
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133853629
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133853629
https://plusone.google.com/share?url=http://www.informit.com/title/9780133853629
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133853629
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133853629/Free-Sample-Chapter

THE SCRUM FIELD GUIDE
SECOND EDITION

The Addison-Wesley Signature Series provides readers with practical and authoritative

information on the latest trends in modern technology for computer professionals.

The series is based on one simple premise: Great books come from great authors.

Titles in the series are personally chosen by expert advisors, world-class authors in

their own right. These experts are proud to put their signatures on the covers, and

their signatures ensure that these thought leaders have worked closely with authors to

signatures also symbolize a promise to our readers: You are reading a future classic.

Visit informit.com/awss for a complete list of available products.

The Addison-Wesley Signature Series
Kent Beck, Mike Cohn, and Martin Fowler, Consulting Editors

Make sure to connect with us!
informit.com/socialconnect

http://www.informit.com/awss
http://www.informit.com/socialconnect
http://www.informIT.com

THE SCRUM FIELD GUIDE
SECOND EDITION

Agile Advice for Your First Year and Beyond

Mitch Lacey

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

Sao Paulo • Sidney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training goals,
marketing focus, or branding interests), please contact our corporate sales department at corpsales@
pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2015955194

Copyright © 2016 Mitchell G. Lacey

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, request forms and the appropriate contacts within the
Pearson Education Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-385362-9
ISBN-10: 0-13-385362-4
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, December 2015

http://www.pearsoned.com/permissions/
http://www.informit.com/aw

This book is dedicated to two teams; The first team is my family.
My wife, Bernice, and my kids, Ashley, Carter, and Emma—without their

support and constantly asking “are you done yet?” this book would not
be here. They kept me focused and supported me throughout.

The second team is the group of guys from the Falcon project while
at Microsoft. John Boal, Donavan Hoepcke, Bart Hsu, Mike Puleio,

Mon Leelaphisut, and Michael Corrigan (our boss), thank you for having
the courage to leap with me. You guys made this book a reality.

This page intentionally left blank

 vii

CONTENTS

Foreword by Jeff Sutherland xix

Foreword by Kenneth S. Rubin xxiii

Preface xxv

Acknowledgments xxix

About the Author xxxi

Chapter 1 Scrum: Simple, Not Easy 1

The Story 1
Scrum 6

What Is Scrum? 6
Implementing Scrum 7
When Is Scrum Right for Me? 13
Change Is Hard 15

Keys to Success 17
References 18

PART I GETTING PREPARED 21

Chapter 2 Getting People on Board 23

The Story 23
The Model 29
Change Takes Time 30

Establish a Sense of Urgency 30
Form a Powerful Guiding Coalition 31
Create a Vision/Paint a Picture of the Future 31
Communicate the Vision 31
Empower Others to Act on the Vision 32
Plan for and Create Short-Term Wins 33

viii Contents

Consolidate Improvements 33
Institutionalize New Approaches 33

Keys to Success 33
Be Patient 34
Provide Information 34

References 34
Work Consulted 34

Chapter 3 Using Team Consultants to Optimize Team Performance 35

The Story 35
The Model 39

Establishing a Team Consultant Pool 40
Building Your Team 42

Keys to Success 47
Accountability 47
Experiment 48
Be Cautious of Overloading 49
Plan for Potential Downtime 49
Team Consultants Are Not a Replacement for Dedicated Teams 49

Reference 50
Works Consulted 50

Chapter 4 Predicting Team Velocity 51

The Story 51
The Model 56

The Problem with Historical Data 56
Shedding Light on Blind Estimation 58
Wait and See (Use Real Data) 61
Truncated Data Collection 64

Keys to Success 65
References 67

Chapter 5 Implementing the Scrum Roles 69

The Story 69
The Model 73

Choosing Roles 74
Mixing Roles 74
When, Not If, You Decide to Mix Roles Anyway 78

Keys to Success 78

 Contents ix

Chapter 6 Determining Sprint Length 81

The Story 81
The Model 84

Project Duration 85
Product Owner and Stakeholders 86
Scrum Team 87
Determining Your Sprint Length 88
Be Warned 90
Beyond the Quiz 91

Keys to Success 91
Sprints Longer than One Month 92
Extending Sprint Length 92

Reference 92

Chapter 7 How Do You Know You’re Done? 93

The Story 93
The Model 95

Introduction 96
Brainstorming 96
Categorization 97
Sorting and Consolidation 98
Creation and Publishing 100
What about “Undone” Work? 101

Keys to Success 101
References 102

Chapter 8 The Case for a Full-Time ScrumMaster 103

The Story 103
The Model 106
Keys to Success 112

Remove Impediments/Resolve Problems 113
Break Up Fights/Act as Team Mom 113
Report Team Data 113
Facilitate and Help Out Where Needed 114
Educate the Organization and Drive Organizational Change 115
In Summary 115

References 116
Work Consulted 116

x Contents

PART II FIELD BASICS 117

Chapter 9 Why Engineering Practices Are Important in Scrum 119

The Story 119
The Practices 123

Implementing Test-Driven Development 124
Refactoring 125
Continuous Integration and More Frequent Check-Ins 126
Pair Programming 128
Automated Integration and Acceptance Tests 129

Keys to Success 131
Not a Silver Bullet 131
Starting Out 132
Get the Team to Buy In 132
Definition of Done 132
Build Engineering into Product Backlog 132
Get Training/Coaching 132
Putting It Together 133

References 133
Works Consulted 134

Chapter 10 Core Hours 135

The Story 135
The Model 138

Colocated Teams 138
Distributed and Part-Time Teams 140

Keys to Success 142

Chapter 11 Release Planning 143

The Story 143
The Model 147

Sketch a Preliminary Release Plan 147
Consider Degree of Confidence 148
Maintaining the Release Plan throughout the Project 151
Project Cost 152
Determining the End Game 153

Keys to Success 154
Communicate Up Front and Often 155
Update the Release Plan after Every Sprint 155
Try to Do the Highest-Priority Items First 155

 Contents xi

Refine Estimates on Bigger Items 155
Deliver Working Software 155

Reference 156

Chapter 12 Decomposing Stories and Tasks 157

The Story 157
The Model 159

Setting the Stage 160
Story Decomposition 161
Task Decomposition 164

Keys to Success 167
References 168
Works Consulted 168

Chapter 13 Keeping Defects in Check 169

The Story 169
The Model 170
Keys to Success 172

Additional Information 173
References 173
Work Consulted 174

Chapter 14 Sustained Engineering and Scrum 175

The Story 175
The Model 178

Dedicated Time Model 178
Data Gathered over Time 179
Dedicated Team Model 179

Keys to Success 181
Cycle Dedicated Maintenance Team Members 181
Retrofit Legacy Code with Good Engineering Practices 182
In the End 182

References 182

Chapter 15 The Sprint Review 183

The Story 183
The Model 186

Preparing for the Meeting 187
Running the Meeting 188

xii Contents

Keys to Success 188
Take Time to Plan 189
Document Decisions 189
Ask for Acceptance 190
Be Brave 190

Works Consulted 191

Chapter 16 Retrospectives 193

The Story 193
The Practice 196

Give Retrospectives Their Due Diligence 196
Plan an Effective Retrospective 197
Run the Retrospective 198

Keys to Success 200
Show Them the Why 201
Build a Good Environment 201
Hold Them When You Need Them 201
Treat Retrospectives Like the First-Class Citizens They Are 202

References 202

PART III FIRST AID 203

Chapter 17 Facilitating a Productive Daily Scrum 205

The Story 205
The Model 208

Time of Day 208
Start and End on Time 209
Expose Hidden Impediments 212
End with the Beginning in Mind 212

Keys to Success 213
Keep the Meeting Cadence 213
Stand—Don’t Sit 214
Work as a Team 214
Be Patient 215

Chapter 18 The Fourth Question in Scrum 217

The Story 217
The Model 220
Keys to Success 221
Reference 221

 Contents xiii

Chapter 19 Keeping People Engaged with Pair Programming 223

The Story 223
The Model 225

Promiscuous Pairing 225
Micro-Pairing 227

Keys to Success 230
References 231

Chapter 20 Adding New Team Members 233

The Story 233
The Model 235

The Exercise 237
Keys to Success 238

Accept the Drop in Velocity 238
Choose Wisely 239
Risky Business 239

References 239

Chapter 21 When Cultures Collide 241

The Story 241
The Model 246
Keys to Success 251

Control Your Own Destiny 251
Work with What You Have 252
Stay the Course 253

References 254
Works Consulted 254

Chapter 22 Sprint Emergency Procedures 255

The Story 255
The Model 257

Remove Impediments 258
Get Help 258
Reduce Scope 258
Cancel the Sprint 259

Keys to Success 260
References 261

xiv Contents

PART IV ADVANCED SURVIVAL TECHNIQUES 263

Chapter 23 Sustainable Pace 265

The Story 265
The Model 269

Shorten Iterations 272
Monitor Burndown Charts 273
Increase Team Time 274

Keys to Success 274
References 276

Chapter 24 Delivering Working Software 277

The Story 277
The Model 281

Core Story 281
Number of Users 282
Start with the Highest Risk Element 283
Expand and Validate 283

Keys to Success 284
Change in Thinking 285
Rework 285
Focus on End-to-End Scenarios 286

Work Consulted 287

Chapter 25 Optimizing and Measuring Value 289

The Story 289
The Model 292

Stories 292
Taxes 292
Spikes 293
Technical Debt 294
Other Potential Categories 295
Structuring the Data 296
Using the Data 296

Keys to Success 297
Educate Stakeholders 298
Work with Stakeholders 298
Determine Trends and Patterns 298

Reference 299
Works Consulted 299

 Contents xv

Chapter 26 Up-Front Project Costing 301

The Story 301
The Model 306

Functional Specifications 306
User Stories 306
Estimating Stories 307
Prioritizing Stories 308
Determining Velocity 308
Deriving Cost 309
Build the Release Plan 309

Keys to Success 310
References 311

Chapter 27 Documentation in Scrum Projects 313

The Story 313
The Model 316

Why Do We Document? 317
What Do We Document? 317
When and How Do We Document? 318
Documenting in an Agile Project 321
Starting Projects without Extensive Documentation 322

Keys to Success 323
References 324

Chapter 28 Outsourcing and Offshoring 325

The Story 325
The Model 328

Consider the True Costs 328
Dealing with Reality 330

Keys to Success 332
Choose the Right Offshore Team 332
Allocate the Work in the Least Painful Way 333
Stick with the Scrum Framework 333
Build a One-Team Culture 334
Be Prepared to Travel 335
Have a Project/Team Coordinator 336
Never Offshore When . . . 336

References 337
Work Consulted 337

xvi Contents

Chapter 29 Prioritizing and Estimating Large Backlogs—The Big Wall 339

The Story 339
The Model 342

Team 342
Stakeholders 343

Keys to Success 346
Preplanning Is Essential 346
Focus Discussions and Set Time Limits 347
Use a Parking Lot for Unresolvable Disagreements 347
Bring Extra Cards/Paper for Stories Created in the Room 348
The Big Wall with Remote/Distributed Teams 348
Remind Everyone That Things Will Change 348

References 348

Chapter 30 Writing Contracts 349

The Story 349
The Model 353

Traditional Contracts and Change Orders 353
Timing 356
Ranges and Changes 358

Keys to Success 361
Customer Availability 361
Acceptance Window 362
Prioritization 362
Termination Clauses 363
Trust 363

References 363

PART V WILDERNESS ESSENTIALS 365

Chapter 31 Driving to Done through Collaboration 367

The Story 367
The Model 371

Task Poker 371
Pair Programming 373
Limit Open Work Items 373
Two-Week Sprints 377
Creating Visibility with a Task Board 378

Keys to Success 380
Each Voice Is Heard 380
Shared Understanding of the Work 381

 Contents xvii

Every Team Member Is Invested in the Outcome 381
Don’t Average Task Estimates 381
Avoid Excessively Granular Task Estimates 381
Scrum Is Built on Teamwork 382

