–85, 88–90
company culture, 86
criteria for, 84–85
customer group, 86–87
decomposing tasks, 87
in excess of one month, 92
extending, 92
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guidelines for, 88–90
keys to success, 91–92
product owner environment, 86–87
project duration, 85–86
quiz for determining, 88–90
Scrum team, 87
shortening, a story, 370
stakeholder group, 86–87
a story, 81–84
two weeks, a story, 370
warning signs, 90

Sprint retrospective meetings. See Retrospective 
meetings.

Sprint review meetings. See also Daily Scrum 
meetings.

description, 433
documenting decisions, 189–190
duration, 187
encouraging participants, 190
keys to success, 188–190
overview, 186–187
planning, 189
preparing for, 187–188
running, 188
stories, customer acceptance, 190
a story, 183–186
successful outsourcing, 334
team consultants, 47

Sprint review meetings, PowerPoint slides
a story, 184–186
template for, 187–188

Sprints
canceling, 259–260
cost. See Estimating project cost.
preconditions for, 295–296
rating during retrospective meetings, 200
reducing scope, 258–259
removing impediments, 258
shortening, 377–378
two-week, 377–378

Stability versus volatility, documentation, 322
Stacey, Ralph, 14
Stakeholders

educating, 298
meetings, legacy systems, 180–181
prioritizing and estimating product backlog, 

343–346
sprint length, 86–87

Standing versus sitting
daily Scrum meeting, 214
retrospective meetings, 197

Standup meetings. See Daily Scrum meetings.
Sterling, Chris, 13

Stories
collaboration, estimating tasks, 367–371
contracts, 349–353
core hours, 135–138
core teams, 35–39
creating and estimating, contractual agreement, 

359
daily Scrum meetings, 205–208
decomposing. See Decomposing stories.
decomposing tasks. See Decomposing tasks.
defect management, 169–170
defining done, 93–95
definition, 160, 292
delivering working software, 277–281
documentation, 313–316
emergency procedures, team options, 255–257
enlisting support of people, 23–29
gaining customer acceptance, 190
hierarchy of, 160
implementing Scrum, 1–6
legacy systems, 175–177
meetings, 1–6
pair programming, 223–225
planning, 1–6
potentially shippable code, 277–281
PowerPoint slides, 184–186
product backlog, prioritizing and estimating, 

339–341
project cost, estimating, 301–305
questions, daily Scrum meetings, 217–220
reference, 303
reference, decomposing, 59
release planning, 143–146
retrospective meetings, 193–196
roles, 69–72
ScrumMaster, as full-time job, 103–106
slides, 184–186
sprint length, 81–84, 370
sprint review meetings, 183–186
sustainable pace, 265–269
sustained engineering, 175–177
task boards, 370
Task Poker, 369–370
tasks, estimating, 367–371
TDD (Test-Driven Development), 119–123
team consultants, 35–39
team culture, 241–246
team members, adding, 233–235
team velocity, estimating, 51–56
value, optimizing and measuring, 289–291

Stories, estimating project cost
cards, 306–307
confirmation, 307
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Stories, estimating project cost, continued
conversations, 307
creating, 307–308
prioritizing, 308
sizing, 301–305, 307–308
team velocity, 308–309
three C’s, 307

Storming, stage of team development, 235–237
Story points

advantages of, 387
data collection, 391
data-based improvements, 391–393
estimates becoming commitments, 387
estimates in ranges, 385–386, 388–391
keys to success, 391–393
REFLECT (Range, Estimate, Focus, Learn, Effort, 

Communication, Team), 393–394
relation to hours, 393
a story, 383–386

Strain theory, team culture, 246–251
Strangler applications, legacy systems, 182
Sustainable pace

burndown charts, 273–274
burnout, 269–275
cycle time, 272
definition, 12
efficiency versus effectiveness, 274–275
hitting the wall, 267–269
increasing team time, 274
keys to success, 274–275
monitoring progress, 273–274
shortening iterations, 272
a story, 265–269

Sustained engineering. See also Legacy systems.
daily releases and standups, 180
goal planning, 180
keys to success, 181–182
retiring the legacy system, 182
retrofitting legacy code, 182
stakeholder meetings, 180–181
a story, 175–177
strangler applications, 182
tribal knowledge, 176

Sustained engineering models
data gathered over time, 179
dedicated team, 179–182
dedicated time, 178

Sutherland, Jeff
burndown, 273, 431
contractual deliverables, 361
estimating team velocity, 57
on legacy code, 181
contracts, 358

Scrum description, 7
Scrum Emergency Procedures, 257
termination clauses, 363

Tabaka, Jean, 114
Task boards

in collaboration, 378–380
a story, 370

Task Poker
common mistakes, 380
versus Planning Poker, 371
a story, 369–370
for task estimation, 380
team-level benefits, 380

Task Poker, keys to success
averaging task estimates, 381
hearing every voice, 380
investment in the outcome, 381
shared understanding, 381
task estimation, 380
task granularity estimates, 381
teamwork, 382

Task switching, 374
Tasks, decomposing

estimating task sizes, 164–167
example, 164–167
granularity, 167
sprint length, 87
a story, 157–159

Tasks, definition, 160
Tasks, estimating. See also Task Poker.