References 382

Chapter 32 How Story Points Relate to Hours 383

The Story 383
The Model 386

Fear Factor 387
Wide Ranges 388
It’s How, Not How Long 390

Keys to Success 391
Collecting the Right Data 391
Using Data to Make Improvements 391
REFLECT on Story Points 393

References 394

Chapter 33 Immersive Interviewing and Hiring 395

The Story 395
The Model 398

Forecast 398
Hire for the Right Reasons 398
Cost of a Bad Hire 399
Skills, Competencies, or Both 400
How to Hire 400
Candidate Screening 401

Keys to Success 404
Build a Repeatable Hiring Process 405
Focus on Competencies, Not on Questions 405
Skills Are Easy to Learn, Competencies Are Not 405
Find People Stronger than You 406
Understand the Costs and Invest Heavily 406

References 406
Work Consulted 407

Chapter 34 Aligning Incentives with Outcomes 409

The Story 409
The Model 412

Set the Focus 412
Align around Customer Satisfaction 412

xviii Contents

Prioritize and Shift 414
Side Benefits 415

Keys to Success 415
Integrate Sales and Development 416
Stop Sacrificing People and Quality:

Have a Prioritized Project Portfolio 416
Add Dedicated Teams, Not Random People 416
Organization-wide Coordination 417
Executive Support 417

Reference 417

Chapter 35 Risk Management in Scrum 419

The Story 419
The Model 420

Customer Risk: Product Owner 421
Social Risk: ScrumMaster 423
Technical Risk: Development (Core) Team 423
In the End… 424

Keys to Success 424
Let Go 424
Let Agile 425

Works Consulted 425

Appendix Scrum Framework 427
The Roles 428

ScrumMaster 428
Product Owner 428
Development Team 428

The Artifacts 429
The Product Backlog 429
The Sprint Backlog 430
The Burndown 431

The Meetings 431
Planning Meeting 431
Daily Scrum 432
Sprint Review 433
Sprint Retrospective 433

Putting It All Together 434

Index 435

 xix

FOREWORD
by Jeff Sutherland

Mitch and I have worked together for many years training developers in Scrum. Study-
ing this book can help users overcome the biggest challenges that have occurred in re-
cent years as agile practices (75 percent of which are Scrum) have become the primary
mode of software development worldwide.

Ten years after the Agile Manifesto was published, some of the original signatories
and a larger group of agile thought leaders met at Snowbird, Utah, this time to do a
retrospective on ten years of agile software development. They celebrated the success
of the agile approach to product development and reviewed the key impediments to
building on that success. And they came to unanimous agreement on four key success
factors for the next ten years.

1. Demand technical excellence.
2. Promote individual change and lead organizational change.
3. Organize knowledge and improve education.
4. Maximize value creation across the entire process.

Let’s see how Mitch’s book can help you become an agile leader.

Demand Technical Excellence

The key factor driving the explosion of the Internet and the applications on smart-
phones has been deploying applications in short increments and getting rapid feed-
back from end users. This process is formalized in agility by developing products in
short sprints, always a month or less and most often two weeks in length. We framed
this issue in the Agile Manifesto by saying that “we value working software over com-
prehensive documentation.”

The Ten Year Agile Retrospective of the Manifesto concluded that the majority
of agile teams are still having difficulty developing products in short sprints (usually
because the management, the business, the customers, and the development teams do
not demand technical excellence).

Engineering practices are fundamental to software development, and 17 percent
of Scrum teams implement Scrum with XP engineering practices. The first Scrum
team did so in 1993 before XP was even born. It is only common sense to profes-
sional engineers.

xx Foreword by Jeff Sutherland

Mitch says in the first chapter that he considers certain XP practices to be man-
datory—sustainable pace, collective code ownership, pair programming, test-driven
development, continuous integration, coding standards, and refactoring. These are
fundamental to technical excellence, and the 61 percent of agile teams using Scrum
without implementing these practices should study Mitch’s book carefully and follow
his guidance. Neglecting to use these mandatory XP practices is the reason they do not
have shippable code at the end of their sprints!

Mitch’s book contains much more guidance on technical excellence, and agile
leaders, whether they are in management or engineering, need to demand the techni-
cal excellence that Mitch articulates so well.

Promote Individual Change and
Lead Organizational Change

Agile adoption requires rapid response to changing requirements along with technical
excellence. This was the fourth principle of the Agile Manifesto—“respond to change
over following a plan.” However, individuals adapting to change is not enough. Or-
ganizations must be structured for agile response to change. If not, they prevent the
formation of, or destroy, high-performing teams because of failure to remove impedi-
ments that block progress.

Mitch steps through the Harvard Business School key success factors for change.
A sense of urgency is needed. Change is impossible without it. Agile leaders need to
live it. A guiding coalition for institutional transformation is essential. Agile leaders
need to make sure management is educated, trained, on board, and participating in
the Scrum implementation.

Creating a vision and empowering others is fundamental. Arbitrary decisions
and command and control mandates will kill agile performance. Agile leaders need to
avoid these disasters by planning for short-term wins, consolidating improvements,
removing impediments, and institutionalizing new approaches. Agile leaders need to
be part of management or must train management as well as engineering, and Mitch’s
book can help you see what you need to do and how to do it.

Organize Knowledge and Improve Education

A large body of knowledge on teams and productivity is relatively unknown to most
managers and many developers. Mitch talks about these issues throughout the book.

Software Development Is Inherently Unpredictable

Few people are aware of Ziv’s law: Software development is unpredictable. The large
failure rate on projects worldwide is largely due to lack of understanding of this

 Foreword by Jeff Sutherland xxi

problem and the proper approach to deal with it. Mitch describes the need to expect
and adapt to constant change. The strategies in this book help you avoid many pitfalls
and remove many blocks to your Scrum implementation.

Users Do Not Know What They Want until They See
Working Software

Traditional project management erroneously assumes that users know what they want
before software is built. This problem was formalized as Humphrey’s law, yet this law
is systematically ignored in university and industry training of managers and project
leaders. This book can help you work with this issue and avoid being blindsided.

The Structure of the Organization Will Be Embedded in the Code

A third example of a major problem that is not generally understood is Conway’s law:
The structure of the organization will be reflected in the code. A traditional hierar-
chical organizational structure negatively impacts object-oriented design, resulting in
brittle code, bad architecture, poor maintainability and adaptability, along with exces-
sive costs and high failure rates. Mitch spends a lot of time explaining how to get the
Scrum organization right. Listen carefully.

Maximize Value Creation Across the Entire Process

Agile practices can easily double or triple the productivity of a software development
team if the product backlog is ready and software is done at the end of a sprint. This
heightened productivity creates problems in the rest of the organization. Their lack of
agility will become obvious and cause pain.

Lack of Agility in Operations and Infrastructure

As soon as talent and resources are applied to improve product backlog, the flow of
software to production will at least double—and in some cases be five to ten times
higher. This exposes the fact that development operations and infrastructure are crip-
pling production and must be fixed.

Lack of Agility in Management, Sales, Marketing,
and Product Management

At the front end of the process, business goals, strategies, and objectives are often not
clear. This lack of clarity results in a flat or decaying revenue stream even when pro-
duction of software doubles.

For this reason, everyone in an organization needs to be educated about and trained
on how to optimize performance across the whole value stream. Agile individuals need

xxii Foreword by Jeff Sutherland

to lead this educational process by improving their ability to organize knowledge and
train the whole organization.

The Bottom Line

Many Scrum implementations make only minor improvements and find it difficult to
remove impediments that embroil them in constant struggle. Work can be better than
this. All teams can be good, and many can be great! Work can be fun, business can be
profitable, and customers can be really happy!

If you are starting out, Mitch’s book can help you. If you are struggling along the
way, this book can help you even more. And if you are already great, Mitch can help
you be greater. Improvement never ends, and Mitch’s insight is truly helpful.

—Jeff Sutherland
Scrum Inc.

 xxiii

FOREWORD
by Kenneth S. Rubin

In 1988, I was the first employee hired by ParcPlace Systems after the Smalltalk re-
search team was spun out of Xerox PARC (Palo Alto Research Center). Our mission
was to commercialize the use of object-oriented technology. During those early days
of the object-technology movement, we often discussed writing a sort of recipe book
to help companies get started with object technology. The idea was to collect the most
important situations/issues that we saw companies encountering and present them as
a set of patterns or recipes in the format, “If you find yourself in this situation, try do-
ing the following. . . .” We never did write that particular book.

Fast-forward over 20 years to the era of agile development, and Mitch Lacey has
written his own recipe book: a field guide on the topic of Scrum. In it, he shares his
wealth of Scrum experience with companies that are gearing up to use Scrum or those
that are still in the nascent stages of applying it.

I first met Mitch in 2007, shortly after I became the very first managing director
of the worldwide Scrum Alliance. At that time, Mitch was already a Certified Scrum
Trainer (CST) and had been applying Scrum for some number of years both inside
Microsoft, where he was first exposed to Scrum, and later with both large and small
companies as a Scrum trainer and coach.

I could tell from our first meeting that Mitch was passionate about helping people
be successful with Scrum. At that first encounter, he took out his laptop and started
walking me through data he had been collecting. His goal was to reinforce anecdotal
success stories with real data drawn from his experiences. In hindsight, this exchange
was foreshadowing for what was to become The Scrum Field Guide.

When you read this book, you will experience what I did during that 2007 conver-
sation and in numerous discussions and debates I have had with Mitch ever since—
that he has a keen ability to collect and analyze real-world experiences and synthesize
them into actionable advice. You will benefit from this advice in each and every chap-
ter! Each chapter begins with a story that captures the culmination of Mitch’s experi-
ences on a specific topic. I find this technique to be very effective, since I like a good
story and Mitch is quite an effective storyteller. But don’t just stop after reading a
chapter’s intro story! Following each story is an expansion and interpretation of the
concepts presented in the story that amplify the advice being offered.

One thing you will notice while reading this book is that Mitch isn’t trying to teach
you theory. He’s trying to save your bacon. Even the major section names convey this
intent: “Getting Prepared,” “Field Basics,” “First Aid,” “Advanced Survival Techniques,”
and “Wilderness Essentials.” A true field guide indeed!

xxiv Foreword by Kenneth S. Rubin

You also have the benefit of reading the second edition of this book. Mitch has
not been sitting still since the first edition was published in 2012. This new edition
includes updated versions of many of the original chapters as well as five completely
new chapters in the new section “Wilderness Essentials.” These chapters address topics
as diverse as “getting to done,” the relationship of story points to hours, techniques for
interviewing and hiring, how to align incentives with outcomes, and the all-important
topic of managing risk during agile development. If you are already familiar with the
first edition, I am sure you will benefit from the changes and additions Mitch has made
to this latest edition!

It is an honor to have Mitch and The Scrum Field Guide, Second Edition, in the
same book series as my Essential Scrum book: The Mike Cohn Signature Series. I
have high regard for the authors and books in this series. They all pass my litmus test:
“Would I recommend a book in the series to my clients without reservations?” I am
happy to say that I can definitely recommend Mitch’s book!

And, for those readers who are familiar with my book, Essential Scrum: A Practical
Guide to the Most Popular Agile Process, I am confident that you will find my book and
this book to be good complements to one another, even (and especially) where the two
differ on particular issues or approaches. And, apparently, many others agree! A quick
look on Amazon.com at the first edition of The Scrum Field Guide shows that the book
most frequently purchased along with it is my Essential Scrum book. So, like fine wine
and cheese, I hope you enjoy the pairing!

—Kenneth S. Rubin
Managing Principal, Innolution, LLC,

and author of Essential Scrum:
A Practical Guide to the Most Popular Agile Process

 xxv

PREFACE

Welcome to the Second Edition
of The Scrum Field Guide

When I mentioned that I was thinking of updating the original Field Guide, my wife
questioned my sanity. After all, she reminded me, the first book had nearly done me
in. Yet as I reflected on my first effort, I felt that not only did I have more to say, but I
also wanted to adjust some of the content I’d already published. Put simply, I wanted
to refactor, add some new features, and release a 2.0 version. So here we are.

You should still read this book in the same way you did the first edition: Pick a
chapter that addresses a problem you see in your company—and read it. Then go ap-
ply my advice and see what happens.

Agile is a journey. I’ve learned a great deal since the first edition was published in
2012. If you have read this book before, you will immediately see that I have added new
ideas and concepts to the original chapters. Many chapters have been rewritten by more
than 80 percent; others by only 10 percent. You will see a new section: Part V, “Wil-
derness Essentials,” containing additional tips for the field, inspired by my firsthand
experience working with organizations around the globe. These new chapters include
managing risks, interviewing, the fallacy of getting it right the first time, and more.

How This Book Came to Be

When my daughter Emma was born, I felt out of my depth. We seemed to be at the
doctor’s office much more than we had been with our other children. I kept asking my
wife, “Is this normal?” One night, I found my wife’s copy of What to Expect the First
Year on my pillow with a note from her: “Read this. You’ll feel better.”

And I did. Knowing that everything we were experiencing was normal for my
child, even if it wasn’t typical for me or observed before, made me feel more confident
and secure. This was around the same time I was starting to experiment with Scrum
and agile. As I encountered obstacles and ran into unfamiliar situations, I began to
realize that what I really needed was a What to Expect book for the first year (and even
beyond) of Scrum and XP.

The problem is, unlike a What to Expect book, I can’t tell you exactly what your
team should be doing or worrying about during months 1 to 3 or 9 to 12. Teams,
unlike most children, don’t develop at a predictable rate. Instead, they often tumble,
stumble, and bumble their way through their first year, taking two steps forward and

xxvi Preface

one step back as they learn to function as a team, adopt agile engineering practices,
build trust with their customers, and work in an incremental and iterative fashion.

With this in mind, I chose to structure this book with more of an “I’ve got a pain
here, what should I do” approach. I’ve collected stories about teams I’ve been a part
of or witnessed in their first year of agile life. As I continued down my agile path, I
noticed that the stories and the patterns in companies were usually similar. I would
implement an idea in one company and tweak it for the next. In repeating this process,
I ended up with a collection of real-world solutions that I now carry in my virtual tool
belt. In this book, I share with you some of the most common pains and solutions.
When your team is hurting or in trouble, you can turn to the chapter that most closely
matches your symptoms and find, if not a cure, at least a way to relieve the pain.

The Scrum Field Guide, Second Edition, is meant to help you fine-tune your own
implementation, navigate some of the unfamiliar terrain, and more easily scale the
hurdles we all encounter along the way.

Who Should Read This Book

If you are thinking about getting started with Scrum or agile, are at the beginning of
your journey, or have been at it a year or so but feel like you’ve gotten lost along the
way, this book is for you. I’m officially targeting companies that are within six months
of starting a project to those that are a year into their implementation—an 18-month
window.

This is a book for people who are pragmatic. If you are looking for theory and
esoteric discussions, grab another of the many excellent books on Scrum and agile.
If, on the other hand, you want practical advice and real data based on my experience
running projects both at Microsoft and while coaching teams and consulting at large
Fortune 100 companies, this book fits the bill.

How to Read This Book

The book is designed for you to be able to read any chapter, in any order, at any time.
Each chapter starts out with a story pulled from a team, company, or project that I
worked on or coached. As you might expect, I’ve changed the names to protect the in-
nocent (and even the guilty). Once you read the story, which will likely sound familiar
in some fashion, I walk you through the model. The model is what I use in the field to
help address the issues evident in the story. Some of the models might feel uncomfort-
able, or you might believe they won’t work for your company. I urge you to fight the
instinct to ignore the advice or to modify the model. Try it at least three times and see
what happens. You might be surprised. At the end of each chapter, I summarize the
keys to success—those factors that can either make or break your implementation.

 Preface xxvii

This book is organized in five parts.

 � Part I, “Getting Prepared,” gives you advice on getting started with Scrum,
helping you set up for success. If you are just thinking about Scrum or are just
beginning to use it, start there.

 � Part II, “Field Basics,” discusses items that, once you get started down the agile
path, help you over some of the initial stumbling blocks that teams and orga-
nizations encounter. If you’ve gotten your feet wet with Scrum but are running
into issues, you might want to start here.

 � Part III, “First Aid,” is where I deal with some of the larger, deeper issues that
companies face, such as adding people to projects or fixing dysfunctional daily
standup meetings. These are situations you’ll likely find yourself in at one
point or another during your first year. These chapters help you triage and
treat the situation, allowing your team to return to a healthy state.

 � Part IV, “Advanced Survival Techniques,” contains a series of items that teams
seem to struggle with regardless of where they are in their adoption—things
such as costing projects, writing contacts, and addressing documentation in
agile and Scrum projects.

 � Part V, “Wilderness Essentials,” contains chapters that focus on overlooked,
yet just as costly, problems that most organizations face when they are in the
middle of their agile adoption, such as managing risks, interviewing, getting it
right the first time, and more.

If you are starting from scratch and have no idea what Scrum is, I’ve included a
short description in the appendix to help familiarize you with the terms. You might
also want to do some more reading on Scrum before diving into this book.

Why You Should Read This Book

Regardless of where we are on our agile journey, we all need a friendly reminder that
what we are experiencing is normal, some suggestions on how to deal with issues, and
a few keys for success. This book gives you all that in a format that allows you to read
only the chapter you need, an entire section, or the whole thing. Its real-life situations
will resonate with you, and its solutions can be applied by any team. Turn the page and
read the stories. This field guide will become a trusted companion as you experience
the highs and lows of Scrum and Extreme Programming.

Supplemental Material for This Book

Throughout this book, you may find yourself thinking, “I wish I had a tool or down-
loadable template to help me implement that concept.” In many cases, you do. If you

xxviii Preface

go to http://www.mitchlacey.com/supplements/, you will find a list of various files, im-
ages, spreadsheets, and tools that I use in my everyday Scrum projects. While some
of the information is refined, most of the stuff is pretty raw. Why? For my projects, I
don’t need it to be pretty; I need it to be functional and to work. What you get from my
website supplements will be raw, true, and from the trenches.

http://www.mitchlacey.com/supplements/

 xxix

ACKNOWLEDGMENTS

When I first had the idea for this book, it was raw. Little did I know that I was attempt-
ing to boil the ocean. My wife, Bernice, kept me grounded, as did my kids. Without
their strength, this book would not be here today.

David Anderson, Ward Cunningham, and Jim Newkirk were all instrumental in
helping me and my first team get off the ground at Microsoft. Each of them worked
there at the time and coached us through some rough periods. I still look back at my
notes from an early session with Ward, with a question highlighted that read, “Can’t
we just skip TDD?” Each of these three people helped turn our team of misfits into
something that was really special. David, Ward, and Jim—thank you.

I thank Mike Cohn and his authors for accepting this title into the Mike Cohn
Signature Series. It is quite an honor to be among some of the best agile authors on
the planet.

I could not have done this without the help of my wife, Bernice Lacey, and the best
editor on the planet, Rebecca Traeger. Both put in countless hours editing, keeping me
on track, keeping me focused, and helping me turn my raw thoughts and words into
cohesive chapters.

I would also like to once again thank the following friends, each of whom helped
craft this book into what it is today. Everyone listed here has given me invaluable
feedback and contributed many hours either listening to me formulate thoughts or
reading early drafts. I cannot thank each of you enough, including Tiago Andrade e
Silva, Adam Barr, artist Tor Imsland, Brent Barton, Martin Beechen, Arlo Belshee, Jelle
Bens, John Boal, Jedidja Bourgeois, Stephen Brudz, Brian Button, Sharon Button, Mike
Cohn, Jim Constant, Michael Corrigan, Scott Densmore, Esther Derby, Stein Dolan,
Marc Fisher, Paul Hammond, Bill Hanlon, Christina Hartikainen, Christian Hassa,
Martina Hiemstra, Jim Highsmith, Liz Hill, Donavan Hoepcke, Bart Hsu, Wilhelm
Hummer, Ron Jeffries, Lynn Keele, Clinton Keith, James Kovaks, Ben Linders, Rocky
Mazzeo, Steve McConnell, Jeff McKenna, Brian Melton, Ade Miller, Raul Miller, Jim
Morris, Jim Newkirk, Jacob Ozolins, Michael Paterson, Bart Pietrzak, Dave Prior, Pe-
ter Provost, Michael Puleio, Scott Robinson, René Rosendahl, Ken Schwaber, Tammy
Shepherd, Lisa Shoop, Michele Sliger, Ted St. Clair, Jeff Sutherland, Gaylyn Thompson,
Isaac Varon, Bas Vodde, and Brad Wilson.

I’d also like to thank the team at Addison-Wesley, including Elizabeth Ryan, Chris
Zahn and Chris Guzikowski. I appreciate all that your team did. Also, Carol Lallier and
Kim Arney—copyeditor and production project coordinator—thank you. You caught
so many things that I overlooked and made this very easy.

xxx Acknowledgments

Books don’t just pop out of your head and onto paper. They, like most projects
I’ve ever encountered, are truly a team effort. The people I have mentioned (and likely
a few that I forgot) have listened to me, told me where I was going astray, given me
ideas to experiment with on my teams and with clients, and been there for me when I
needed reviews. I imagine they are as glad as I am that the second edition of this book
is finally in print. I hope that after you read this, you too will join me in thanking them
for helping to make this guide a reality.

 xxxi

ABOUT THE AUTHOR

Mitch Lacey, founder of Mitch Lacey & Associates, Inc., helps companies reach full
potential by building performing organizations through the adoption of agile prac-
tices, including Scrum and XP.

Mitch is a self-described tech nerd who started his technology career in 1991 at
Accolade Software, a computer gaming company. After working as a software test en-
gineer, a test manager, a developer, and at a variety of other jobs in between, he settled
on his true calling—project and program management.

Mitch was a formally trained program manager before adding agile to his project
tool belt in 2005. He first practiced agile at Microsoft Corporation, where he success-
fully released core enterprise services for MSN and assisted in driving agile adoption
across multiple divisions.

Mitch’s first agile team was coached by Ward Cunningham, Jim Newkirk, and Da-
vid Anderson. He has worked extensively in all Scrum roles on a variety of projects.
Today, with decades of experience under his belt, Mitch continues to develop his craft
by experimenting and practicing with both leadership and project teams at many dif-
ferent organizations.

Mitch’s rich, practical experience and his pragmatic approach are trusted by many
companies including Adobe Systems, Aera Energy, Bio-Rad, EchoStar, Microsoft,
 Oracle, Qualcomm, Salem Hospital, SAP, Sony, and more. He is a Certified Scrum
Trainer (CST), a PMI Project Management Professional (PMP), and an Agile Certified
Practitioner (ACP).

Mitch has presented at a variety of conferences worldwide, chaired Agile2012
and Agile2014, and served on the board of directors for the Scrum Alliance and the
Agile Alliance.

For more information, visit www.mitchlacey.com, where you will find Mitch’s
blog as well as a variety of articles, tools, and videos that will help you with your
Scrum and agile adoption. He can also be found on Twitter at @mglacey and by email
at mitch@mitchlacey.com.

http://www.mitchlacey.com

This page intentionally left blank

This page intentionally left blank

 313

Chapter 27

DOCUMENTATION
IN SCRUM PROJECTS

We’ve all heard the common myth, Agile means no documentation. While other agile
fallacies exist, this is a big one, and it could not be farther from the truth. Good agile
teams are disciplined about their documentation but are also deliberate about how
much they do and when. In this chapter’s story, we find a duo struggling to explain
that while they won’t be fully documenting everything up front, they will actually be
more fully documenting the entire project from beginning to end.

The Story

“Hey, you two,” said Ashley, stopping Carter and Noel in the hallway as they passed by
her office. “I’ve been sensing some resistance from you over the initial project docu-
mentation. I need it by next Friday for project sign off, okay?” Ashley looked back at
her computer and began typing again, clearly expecting a quick answer.

Carter and Noel looked at each other, then back at Ashley, their manager, before
replying. They had known this conversation was coming but didn’t realize they’d be
accosted in the hallway by an obviously harried Ashley when it did.

“Listen, we can document everything up front like you ask,” Noel began, as she
and Carter moved to stand close to Ashley’s doorway. “But we don’t think it’s the best
approach. Things change, and we cannot promise you that things will go as planned.
Further—” Ashley stopped typing and looked up, interrupting Noel mid-stream.