ATL (active task limit), 373–377
in collaboration. See Collaboration, estimating 

tasks.
granularity, 381
open items, limiting, 373–377
pair programming, 373
relative sizing and time estimation, 372
shortening sprints, 377–378
a story, 367–371
task boards, 378–380
task switching, 374
two-week sprints, 377–378
WIP (work in progress), limiting, 374–377
work items, limiting, 373–377

Taxes on team performance, 292–293
TDD (Test-Driven Development)

acceptance tests, 129–131
automated integration, 129–131
benefit in teams, 124–125
benefits of, 133
building into the product backlog, 132
code smells, 125–126
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continuous integration, 126–128
definition, 13
definition of done, 132
education in, 132
getting started, 132
implementing, 124–125
improving existing code, 125–126
key practices, 123
keys to success, 131–133
limitations of, 131–132
pair programming, 128–129
principles of class design, 126
refactoring, 125–126
a story, 119–123
team buy in, 132
team status, 127–128
test automation pyramid, 129
training and coaching, 132–133

Team consultants
accountability, 47–48
building your team, 42–47
versus core teams, 43–44, 46, 49.  See also Core 

teams.
establishing a pool, 40–42
keys to success, 47–49
management support, 48
meetings, 46–47
optimal pool size, 45–46
overloading, 49
overview, 39–40
planning for downtime, 49
skills and competencies, 42–43
small-scale experiments, 48
a story, 35–39
time management, 37–39
transition plans, 40–41

Team members
bus factor, 214
combining with other roles, 75–77
expendability, 214
rotating the ScrumMaster role, 79

Team members, adding. See also Outsourcing.
Brooks’ law (adding manpower to late projects), 

45, 233
considering team culture, 238
developmental stages, 235–237
drop in velocity, 238
forming, 235–237
group cohesion, 329
integrating new members, 234, 237–238
keys to success, 238–239
norming, 235–237
pair programming, 234

performing, 235–237
risks, 239
storming, 235–237
a story, 233–235
testing competencies, 234, 237–238

Team velocity
contractual agreement, 360
definition, 51
estimating. See Estimating team velocity.
estimating project cost, 308–309
penalty for adding team members, 238
a story, 51–56

Teams. See also Collaboration; Core teams; 
People.

auxiliary. See Team consultants.
building, successful outsourcing, 332–333
buy in to TDD, 132
capacity, estimating team velocity, 59–60
colocated, 138–140
dedicated. See Core teams.
definition, 428–429
distributed, 140–141
long-term retention, true costs of outsourcing, 

329–330
newness, estimating team velocity, 57
optimal size, 35
part-time, 141–142
prioritizing and estimating product backlog, 

342–343
reporting performance, role of the ScrumMaster, 

113–114
sprint length, 87
status reporting, 127–128
taxes on performance, 292
work schedules. See Core hours.

Teamwork, daily Scrum meeting, 214–215
Technical debt, 294–295
Technical risk, 423–424
Test first. See TDD (Test-Driven Development).
Test-Driven Development (TDD). See TDD 

( Test-Driven Development).
Testing. See also TDD (Test-Driven Development).

automation pyramid, TDD, 129
competencies of new team members, 234, 

237–238
frequent, effects on defects, 171

Themes
decomposing, 162–163, 167
definition, 160

Three C’s of user stories, 307
Time frame for implementing Scrum, 18
Time limits, prioritizing and estimating product 

backlog, 347
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Time management
relative sizing and time estimation, 372
team consultants, 37–39

Time zones, true costs of outsourcing, 332
Timeline, contractual agreement, 359–360
Timing

contractual agreement, 356–358
retrospective meetings, 197

Traditional contracts. See Contracts, traditional 
model.

Training and coaching. See Educating.
Transition plans

team consultants, 40–41
true costs of outsourcing, 328–329

Transparency, 292–294
Travel requirements, successful outsourcing, 335–336
Trends, determining, 298–299
Tribal knowledge, 176
Truncated data collection, estimating team velocity, 

64–65
Trust factor in contracts, 363
Tuckman, Bruce, 235–238
Two-week sprints, in collaboration, 377–378

Ullman, Ellen, 317
Undone work, rescheduling, 101
User stories. See Stories.
User types (personas), identifying, 359

Vagueness, daily Scrum meeting, 212
Validation, delivering working software, 283–284
Value, optimizing and measuring

defect management, 295
determining trends and patterns, 298–299
educating stakeholders, 298
feature work, 292–294
keys to success, 297–299
preconditions, 295–296
presenting data, 296–297

spikes, 293–294
stories, definition, 292
a story, 289–291
structuring data, 296
taxes on team performance, 292
technical debt, 294–295
transparency, 292–294

Values, Scrum
commitment, 8
courage, 8
focus, 8
implementing Scrum, 7–8
openness, 8
respect, 8

Valve Software, hiring practices, 404–405, 406
Velocity. See Team velocity.
Vision, enlisting support for Scrum, 31

Wagner, Anthony D., 374
Wait and see (real data) method, estimating team 

velocity, 61–64
Wall, hitting, 267–269
Wheelwright, Steven, 374
Williams, Laurie, 128, 129, 223
Wilson, Brad, 227
Wilson, Peter, 227
Window of opportunity, delivering working soft-

ware, 283
WIP (work in progress), limiting during task esti-

mation, 374–377
Work items, limiting in collaboration, 373–377
Work packages, 330, 333, 335
Workload estimation. See Burndown.

XP (Extreme Programming)
implementing Scrum, 12–13
practices required for Scrum, 12–13

Ziv’s law (predicting software development), xx–xxi
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