“Look, I don’t want to argue about something as basic as documentation. I just
need it on my desk by Friday.”

Carter spoke up.
“Ashley,” he began. “Can I have five minutes to communicate a different approach?

I know you have a full plate, but I think it’s important for you to try to understand this
point before we table our discussion.”

Ashley glanced at her watch and nodded. “Five minutes. Go.”
“When I was in college, I worked for our university newspaper,” Carter explained.

“I was a sports photographer and always attended local football games with the sports
writers. I was on the field, and they were in the stands.

“It probably won’t surprise you to hear that not one of those sports writers came
to the football game with the story already written. Now, they might have done some

314 Chapter 27 � Documentation in Scrum Projects

research on the players. They might have talked to the coaches about their game plans.
They might even have asked me to be sure to get some shots of particular players. But
they never wrote the article before the game even began.

“That’s kind of what you are asking us to do with the software. You want the com-
plete story of how this application will unfold, including the final game score, before
we’ve even started playing,” said Carter.

Ashley replied, “Well, that’s how we get things done around here. Without the up-
front documentation—design docs, use cases, master requirements docs, architectural
designs, and release plans—I won’t get project approval, and I can’t be sure that you
two and the rest of the team understand what we need to build.”

“Right. I get that,” agreed Carter. “It’s not unreasonable for you to want some in-
formation before we get started. And you should expect to receive frequent updates
from us on what’s going on with the project. After all, the reporters I used to work with
would take notes and write snippets of the article about the game as it was unfold-
ing. Periodically, we would get together to discuss the angle they were working on and
some of the shots I had captured so far.

“But to ask us to tell you what the software will look like, exactly how much it
will cost, and precisely when we’ll be done is like asking us to predict the final score of
the football game. We can tell you how we think it’s going to go, but when things are
changing and unfolding, it’s difficult to predict all the details.”

Ashley nodded. “But things aren’t always that volatile with our projects. We know
basically what we want this to look like. It’s only some of the features we aren’t sure of.”

“Right,” chimed in Noel. “And on projects where we can nail down most of the
variables and have a clear picture of the final product, we can give you more up-front
documentation.”

Carter nodded. “To go back to my sports writer analogy, there were times when
one team was clearly dominating—the game was a blowout. In those cases, the re-
porters had their stories mostly written by halftime. They’d already come up with the
headline, filled in a lot of the details, and were just waiting until the end of the game to
add the final stats and score.

“Most times, though, the games were close and the outcome uncertain. In those
cases, the reporters would keep filling in the skeleton of the story with the events as
they happened in real time. They would come down to the field at halftime, and we
would discuss the unfolding story. We’d strategize and say, ‘If the game goes this way,
we’ll take this approach. But if it goes that way, we’ll take this other approach.’

“Likewise, the level of detail in our documentation at any given point in the proj-
ect should depend on how certain we are that things aren’t going to change.”

Ashley leaned back in her chair with her hand on her chin, deep in thought. Noel
decided to go in for the kill.

“Ashley, remember the 1989 San Francisco earthquake, or the quake and tsunami
in Japan? Or when either Reagan or Kennedy were shot?”

Ashley nodded.

 The Story 315

“Well, you would notice a trend in all these events. In the initial accounts, the
media headlines conveyed the tragic event, but with very few details. All they could
tell us at first was generally what had happened (explosion/quake/tsunami/shots
fired), when, and where. Why? Because the events were still unfolding, and that was
all anyone knew. As the reporters on scene learned more, they added the new facts and
changed the headlines.

“All the little updates, facts, and details were important to capture in real time,
even if they later had to be changed to reflect new information. Without continuous
briefings, many of the details surrounding the events would have been forgotten in the
chaos of the devastation. The reporters didn’t try to write more up front than the facts
they knew. Instead, the reporters recorded what they did know as they went along.
Later, after the details had solidified, they went back through the various articles and
wrote a larger, encompassing synopsis that outlined the specific event from the initial
reports to the current state,” Noel explained.

“That’s what we’re suggesting we do: Make our documentation a story in progress.
Are we making sense?” asked Carter.

Ashley sat forward.
“I think I get it now. What I originally heard you say was, ‘I can’t give you docu-

mentation.’ But what you’re actually saying is that you will document certain things
up front, most things in real time, updating them as necessary to reflect reality, and
some things after the fact. But what does that mean in terms of software exactly? I
need certain documents to get the project approved, such as the master requirements
documentation outlining all the use cases.”

Noel answered, “We will provide that MRD, but it will be in the form of a product
backlog, with stories at different levels of detail. Some of the stories will be headlines
only. Others will be fully fleshed out, maybe to the point of use cases. For example,
the team has a good idea of the architectural direction, which gives us insight into
what stories to build for the first six or so sprints, but after that, things get fuzzy. We
know that you want us to capture the details, and we have those details for the higher-
priority stories, but we don’t have them for the stories off in the distance. For those, we
might only have headline-level information.”

Ashley asked, “But if we don’t capture details up front, won’t they get lost? And
don’t you then have to spend a significant amount of time getting and documenting
that information during the project, if they can be found at all? How can you ensure
that what is being built is correct?”

“Remember, like any good journalist, we will document as we go, as soon as we
can, without doing too much. That way when we get to the point where the UI stabi-
lizes, let’s say, we can create the more detailed documentation that the company needs
and that we need to deliver in the form of user manuals and such. We won’t lose our
details because we’ll be going over those details every sprint with the team, document-
ing them as part of our definition of done, and checking with the stakeholders to en-
sure we’re on track, to ensure that what is being asked is what we are building and

316 Chapter 27 � Documentation in Scrum Projects

matches what the customers meant. Keeping documentation up to date a little at a
time is just part of the cost of building working software. If things change along the
way, we will update what we have written to reflect the change. It’s a balance between
stability and volatility. The more volatile something is, the more careful we need to be
in what level we document. If it’s stable, we can do something such as a large database
diagram model in a tool. If it’s volatile, we might just draw a picture on the white-
board—again, both are documents, database models to be exact, but they are very dif-
ferent in terms of formality,” finished Noel.

“So, are we on the same page?” asked Carter.
“Yes,” said Ashley. “I get it now. I think this is a good approach and something that

I will advocate, provided you give me regular feedback so I can update executive man-
agement. But I still need the big headlines by Friday. Agreed?”

“Agreed,” said Carter and Noel together.
And that was that.

The Model

Many people can quote the part of the Agile Manifesto that states, “Working software
over comprehensive documentation,” but they fail to mention the very important ex-
planatory component that follows: “While there is value in the items on the right, we
value the items on the left more” [BECK]. Scrum teams still value documentation;
they just change the timing of that documentation to be more consistent with their
level of knowledge.

For example, imagine you are in a university world history class. You get to the
point in the class when it’s time to discuss Western European history. Your professor
says, “I want each of you to buy my new book Western European History: The 30th Cen-
tury. Come prepared for an exam on the first five chapters in two weeks.”

You would probably look around the room, wondering if what you just heard was
correct and ask a fellow student, “Did he just say thirtieth century history?”

Common sense tells you that without time machines, it is impossible to read a
factual account of future events—they haven’t happened yet! Sure, there are predic-
tors and indicators that suggest what might happen, but nothing is certain. This then
begs the question: If this approach is wrong for a university class that may reach a few
thousand, why is the exact same approach accepted when developing software that has
the potential to reach millions?

Before we’ve begun any work on a project, we are often asked for exact details as to
what will be delivered, by when, and at what cost. To determine these things, teams of-
ten write volumes of documents detailing how the system will work, the interfaces, the
database table structures—everything. They are, in essence, writing a history of things
that have yet to occur. And it’s just as ludicrous for a software team to do it as it would
be for your history professor.

 The Model 317

That doesn’t mean we should abandon documents, and it doesn’t mean that we
should leave everything until the end, either. A certain amount of documentation is
essential at each stage of a project. Up front, we use specifications or user stories to
capture ideas and concepts on paper so that we can communicate project goals and
strategies. When we sign off on these plans, we agree that what we have documented is
the right thing to do.

The question, then, is not whether we should document, but what we should doc-
ument and when. The answer has everything to do with necessity, volatility, and cost.

Why Do We Document?

Every project needs a certain amount of documentation. In a 1998 article on Salon.com
titled “The Dumbing-Down of Programming,” author Ellen Ullman notes how
large computer systems “represented the summed-up knowledge of human beings”
[ULLMAN]. When it comes to system documentation, we need to realize that we’re
not building or writing for us; we are writing for the future. I think Ullman summa-
rizes it best with this snippet from the same article:

Over time, the only representation of the original knowledge becomes the code
itself, which by now is something we can run but not exactly understand. It has
become a process, something we can operate but no longer rethink deeply. Even if
you have the source code in front of you, there are limits to what a human reader
can absorb from thousands of lines of text designed primarily to function, not to
convey meaning. When knowledge passes into code, it changes state; like water
turned to ice, it becomes a new thing, with new properties. We use it; but in a hu-
man sense we no longer know it.

Why is Ullman’s concept of code as a process that changes state important? Be-
cause we need to realize that, in a human sense, we use the system and we know the
system. That is why we document.

So, what is essential to document, and what is needless work? Much of that de-
pends on the type of system you are building and the way in which you work. Teams
that are colocated need to document less than do teams distributed across continents
and time zones. Teams that are building banking systems need to satisfy more regula-
tory requirements than do teams building marketing websites. The key is to document
as much as you need and nothing more.

What Do We Document?

The list of essential documents is different for every project. Going through my list of
past projects, some frequent documentation items include the following:

 � End-user manual
 � Operations user guide

318 Chapter 27 � Documentation in Scrum Projects

 � Troubleshooting guide
 � Release and update manual
 � Rollback/failover manual
 � User stories and details
 � Unit tests
 � Network architecture diagram
 � Database architecture diagram
 � System architecture diagram
 � Acceptance test cases
 � Development API manual
 � Threat models
 � UML (Unified Modeling Language) diagrams
 � Sequence diagrams

We didn’t write all these documents before the project began. And we didn’t wait
until the final sprint to start them either. We did them as the information became
available. Many of the user stories, for instance, were written up front. But some of
them were changed, and others were added as the project progressed and requirements
became clearer. Our unit tests were written as we coded. And at the end of every sprint,
we updated the end-user manual to reflect new functionality. We included in our defi-
nition of done what we would document and when we would write it (see Chapter 7,
“How Do You Know You’re Done?”).

When and How Do We Document?

So, if we don’t do it all up front and we don’t save it all for the end, how does documen-
tation happen in an agile project? Documentation, any documentation, costs money.
The more time it takes to write and update, the more it costs. What agile projects strive
to do is minimize write time, maintenance time, rework costs, and corrections.

Let’s look at a few approaches we can take when documenting our projects:

 � Document heavily in the beginning.
 � Document heavily in the end.
 � Document as we go along.

Document Heavily in the Beginning
Traditional projects rely on early documentation. As you can see from the diagram in
Figure 27-1, a typical waterfall team must capture requirements, build a project plan,
document the system architecture, write test plans, and do other such documentation
at the beginning of the project. If we were to overlay a line that represented working
software, it would not begin to move up until the gray line started to flatten.

 The Model 319

The benefit of this approach is that people feel more secure about the system being
built. The major drawback is that this sense of security is misleading. In point of fact,
though a great deal of time, effort, and money has gone into writing the documents,
no working software has yet been created. The chances of getting everything right up
front are marginal on stable projects and next to zero on volatile projects. That means
factoring in costly rework and extra time. Chances are good that these high-priced,
feel-good documents will turn into dusty artifacts on the project bookcase.

Document Heavily at the End
When we document heavily at the end, we document as little as possible as the soft-
ware is developed and save all the material needed to release, sustain, and maintain the
system over time until the end of the project. Figure 27-2 illustrates this approach.

The benefits of this approach are that working software is created quickly and that
what is eventually written should reflect what the system does.

There are many problems with this approach. People often forget what was done
and when, and what decisions were made and why. Team members on the project at
the end are not necessarily the people on the project in the beginning; departing team
members take much of their knowledge with them when they go. After the code for
a project is complete, there is almost always another high-priority project that needs
attention. What usually happens is that most of the team members move on to the
new project, leaving the remaining team members to create the documentation for the
system by themselves. Countless hours are spent hunting for data and trying to track
down and access old team members, who are busy with new work and no longer have
time for something “as insignificant as documentation.”

FIGURE 27-1 Traditional project with up-front documentation

early in the project late in the projecttime

e
f
f
o
r
t

320 Chapter 27 � Documentation in Scrum Projects

Though saving documentation until the end is cheaper in the beginning because
more time is spent on actual software development, it is usually expensive in the end
because it can hold up a release or cause support and maintenance issues, as it will
likely contain gaps and faulty information.

Document as We Go Along
Agile projects do things differently. We acknowledge that while we can’t know every-
thing up front, we do want to know some things. We also maintain that documenta-
tion should be part of each story’s definition of done, so that it is created, maintained,
and updated in real time, as part of the cost of creating working software. Figure 27-3
illustrates the document-as-we-go approach.

FIGURE 27-2 Documenting heavily at the end of the project

most documentation written,
with a large push at the end
needed to ship, support,
maintain and susten the
system over its lifecycle

early in the project late in the projecttime

e
f
f
o
r
t

FIGURE 27-3 Documenting as you go

early in the project late in the projecttime

e
f
f
o
r
t

definition of done reqs

 The Model 321

The product owner works with the stakeholders and customers to build the re-
quirements while the team works with the product owner to achieve emergent de-
sign and architecture. The team keeps the code clean, creates automated tests, and uses
code comments and other tools to slowly build other required documentation for the
system, such as the user manuals, operations guide, and more.

The one drawback is that it does take a little longer to code when you document
as you go than it would to fly through the code without having to write a comment or
update an architectural diagram. This drawback is more than offset, though, by the
benefits. There is less waste, less risk of eleventh-hour holdups, and more emphasis on
working software. Much of the documentation is updated automatically as changes
are made to the code, reducing maintenance and rework costs. Just as news reports
capture the details of a story for posterity, real-time documentation of decisions and
behavior minimizes gaps in knowledge and creates a living history of the software for
future teams and projects.

Documenting in an Agile Project

So, we agree that in most cases, agile teams will want to document as they go. What
exactly does that look like on a typical software project? To illustrate, let’s use a docu-
ment that is familiar to almost everyone: the user manual. A waterfall approach would
be to write the entire manual at the end. We’ve discussed why this method is a work-
able but risky solution. The more agile way to approach a user manual is to include
“update the user manual” as one of the acceptance criteria for a story that has to do
with user-facing functionality. By doing that, the manual is updated each time work-
ing software is produced.

Let’s say, for example, that I’m writing the user manual for an update to Adobe
Lightroom (my current favorite piece of software). I’m in sprint planning, and the
product owner explains that the story with the highest priority is “As an Adobe Light-
room user, I can export a series of photographs to Adobe Photoshop so I can stitch
them together to make a panorama.” As we’re talking through that story, I recommend
that we add “update user manual to reflect new functionality” as one of the acceptance
criteria for that story.

As I write the code or as I finish the feature, I would also edit a document that
provides the user instructions on how to use the feature. Depending on how stable
the feature is, I might even include screenshots that walk the user through the instruc-
tions for both Lightroom and Photoshop. If the feature is less stable, meaning the core
components are built but the user interface team is still hashing out the user inter-
face through focus groups, I would document the behavior but probably only include
placeholders for the screenshots. The key here is that the story would not be done until
the user manual is updated.

Updating the user manual would be appropriate to do at the story level, as I de-
scribed, but could also be accomplished at the sprint level. For instance, if we have

322 Chapter 27 � Documentation in Scrum Projects

several stories that revolve around user-facing functionality, we might add a story dur-
ing sprint planning that says, “As a user, I want to be able to learn about all the new
functionality added during this sprint in my user manual.”

What I am doing is balancing stability versus volatility of the feature to determine
how deep I go and when. It would not, for example, be prudent to make updating the
user manual part of the definition of done for a task. Too much might change before
the story is complete. Nor would it be acceptable to wait to update the user manual
until right before a release. That’s far too late to start capturing the details of the new
behaviors.

When determining when to document your own systems, you also should balance
cost, volatility, and risk. (For more on determining your definition of done, refer to
Chapter 7.)

Starting Projects without Extensive Documentation

One challenge you will face is to help stakeholders and customers understand why you
are not documenting everything up front. Tell them a story similar to the one Carter
told at the beginning of this chapter (or share that story with them). Remind them
that while documenting heavily up front drives down the perceived risk, you never
know what you don’t know until a working solution is in place.

Eschewing extensive documentation up front does not mean you are off the hook
for a project signoff piece. But it does mean that the piece will look different to your
stakeholders than it has on other projects. Rather than give them the specific artifacts
they request, answer the questions they are asking in regard to schedules and require-
ments in the most lightweight way possible for your project and situation. A PMO
might, for instance, ask for a Microsoft Project plan, but what the PMO really wants to
know is what will be done by about when. By the same token, a stakeholder might ask
you for a detailed specification, when what she really wants to know is, “Are you and I
on the same page with regard to what I’m asking you to do?”

Signoff and approval will occur early and often. The product owner will hold
many story workshops to build the product backlog, work with the team to build the
release plan, and then communicate that information to all interested parties, solicit-
ing enough feedback to ensure that the team will deliver what the stakeholders had in
mind (which is rarely exactly what they asked for). The documents the product owner
uses for these tasks are only a mode of transportation for ideas and concepts, and a
document is not the only way to transfer those ideas. Up-front documentation can just
as easily take the form of pictures of whiteboard drawings, sketches, mockups, and the
like—it does not need to be a large formal document.

The beginning of the project is when you know the least about what you are build-
ing and when you have the most volatility. What your stakeholders need is the peace
of mind that comes from knowing you understand what they need and can give them
some idea of how long it will take to deliver. Expend the least amount of effort possible

 Keys to Success 323

while still giving them accurate information and reassurance. At this point in the proj-
ect, everything can and will change.

Keys to Success

The keys to success are simple:

 � Decide—Determine what you need to document for your project and when
it makes the most sense to produce that documentation. Some things, such as
code comments, are easy to time. Other items, such as threat models, are more
difficult. Work as a team with your product owner to determine the must-have
documents at each stage of your project.

 � Commit—Once you have a documentation plan, stick to it. Put it in your
definition of done. Hold yourselves accountable. Documentation is never fun,
even when it’s broken into small chunks. Remind your team that a little bit of
pain will eliminate a great deal of risk come release time.

 � Communicate—If this is the first project to move forward without extensive
up-front documentation, the stakeholders will be nervous. Help them out,
especially at the beginning of the project, by sending frequent updates, pic-
tures of whiteboards, and any other documents that are produced. Do as your
math teacher always told you: show your work. Seeing working software and
physical artifacts goes a long way toward calming the fears of even the most
anxious executives.

 � Invest in automation—Documentation is easier and ultimately cheaper if you
invest a little time in automating either the system or the documentation itself.
For example, if you can create an automated script to compile all the code
comments and parse them into documentation, you’ve saved a manual step
and instantly made your documentation more in sync with the actual code.
It’s also much easier to document acceptance test results and API documents
automatically than it is to do it manually. On the flip side, you might find that
automating the features themselves can save you a lot of documentation work.
For example, a manual installation process might require a 40-page installa-
tion guide; an automated installation process, on the other hand, probably
needs only a one-page guide and is better for the end user as well. Whenever
possible, automate either your documentation or the features it supports. The
results are well worth the investment.

Being agile does not equate to no documentation; it means doing timely, accurate,
responsible documentation. Make sure that documentation is equally represented in
your team’s definition of done alongside things like code and automation. Remem-
ber that when change happens, it’s not just the code that changes—the entire software

324 Chapter 27 � Documentation in Scrum Projects

package that you are delivering changes, documentation included. Lastly, remember
that as much as you might wish otherwise, documentation is a part of every software
project. When you do a little at a time and automate as much as possible, you’ll find
that while it’s still an obligation, it’s not nearly as much of a chore.

References

[BECK] Beck, Kent, et al. “Manifesto for Agile Software Development.” Agile
 Manifesto website. http://agilemanifesto.org/ (accessed 16 January 2011).

[ULLMAN] Ullman, Ellen. Salon.com. http://www.salon.com/technology
/-feature/1998/05/13/feature (accessed 18 November 2010).

http://agilemanifesto.org/
http://www.salon.com/technology/-feature/1998/05/13/feature
http://www.salon.com/technology/-feature/1998/05/13/feature

 435

INDEX

Acceptance tests, in TDD, 129–131
Acceptance window, contractual agreement, 362
Accountability, team consultants, 47–48
Active task limit (ATL), in collaboration, 373–377
Agenda, daily Scrum meeting, 209–210
Agile teams, successful outsourcing, 332
Aligning incentives with outcomes

aligning around customer satisfaction,
412–413

early involvement of development teams, 413
end-to-end delivery model, 412–415
prioritizing project portfolios, 414–415
setting the focus, 412–415
shifting resources, 414–415
side benefits, 415
a story, 409–412

Aligning incentives with outcomes, keys to success
dedicated teams versus random people, 416
executive support, 417
integrating sales and development, 416
organization-wide coordination, 417
prioritizing project portfolios, 416

Allocating work, successful outsourcing, 333
Anarchic projects, technology and requirements, 14
Artifacts. See Scrum, artifacts; specific artifacts.
ATL (active task limit), in collaboration, 373–377
Automated integration, in TDD, 129–131
Automating documentation, 323

Backlog. See Product backlog.
Beginner’s mind, 225–226, 230–231
Belshee, Arlo, 223, 225–227, 230
The Big Wall technique

description, 342
example, 342–346
a story, 340–341

Blind estimation of team velocity. See also Estimat-
ing team velocity.

decomposing the reference story, 59
estimating velocity, 60–61
versus other techniques, 66
overview, 58–61
points-to-hours approximation, 59

product backlog, 58
team capacity, 59–60

Blocking issues, daily Scrum meeting, 207–208
Boehm, Barry, 171, 357
Brainstorming, 96–97
Breaking up fights, role of the ScrumMaster, 113
Brooks, Fred, 45
Brooks’ law (adding manpower to late projects), 45,

233, 398–399
Budgets, true costs of outsourcing, 330–332
Bugs. See Defect management.
Burndown charts

description, 431
sustainable pace, 273–274

Burnout, 269–275
Bus factor, 214
“Buy a Feature” game, 199

Cadence, daily Scrum meeting, 213
Canceling the sprint, 259–260
Candidate screening. See Immersive interviewing,

candidate screening.
Cards, collecting user stories, 306–307
Career Builder.com, 399–400
Carnegie, Dale, 252–253
Carnegie principles, team culture, 253
Categorizing issues, definition of done, 97–98
Chairs in meetings. See Standing versus sitting.
Change, role of the ScrumMaster, 115
Change, stages of

chaos, 16
foreign elements, 16
Kotter’s eight-step model, 30
late status quo, 15–16
new status quo, 17
practice and integration, 16–17
Satir’s Stages of Change, 15–17

Change management, contractual agreement,
353–356, 361

Chaos, stage of change, 16
Clark, Kim, 374
Cleland-Huang, Jane, 308
Client role, combining with other roles, 75–77

436 Index

Code debt. See Technical debt.
Code reviews, pair programming as real-time

reviews, 129
Code smells, 125–126
Coding standards, definition, 13
Cohn, Mike

collaboration, 371
consolidation, 98
data collection, 64
outsourcing, 329
on customers, 362

Collaboration. See also Teams.
ATL (active task limit), 373–377
keys to success, 380–382
pair programming, 373
relative sizing and time estimation, 372
shortening sprints, 377–378
a story, 367–371
task boards, 378–380
two-week sprints, 377–378
work items, limiting, 373–377

Collaboration, estimating tasks. See also Task Poker.
ATL (active task limit), 373–377
in collaboration, 371–373
open items, limiting, 373–377
a story, 367–371
Task Poker, 371–373

Collective code ownership, 12
Commitment, Scrum value, 8
Communication

emergency procedures, 260
enlisting Scrum support, 31–32
release planning, 155
retrospective meetings, 197
Scrum vision, 31–32
successful outsourcing, 335

Competencies. See Skills and competencies.
Completing a project. See Delivering working soft-

ware; Done, defining.
Complex projects, technology and requirements, 14
Complicated projects, technology and require-

ments, 14
Cone of Uncertainty, 357
Confirmation, collecting user stories, 307
Conflict avoidance, daily Scrum meetings, 221
Conformity, team culture, 247–249
Consolidating

improvements, 33
issues, 98–100

Contingency plans. See Emergency procedures.
Continuous integration

definition, 13
successful outsourcing, 335
in TDD, 126–128

Continuous learning
daily Scrum meetings, 221
implementing Scrum, 18

Contracts
acceptance window, 362
customer availability, 361–362
keys to success, 361–363
prioritization, 362–363
ROI cutoff, 363
a story, 349–353
trust factor, 363

Contracts, project model
change management, 361
deliverables, 360–361

Contracts, ranges and changes model
change management, 361
cost estimation, 359–360
cost per sprint, estimating, 360
discovery contract, 358–360
overview, 358
payment options, specifying, 360
project contracts, 360–361
release planning, 360
team velocity, determining, 360
timeline, determining, 359–360
versus traditional contracts, 358
user stories, creating and estimating, 359
user types (personas), identifying, 359

Contracts, traditional model
change management, 353–356
Cone of Uncertainty, 357
overview, 353–356
timing, 356–358

Conversations, collecting user stories, 307
Conway’s law (organizational structure in the code), xxi
Core hours

colocated teams, 138–140
distributed teams, 140–141
keys to success, 142
part-time team members, 141–142
a story, 135–138

Core teams. See also Development teams; Teams.
early involvement. See Aligning incentives with

outcomes.
member responsibilities, 74
optimal size, 45–46
risk management, 423–424
skills and competencies, 42–43
a story, 35–39
versus team consultants, 43–44, 46, 49. See also

Team consultants.
Costs

of a bad hire, 399–400
documentation, 318–321

 Index 437

of immersive interviewing, 406
projects. See Estimating project cost.
release planning, 152–153

Courage, Scrum value, 8
Critical paths, implementing Scrum, 9–11
Cultural challenges, true costs of outsourcing,

329–330, 332
Culture, team

adding new members, 238
Carnegie principles, 253
conformity, 247–249
cultural goals, 247–250
empowerment, 252–253
innovation, 247–249
institutional means, 248
keys to success, 251–254
Merton’s strain theory, 246–251
Merton’s topology of deviant behavior,

246–251
rebellion, 247–249
retreatism, 247–249
ritualism, 247–249
role in outsourcing, 329, 332
social deviance, 246
sprint length, 86
a story, 241–246

Cunningham, Ward, 227–228
Customers

availability, contractual agreement, 361–362
environment, sprint length, 86–87
estimating team velocity, 57
risk management, 421, 423
sprint length, 86–87
view of product backlog, 343–346

Cycle time, burnout, 272

Daily Scrum meetings
agenda, 209–210
blocking issues, 207–208
bus factor, 214
cadence, 213
common obstacles, 205, 208
conflict avoidance, 221
continuous learning, 221
deep dives, 210–211
description, 432–433
fourth question, 432
glossing over problems, 212
hand signals, 211
hidden impediments, 212–213
interruptions, 210
keys to success, 212–215
layout, 209–210
legacy systems, 180

nonverbal communication, 221
punctuality, 209
rambling, 210–211
rhythm, 209–210
scheduling, 208–209
standard three questions, 432
standing versus sitting, 214
a story, 205–208
successful outsourcing, 333–334
team consultants, 47
teamwork, 214
vagueness, 212

Daily standup meetings. See Daily Scrum meetings.
Data collection

historical data, 391–393
retrospective meetings, 198–199
sample table, 392
in story points, 391–393

Data gathered over time model, sustained engineer-
ing, 179

Dates. See Planning; Scheduling.
Debt. See Technical debt.
Decomposing stories

estimating team velocity, 59
example, 161–164
granularity, 167
a story, 157–159

Decomposing tasks
estimating task sizes, 164–167
example, 164–167
granularity, 167
sprint length, 87
a story, 157–159

Decomposing themes
example, 162–163
granularity, 167

Dedicated team model, sustained engineering,
179–182

Dedicated teams. See Core teams.
Dedicated time model, sustained engineering,

178
Deep dives, daily Scrum meeting, 210–211
Defect management

frequent testing, 171
keys to success, 172–173
on legacy systems, 173
overview, 170–172
pair programming, 129
setting priorities, 171–172
a story, 169–170
value, optimizing and measuring, 295

Definition of done. See Delivering working soft-
ware; Done, defining.

Degree of confidence, release planning, 148–151

438 Index

Delivering working software. See also Done,
defining.

end-to-end scenarios, 286–287
expansion, 283–284
identifying a core story, 281–282
keys to success, 284–287
limiting user access, 282–283
number of users, 282–283
prioritizing risk, 283
rework, 285–286
a story, 277–281
validation, 283–284
window of opportunity, 283

DeMarco, Tom, 274
Denne, Mark, 308
Derby, Esther, 198, 200–202
Design concept cards, 227
Development practices, true costs of outsourcing,

330
Development teams, definition, 428–429. See also

Core teams.
Developmental stages, team growth, 235–237
Discovery contract, contractual agreement,

358–360
Documentation

in agile projects, 321–322
automating, 323
committing to, 323
common documents, list of, 317–318
cost, 318–321
explaining your process, 323
keys to success, 323–324
list of features and functions. See Sprint backlog.
planning for, 322–323
purpose of, 317
sprint review meeting decisions, 189–190
stability versus volatility, 322
starting projects without, 322–323
a story, 313–316
versus working software, 316–317

Documentation, approaches to
early, 318–319
late, 319–320
as you go, 320–321

Dollar demonstration, 285
Done, defining. See also Delivering working

software.
brainstorming, 96–97
categorization, 97–98
consolidation, 98–100
creation and publishing, 100–101
exercise, 95–101
keys to success, 101

participants, 96
purpose of, 101
sorting, 98–100
a story, 93–95
in TDD, 132
team definition of done, 94
undone work, 101

Duration, sprint review meetings, 187
Duvall, Paul M., 128

Educating
individuals, TDD, 132–133
organizations, role of the ScrumMaster, 115
stakeholders, 298

Efficiency versus effectiveness, 274–275
Emergency procedures, team options

canceling the sprint, 259–260
communication, 260
don’t panic, 260–261
getting help, 258
keys to success, 260–261
maintaining focus, 261
overview, 257–258
reducing scope, 258–259
removing impediments, 258
a story, 255–257

Employee costs
estimating project costs, 308–309
outsourcing, 329
role of the ScrumMaster, 109–112

Empowerment
enlisting support for Scrum, 32–33
team culture, 252–253

End game, release planning, 153–154
Ending a project. See Delivering working software;

Done, defining.
End-to-end delivery model, 412–415
End-to-end scenarios, 286–287
Engineering practices. See Sustained engineering;

TDD (Test-Driven Development).
Environment

physical, retrospective meetings, 197–198
political, estimating team velocity, 57
product owner, sprint length, 86–87

Epics, definition, 160
Erdogmus, Hakan, 129
Estimates

becoming commitments, 387
as commitments, 54
in ranges, 385–386, 388–391

Estimates, relative
in cost estimation, 307–308
Fibonacci sequence, 59, 303

 Index 439

Estimating
hours from story points. See Story points.
product backlog. See Product backlog, prioritiz-

ing and estimating.
project resources. See Estimating project cost.
remaining workload. See Burndown.
tasks. See Tasks, estimating.
trends in task completion. See Burndown.

Estimating project cost
contractual agreement, 359–360
cost per sprint, 360
employee costs, 309
functional specifications, 307
keys to success, 310–311
MMF (minimal marketable feature) set, 308
outsourcing, true costs, 330–332
planning poker technique, 307
release planning, 309–310
roughly right versus precisely wrong, 307–308
a story, 301–305
team costs, 309
team velocity, 308–309
techniques for, 307–308

Estimating project cost, user stories
cards, 306–307
confirmation, 307
conversations, 307
creating, 307–308
prioritizing, 308
sizing, 301–305, 307–308
three C’s, 307

Estimating team velocity
communicating estimates as ranges, 62–64
comparison of techniques, 65–66
estimates as commitments, 54
from historical data, 56–57, 66
keys to success, 65–66
multipliers, 64–65
political environment, 57
product owner and customer, 57
for project cost, 308
project size and complexity, 57
a story, 51–56
team newness, 57
truncated data collection, 64–65
variables, 57
wait and see (real data) method, 61–64

Estimating team velocity, by blind estimation
decomposing the reference story, 59
estimating velocity, 60–61
versus other techniques, 66
overview, 58–61
points-to-hours approximation, 59

product backlog, 58
team capacity, 59–60

Expansion, delivering working software, 283–284
Expendability of team members, 214
Extending sprint length, 92
External focus, pair programming, 225
Extreme Programming (XP). See XP (Extreme

Programming).

Facilitation, role of the ScrumMaster, 114
Feathers, Michael, 182
Feature list. See Product backlog; Sprint backlog.
Feature work, 292–294
Fibonacci sequence, 59, 303
Finishing a project. See Delivering working soft-

ware; Done, defining.
Focus, Scrum value, 8
Forecasting with immersive interviewing, 398
Foreign elements, stage of change, 16
Forming, stage of team development, 235–237
Fourth question, daily Scrum meetings, 217–221,

432
Fowler, Martin, 126, 182
Function list. See Product backlog; Sprint backlog.
Functional specifications, estimating project cost,

307

Gabrieli, John, 225
Geographic distance, costs of outsourcing, 332
Getting started. See Implementing Scrum.
Glossing over problems, daily Scrum meeting, 212
Granularity, decomposing stories, 167
Grenning, James, 371
Group cohesion, costs of outsourcing, 329
Guiding coalition, enlisting support for Scrum, 31

Hand signals, daily Scrum meeting, 211
Hedden, Trey, 225
Help, emergency procedures, 258
Helping out, role of the ScrumMaster, 114
Hiring

interviewing candidates. See Immersive
interviewing.

outsourcing. See Outsourcing.
Historical data

collecting, 391–393
estimating team velocity, 56–57, 66
estimating workload, 393

Hitting the wall, 267–269
Hofstede, Geert, 329
Hohmann, Luke, 199
Humphrey’s law (gathering user requirements),

xxi

440 Index

IBM
key dimensions of cultural variety, 329
TDD, benefit in teams, 124–125

Immersive interviewing
cost of a bad hire, 399–400
definition, 398, 400–401
as a forecast, 398
hiring for the right reasons, 398–399
how to hire, 400–401
long-term fit versus short-term expertise, 400
organizational evaluation, 398
skills and competencies, 400
a story, 395–397

Immersive interviewing, candidate screening
managers and nontechnical people, 404
overview, 401–402
preparation and setup, 402–403
scoring candidates, 403–404
senior-level people versus junior-level, 402–403

Immersive interviewing, keys to success
focus on competencies, 405
hiring strong people, 406
investing in the process, 406
repeatable hiring process, 405
skills and competencies, 405–406
understanding costs, 406

Implementing Scrum. See also People, enlisting
support of.

combining with Extreme Programming, 12–13
continuous learning, 18
exposing issues, 12
identifying critical paths, 9–11
keys to success, 17–18
learning base mechanics, 17
in midstream, 18
patience, 17–18
potentially shippable code, 13
Scrum planning versus traditional methods, 9–11
shifting mindsets, 9
a story, 1–6
time frame, 18
underlying values, 7–8
understanding the rules, 17

Improving existing code, 125–126. See also
Refactoring.

Incentives, aligning with outcomes. See Aligning
incentives with outcomes.

Innovation, team culture, 247–249
Institutional means, team culture, 248
Institutionalizing new approaches, 33
Internal focus, pair programming, 225
Interruptions, daily Scrum meeting, 210
Interviewing. See Immersive interviewing.

James, Michael, 113
Jansen, Dan, 225
Junior-level people, interviewing, 402–403

Kerth, Norman, 202
Kessler, Robert, 129
Kotter, John, 30
Kotter’s model for enlisting support for Scrum, 30

Larsen, Diana, 198, 200–202
Late status quo, stage of change, 15–16
Laws of software development

Brooks’ law (adding manpower to late projects),
45, 233, 398–399

Conway’s law (organizational structure in the
code), xxi

Humphrey’s law (gathering user requirements),
xxi

Ziv’s law (predictability), xx–xxi
Layout, daily Scrum meeting, 209–210
Learning organizations, 35
Legacy systems. See also Sustained engineering.

daily releases and standups, 180
defect management, 173
goal planning, 180
keys to success, 181–182
retiring, 182
retrofitting, 182
stakeholder meetings, 180–181
a story, 175–177
strangler applications, 182
tribal knowledge, 176

Legal agreements. See Contracts.

Maintaining
old code. See Legacy systems; Sustained

engineering.
the release plan, 151–152

Management support for team consultants, 48
Managers, interviewing, 404
Managing people, role of the ScrumMaster, 113
Martin, Robert, 126
Master list. See Product backlog; Sprint backlog.
McConnell, Steve, 45, 357, 388
Meetings. See also Planning.

chairs. See Standing versus sitting.
daily. See Daily Scrum meetings.
standing versus sitting, 197, 214
a story, 1–6
team consultants, 46–47
types of, 431–434. See also specific meetings.

Menlo, Extreme Interviewing technique, 401
Merton, Robert K., 246–251

 Index 441

Merton’s strain theory, team culture, 246–251
Merton’s topology of deviant behavior, 246–251
Micro-pairing, pair programming, 224, 227–230, 231
Microsoft, 124
Miller, Ade, 128
MMF (minimal marketable feature) set, 308
MMR (minimal marketable release), 347
Multipliers, estimating team velocity, 64–65
Multitasking, negative effects of, 374
Myers, Ware, 45

Nass, Clifford, 374
New status quo, stage of change, 17
Nielsen, Dave, 354–355
Noise reduction, pair programming, 128
Nontechnical people, interviewing, 404
Nonverbal communication, daily Scrum meetings,

221
Norming, stage of team development, 235–237
North Carolina State University, 124

Offshoring. See Outsourcing; Team members,
adding.

Old code
maintaining. See Legacy systems; Sustained

engineering.
refactoring, 13, 125–126

Openness, Scrum value, 8
Ophira, Eyal, 374
Osborn, Alex F., 96
Outcomes, aligning incentives with. See Aligning

incentives with outcomes.
Outsourcing, keys to success

agile teams, 332
allocating the work, 333
continuous integration, 335
contraindications, 336–337
daily standups, 333–334
hiring north/south versus east/west, 333
maintaining the Scrum framework, 333–334
paired programming, 334–335
project management, 335–336
real-time communication, 335
retrospectives, 334
sprint reviews, 334
team building, 332–333
travel requirements, 335–336
work packages, 330, 333, 335

Outsourcing, a story, 325–328. See also Team mem-
bers, adding.

Outsourcing, true costs
cultural challenges, 329–330, 332
development practices, 330

estimating budgets, 330–332
geographic distance, 332
group cohesion, 329–330
increased overhead, 329
long-term retention, 329
project management, 329–330
transition costs, 328–329
working across time zones, 332

Overloading team consultants, 49

Pacing. See Sustainable pace.
Pair churn, 226–227
Pair cycle time, 226
Pair programming

beginner’s mind, 225–226, 230–231
benefits of, 128–129, 373
bug reduction, 128
in collaboration, 373
definition, 12–13
design concept cards, 227
distractions, 225, 230
external focus, 225
integrating new team members, 234
internal focus, 225
keys to success, 230–231
micro-pairing, 227–231
noise reduction, 128
outsourcing, 334–335
pair churn, 226–227
pair cycle time, 226
Ping-Pong pattern, 227–228
promiscuous pairing, 225–227
as real-time code reviews, 128
a story, 223–225
in TDD, 128–129

Pair Programming Ping-Pong Pattern, 227–228
Parking unresolvable disagreements, 347–348
Patience

enlisting support of people, 34
implementing Scrum, 17–18

Patterns, determining, 298–299
Patton, Jeff, 285
Payment options, contractual agreement, 360
People, enlisting support of. See also Management;

Teams.
communicating a vision, 31–32
consolidating improvements, 33
creating a vision, 31
creating short-term wins, 33
empowering participants, 32–33
establishing a sense of urgency, 30–31
forming a guiding coalition, 31
institutionalizing new approaches, 33

442 Index

People, enlisting support of, continued
keys to success, 33–34
Kotter’s eight-step model, 30
patience, 34
providing information, 34
sponsors, 31
a story, 23–29

Performing, stage of team development, 235–237
Personas (user types), identifying, 359
Personnel. See Management; People; Teams.
Physical environment, retrospective meetings,

197–198
Ping-Pong pattern, pair programming, 227–228
Planning. See also Estimating; Meetings;

Scheduling.
goals for legacy systems, 180
list of features and functions. See Product back-

log; Sprint backlog.
prioritizing and estimating product backlog, 346
releases. See Release planning.
retrospective meetings, 196–198
Scrum versus traditional methods, 9–11
sprint review meetings, 189
a story, 1–6
for team consultant downtime, 49

Planning meetings
description, 431–432
team consultants, 47

Planning Poker, 371–372. See also Task Poker.
Planning poker technique, estimating project cost,

307
Points-to-hours approximation, 59
Political environment, estimating team velocity, 57
Potentially shippable code

implementing Scrum, 13
a story, 277–281. See also Delivering working

software.
PowerPoint slides

a story, 184–186
template for, 187–188

Practice and integration, stage of change, 16–17
Precisely wrong versus roughly right, 307
Preconditions for sprints, 295–296
Preplanning, prioritizing and estimating product

backlog, 346
Principles of class design, 126
Prioritizing

by business value and risk, 429–430
contractual agreement, 362–363
defect management, 171–172
issues in retrospective meetings, 194–195, 199–200
items for release planning, 155

product backlog. See Product backlog, prioritiz-
ing and estimating.

project portfolios, 414–416
risks, delivering working software, 283
user stories, 308

Problem resolution, role of the ScrumMaster, 113
Product backlog. See also Sprint backlog.

definition, 429–430
estimating team velocity, 58
prioritizing and estimating, 429–430

Product backlog, prioritizing and estimating
The Big Wall technique, 342–346
customer view, 343–346
emulating the team, 342–343
focusing discussion, 347–348
keys to success, 346–348
meeting supplies, 348
MMR (minimal marketable release), 347
parking unresolvable disagreements,

347–348
preplanning, 346
setting time limits, 347
shifting estimates, 348
stakeholder view, 343–346
a story, 339–341

Product owner role
canceling the sprint, 259–260
combining with other roles, 75–77
definition, 428
estimating team velocity, 57
responsibilities, 73
risk management, 421, 423

Progress reporting. See Daily Scrum meetings;
 Retrospective meetings; Sprint review meet-
ings; Value, optimizing and measuring.

Project contracts, 360–361
Project management

duties mapped to roles, 74–75
successful outsourcing, 335–336
true costs of outsourcing, 329–330

Project portfolios, prioritizing, 414–416
Projects

anarchic, 14
complex, 14
complicated, 14
cost estimation. See Estimating project cost.
duration, sprint length, 85–86
ranking complexity, 14
simple, 14
size and complexity, estimating team velocity,

57
technology and requirements, 14

 Index 443

Promiscuous pairing, 225–227
Provost, Peter, 224, 227–228
Punctuality, daily Scrum meeting, 209
Putnam, Lawrence, 45

Quality. See Value.
Questions, daily Scrum meetings

fourth question, 217–221, 432
keys to success, 220–221
standard three questions, 432
a story, 217–220

Questions, sprint retrospective meetings,
433–434

Quiz for determining sprint length, 88–90

Rambling, in daily Scrum meetings, 210–211
Range, Estimate, Focus, Learn, Effort, Communi-

cation, Team (REFLECT), 393–394
Ranges and changes model for contracts. See

 Contracts, ranges and changes model.
Ranges in estimates. See Story points.
Rants, retrospective meetings, 194
Rate-limiting paths. See Critical paths.
Rating the sprint, retrospective meetings, 200
Real data, estimating team velocity, 61–64
Rebellion, team culture, 247–249
Refactoring old code, 13, 125–126
Reference stories, 303
REFLECT (Range, Estimate, Focus, Learn, Effort,

Communication, Team), 393–394
Relative estimates

in cost estimation, 307–308
Fibonacci sequence, 59, 303

Release planning
contractual agreement, 360
degree of confidence, 148–151
delivering working software, 155–156
determining the end game, 153–154
estimating project costs, 309–310
inputs, 147–148
keys to success, 154–155
maintaining the plan, 151–152
outcomes, 153–154
a preliminary release plan, 147–148
prioritizing work items, 155
project cost, 152–153
refining estimates, 155
Scrum planning, 155–156
a story, 143–146
updating the plan, 155

Removing impediments, role of the ScrumMaster,
113

Reporting
progress. See Daily Scrum meetings; Retrospec-

tive meetings; Sprint review meetings;
Value, optimizing and measuring.

team performance, role of the ScrumMaster, 113
Resolving problems, role of the ScrumMaster, 113
Respect, Scrum value, 8
Retreatism, team culture, 247–249
Retrofitting legacy systems, 182
Retrospective meetings

attendance, 198
basic principles, 201
benefits of, 196–197
“Buy a Feature” game, 199
communication, 197
data collection, 198–199
description, 433–434
due diligence, 196–197
ground rules, 198
importance of, 200–201
keys to success, 200–201
physical environment, 197–198
planning, 197–198
prioritizing issues, 194–195, 199–200
purpose of, 200–202
rants, 194
rating the sprint, 200
role of the ScrumMaster, 198–199
running, 198–200
scheduling, 201–202
standard two questions, 433–434
standing versus sitting, 197
a story, 193–196
successful outsourcing, 334
team consultants, 47
timing, 197

Review meetings. See Sprint review meetings.
Rework, delivering working software, 285–286
Rhythm, daily Scrum meeting, 209–210
Risk management

adding team members, 239
core team, 423–424
customer risk, 421, 423
keys to success, 424–425
prioritizing, 283, 429–430
product owner, 421, 423
by role, 422
ScrumMaster, 423
social risk, 423
a story, 419–420
technical risk, 423–424
typical software project risks, 420–421

444 Index

Ritualism, team culture, 247–249
ROI cutoff, 363
Roles

choosing, 74–75
descriptions, 428–429. See also specific roles.
key competencies, 74–75
keys to success, 78–79
mapped to project manager duties, 74–75
mixing, 75–78
a story, 69–72

Rothman, Johanna, 171
Roughly right versus precisely wrong, 307

Satir, Virginia, 15
Satir’s Stages of Change, 15–17
Scenarios. See Stories.
Scheduling. See also Done, defining.

daily Scrum meeting, 208–209
retrospective meetings, 201–202
undone work, 101

Schwaber, Ken, 7, 23, 92, 272, 431
Screening candidates. See Immersive interviewing,

candidate screening.
Scrum

artifacts, types of, 429–431. See also specific
artifacts.

definition, 6–7
evaluating your need for, 13–14
getting started. See Implementing Scrum.
planning, 155–156. See also Release planning.

Scrum Emergency Procedures, 257
Scrum framework, successful outsourcing,

333–334
Scrum meetings, types of, 431–434. See also specific

meetings.
Scrum roles. See Roles.
Scrum values

commitment, 8
courage, 8
focus, 8
openness, 8
respect, 8

ScrumMaster
combining with other roles, 75–77
definition, 428
responsibilities, 73
in retrospective meetings, 198–199
risk management, 423
rotating among team members, 79

ScrumMaster, as full-time job
breaking up fights, 113
day-to-day tasks, 112–114
driving organizational change, 115

educating the organization, 115
employee costs, 109–112
facilitating team activities, 114
helping out, 114
impact on the team, 106–112
key functions, 104
managing people, 113
removing impediments, 113
reporting team performance, 113–114
resolving problems, 113
servant leadership, 114
a story, 103–106

Senior-level people, interviewing, 402–403
Sense of urgency, enlisting support for Scrum,

30–31
Servant leadership, role of the ScrumMaster, 114
Shippable code. See Potentially shippable code.
Shore, James, 129
Shortening sprints, 377–378
Short-term wins, enlisting support for Scrum, 33
Simple projects, technology and requirements, 14
Size

core teams, 45–46
team consultant pools, 45–46
user stories, 301–305, 307–308

Skills and competencies
core teams, 42–43
focusing interviews on competencies, 405
immersive interviewing, 400, 405–406
key competencies for roles, 74–75
team consultants, 42–43
testing competencies in new team members, 234,

237–238
Slides

a story, 184–186
template for, 187–188

Sliger, Michele, 372
Social deviance, team culture, 246
Social risk, 423
Software development. See Projects.
SOLID class design principles, 126
Sorting issues, definition of done, 98–100
Spikes, 293–294
Sponsors, enlisting support for Scrum, 31
Sprint backlog, 430–431. See also Product backlog.
Sprint length

choosing, 84–85, 88–90
company culture, 86
criteria for, 84–85
customer group, 86–87
decomposing tasks, 87
in excess of one month, 92
extending, 92

 Index 445

guidelines for, 88–90
keys to success, 91–92
product owner environment, 86–87
project duration, 85–86
quiz for determining, 88–90
Scrum team, 87
shortening, a story, 370
stakeholder group, 86–87
a story, 81–84
two weeks, a story, 370
warning signs, 90

Sprint retrospective meetings. See Retrospective
meetings.

Sprint review meetings. See also Daily Scrum
meetings.

description, 433
documenting decisions, 189–190
duration, 187
encouraging participants, 190
keys to success, 188–190
overview, 186–187
planning, 189
preparing for, 187–188
running, 188
stories, customer acceptance, 190
a story, 183–186
successful outsourcing, 334
team consultants, 47

Sprint review meetings, PowerPoint slides
a story, 184–186
template for, 187–188

Sprints
canceling, 259–260
cost. See Estimating project cost.
preconditions for, 295–296
rating during retrospective meetings, 200
reducing scope, 258–259
removing impediments, 258
shortening, 377–378
two-week, 377–378

Stability versus volatility, documentation, 322
Stacey, Ralph, 14
Stakeholders

educating, 298
meetings, legacy systems, 180–181
prioritizing and estimating product backlog,

343–346
sprint length, 86–87

Standing versus sitting
daily Scrum meeting, 214
retrospective meetings, 197

Standup meetings. See Daily Scrum meetings.
Sterling, Chris, 13

Stories
collaboration, estimating tasks, 367–371
contracts, 349–353
core hours, 135–138
core teams, 35–39
creating and estimating, contractual agreement,

359
daily Scrum meetings, 205–208
decomposing. See Decomposing stories.
decomposing tasks. See Decomposing tasks.
defect management, 169–170
defining done, 93–95
definition, 160, 292
delivering working software, 277–281
documentation, 313–316
emergency procedures, team options, 255–257
enlisting support of people, 23–29
gaining customer acceptance, 190
hierarchy of, 160
implementing Scrum, 1–6
legacy systems, 175–177
meetings, 1–6
pair programming, 223–225
planning, 1–6
potentially shippable code, 277–281
PowerPoint slides, 184–186
product backlog, prioritizing and estimating,

339–341
project cost, estimating, 301–305
questions, daily Scrum meetings, 217–220
reference, 303
reference, decomposing, 59
release planning, 143–146
retrospective meetings, 193–196
roles, 69–72
ScrumMaster, as full-time job, 103–106
slides, 184–186
sprint length, 81–84, 370
sprint review meetings, 183–186
sustainable pace, 265–269
sustained engineering, 175–177
task boards, 370
Task Poker, 369–370
tasks, estimating, 367–371
TDD (Test-Driven Development), 119–123
team consultants, 35–39
team culture, 241–246
team members, adding, 233–235
team velocity, estimating, 51–56
value, optimizing and measuring, 289–291

Stories, estimating project cost
cards, 306–307
confirmation, 307

446 Index

Stories, estimating project cost, continued
conversations, 307
creating, 307–308
prioritizing, 308
sizing, 301–305, 307–308
team velocity, 308–309
three C’s, 307

Storming, stage of team development, 235–237
Story points

advantages of, 387
data collection, 391
data-based improvements, 391–393
estimates becoming commitments, 387
estimates in ranges, 385–386, 388–391
keys to success, 391–393
REFLECT (Range, Estimate, Focus, Learn, Effort,

Communication, Team), 393–394
relation to hours, 393
a story, 383–386

Strain theory, team culture, 246–251
Strangler applications, legacy systems, 182
Sustainable pace

burndown charts, 273–274
burnout, 269–275
cycle time, 272
definition, 12
efficiency versus effectiveness, 274–275
hitting the wall, 267–269
increasing team time, 274
keys to success, 274–275
monitoring progress, 273–274
shortening iterations, 272
a story, 265–269

Sustained engineering. See also Legacy systems.
daily releases and standups, 180
goal planning, 180
keys to success, 181–182
retiring the legacy system, 182
retrofitting legacy code, 182
stakeholder meetings, 180–181
a story, 175–177
strangler applications, 182
tribal knowledge, 176

Sustained engineering models
data gathered over time, 179
dedicated team, 179–182
dedicated time, 178

Sutherland, Jeff
burndown, 273, 431
contractual deliverables, 361
estimating team velocity, 57
on legacy code, 181
contracts, 358

Scrum description, 7
Scrum Emergency Procedures, 257
termination clauses, 363

Tabaka, Jean, 114
Task boards

in collaboration, 378–380
a story, 370

Task Poker
common mistakes, 380
versus Planning Poker, 371
a story, 369–370
for task estimation, 380
team-level benefits, 380

Task Poker, keys to success
averaging task estimates, 381
hearing every voice, 380
investment in the outcome, 381
shared understanding, 381
task estimation, 380
task granularity estimates, 381
teamwork, 382

Task switching, 374
Tasks, decomposing

estimating task sizes, 164–167
example, 164–167
granularity, 167
sprint length, 87
a story, 157–159

Tasks, definition, 160
Tasks, estimating. See also Task Poker.

ATL (active task limit), 373–377
in collaboration. See Collaboration, estimating

tasks.
granularity, 381
open items, limiting, 373–377
pair programming, 373
relative sizing and time estimation, 372
shortening sprints, 377–378
a story, 367–371
task boards, 378–380
task switching, 374
two-week sprints, 377–378
WIP (work in progress), limiting, 374–377
work items, limiting, 373–377

Taxes on team performance, 292–293
TDD (Test-Driven Development)

acceptance tests, 129–131
automated integration, 129–131
benefit in teams, 124–125
benefits of, 133
building into the product backlog, 132
code smells, 125–126

 Index 447

continuous integration, 126–128
definition, 13
definition of done, 132
education in, 132
getting started, 132
implementing, 124–125
improving existing code, 125–126
key practices, 123
keys to success, 131–133
limitations of, 131–132
pair programming, 128–129
principles of class design, 126
refactoring, 125–126
a story, 119–123
team buy in, 132
team status, 127–128
test automation pyramid, 129
training and coaching, 132–133

Team consultants
accountability, 47–48
building your team, 42–47
versus core teams, 43–44, 46, 49. See also Core

teams.
establishing a pool, 40–42
keys to success, 47–49
management support, 48
meetings, 46–47
optimal pool size, 45–46
overloading, 49
overview, 39–40
planning for downtime, 49
skills and competencies, 42–43
small-scale experiments, 48
a story, 35–39
time management, 37–39
transition plans, 40–41

Team members
bus factor, 214
combining with other roles, 75–77
expendability, 214
rotating the ScrumMaster role, 79

Team members, adding. See also Outsourcing.
Brooks’ law (adding manpower to late projects),

45, 233
considering team culture, 238
developmental stages, 235–237
drop in velocity, 238
forming, 235–237
group cohesion, 329
integrating new members, 234, 237–238
keys to success, 238–239
norming, 235–237
pair programming, 234

performing, 235–237
risks, 239
storming, 235–237
a story, 233–235
testing competencies, 234, 237–238

Team velocity
contractual agreement, 360
definition, 51
estimating. See Estimating team velocity.
estimating project cost, 308–309
penalty for adding team members, 238
a story, 51–56

Teams. See also Collaboration; Core teams;
People.

auxiliary. See Team consultants.
building, successful outsourcing, 332–333
buy in to TDD, 132
capacity, estimating team velocity, 59–60
colocated, 138–140
dedicated. See Core teams.
definition, 428–429
distributed, 140–141
long-term retention, true costs of outsourcing,

329–330
newness, estimating team velocity, 57
optimal size, 35
part-time, 141–142
prioritizing and estimating product backlog,

342–343
reporting performance, role of the ScrumMaster,

113–114
sprint length, 87
status reporting, 127–128
taxes on performance, 292
work schedules. See Core hours.

Teamwork, daily Scrum meeting, 214–215
Technical debt, 294–295
Technical risk, 423–424
Test first. See TDD (Test-Driven Development).
Test-Driven Development (TDD). See TDD

(Test-Driven Development).
Testing. See also TDD (Test-Driven Development).

automation pyramid, TDD, 129
competencies of new team members, 234,

237–238
frequent, effects on defects, 171

Themes
decomposing, 162–163, 167
definition, 160

Three C’s of user stories, 307
Time frame for implementing Scrum, 18
Time limits, prioritizing and estimating product

backlog, 347

448 Index

Time management
relative sizing and time estimation, 372
team consultants, 37–39

Time zones, true costs of outsourcing, 332
Timeline, contractual agreement, 359–360
Timing

contractual agreement, 356–358
retrospective meetings, 197

Traditional contracts. See Contracts, traditional
model.

Training and coaching. See Educating.
Transition plans

team consultants, 40–41
true costs of outsourcing, 328–329

Transparency, 292–294
Travel requirements, successful outsourcing, 335–336
Trends, determining, 298–299
Tribal knowledge, 176
Truncated data collection, estimating team velocity,

64–65
Trust factor in contracts, 363
Tuckman, Bruce, 235–238
Two-week sprints, in collaboration, 377–378

Ullman, Ellen, 317
Undone work, rescheduling, 101
User stories. See Stories.
User types (personas), identifying, 359

Vagueness, daily Scrum meeting, 212
Validation, delivering working software, 283–284
Value, optimizing and measuring

defect management, 295
determining trends and patterns, 298–299
educating stakeholders, 298
feature work, 292–294
keys to success, 297–299
preconditions, 295–296
presenting data, 296–297

spikes, 293–294
stories, definition, 292
a story, 289–291
structuring data, 296
taxes on team performance, 292
technical debt, 294–295
transparency, 292–294

Values, Scrum
commitment, 8
courage, 8
focus, 8
implementing Scrum, 7–8
openness, 8
respect, 8

Valve Software, hiring practices, 404–405, 406
Velocity. See Team velocity.
Vision, enlisting support for Scrum, 31

Wagner, Anthony D., 374
Wait and see (real data) method, estimating team

velocity, 61–64
Wall, hitting, 267–269
Wheelwright, Steven, 374
Williams, Laurie, 128, 129, 223
Wilson, Brad, 227
Wilson, Peter, 227
Window of opportunity, delivering working soft-

ware, 283
WIP (work in progress), limiting during task esti-

mation, 374–377
Work items, limiting in collaboration, 373–377
Work packages, 330, 333, 335
Workload estimation. See Burndown.

XP (Extreme Programming)
implementing Scrum, 12–13
practices required for Scrum, 12–13

Ziv’s law (predicting software development), xx–xxi

	Contents
	Foreword by Jeff Sutherland
	Foreword by Kenneth S. Rubin
	Preface
	Acknowledgments
	About the Author
	Chapter 27 Documentation in Scrum Projects
	The Story
	The Model
	Why Do We Document?
	What Do We Document?
	When and How Do We Document?
	Documenting in an Agile Project
	Starting Projects without Extensive Documentation

	Keys to Success
	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [1224.000 792.000]
>> setpagedevice

