
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134034300
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134034300
https://plusone.google.com/share?url=http://www.informit.com/title/9780134034300
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134034300
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134034300/Free-Sample-Chapter

 Multiplayer Game
Programming

Essential References for Game Designers and Developers

These practical guides, written by distinguished professors and industry gurus,
cover basic tenets of game design and development using a straightforward,

common-sense approach. The books encourage readers to try things on their own
and think for themselves, making it easier for anyone to learn how to design and
develop digital games for both computers and mobile devices.

Visit informit.com/series/gamedesign for a complete list of available publications.

Make sure to connect with us!
informit .com/socialconnect

The Addison-Wesley
Game Design and Development Series

http://www.informit.com/series/gamedesign
http://www.informit.com/socialconnect

 Multiplayer Game
Programming

 Architecting Networked Games

 Joshua Glazer

 Sanjay Madhav

 New York • Boston • Indianapolis • San Francisco
 Toronto • Montreal • London • Munich • Paris • Madrid
 Cape Town • Sydney • Tokyo • Singapore • Mexico City

 Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals

 The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

 For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

 For government sales inquiries, please contact governmentsales@pearsoned.com .

 For questions about sales outside the U.S., please contact international@pearsoned.com .

 Visit us on the Web: informit.com/aw

 Library of Congress Control Number: 2015950053

 Copyright © 2016 Pearson Education, Inc.

 All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to
use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, 200 Old Tappan Road, Old Tappan, New Jersey 07675, or you
may fax your request to (201) 236-3290.

 ISBN-13: 978-013-403430-0
 ISBN-10: 0-134-03430-9

 Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville, Indiana.
First printing: November 2015

 Editor-in-Chief
Mark Taub

 Acquisitions Editor
Laura Lewin

 Development Editor
Michael Thurston

 Managing Editor
Kristy Hart

 Project Editor
Andy Beaster

 Copy Editor
Cenveo ® Publisher
Services

 Indexer
Cenveo® Publisher
Services

 Proofreader
Cenveo® Publisher
Services

 Technical Reader
Alexander Boczar
Jeff Tucker
Jonathan Rucker

 Editorial Assistant
Olivia Basegio

 Cover Designer
Chuti Prasertsith

 Compositor
Cenveo® Publisher
Services

http://www.informit.com/aw

 To Grilled Cilantro and the Jellybean. You know who you are.
–Joshua Glazer

To my family for their support, and to all of my TAs over the years.
–Sanjay Madhav

This page intentionally left blank

 Contents

 1 Overview of Networked Games . 1

A Brief History of Multiplayer Games 2

Starsiege: Tribes . 5

Age of Empires . 10

Summary . 13

Review Questions . 14

Additional Readings . 14

 2 The Internet . 15

Origins: Packet Switching . 16

The TCP/IP Layer Cake . 17

The Physical Layer . 19

The Link Layer . 19

The Network Layer . 23

The Transport Layer . 39

The Application Layer . 52

NAT. . 53

Summary . 60

Review Questions . 61

Additional Readings . 62

 3 Berkeley Sockets . 65

Creating Sockets . 66

API Operating System Differences 68

Socket Address . 71

UDP Sockets . 79

TCP Sockets . 83

Blocking and Non-Blocking I/O . 88

Additional Socket Options . 96

Summary . 98

Review Questions . 98

Additional Readings . 99

 4 Object Serialization . 101

The Need for Serialization . 102

Streams . 105

Referenced Data . 119

Compression . 124

Maintainability . 130

Summary . 136

Review Questions . 136

Additional Readings . 137

 5 Object Replication . 139

The State of the World . 140

Replicating an Object . 140

Naïve World State Replication . 148

Changes in World State . 152

RPCs as Serialized Objects . 159

Custom Solutions . 162

Summary . 163

Review Questions. 163

Additional Readings . 164

 6 Network Topologies and Sample Games 165

Network Topologies . 166

Implementing Client-Server . 170

Implementing Peer-to-Peer . 182

Summary . 196

Review Questions. 197

Additional Reading. 197

 7 Latency, Jitter, and Reliability . 199

Latency . 200

Jitter . 204

Packet Loss . 206

Reliability: TCP or UDP? . 207

Packet Delivery Notification . 209

Object Replication Reliability . 221

Simulating Real-World Conditions 228

Summary . 230

Review Questions . 231

Additional Readings . 232

 8 Improved Latency Handling . 233

The Dumb Terminal Client . 234

Client Side Interpolation . 236

Client Side Prediction . 238

Server Side Rewind. 248

Summary . 249

Review Questions . 250

Additional Readings . 251

 9 Scalability . 253

Object Scope and Relevancy . 254

Server Partitioning . 260

Instancing . 262

Prioritization and Frequency . 263

Summary . 263

Review Questions . 264

Additional Readings . 264

 10 Security . 265

Packet Sniffing . 266

Input Validation . 270

Software Cheat Detection . 271

Securing the Server . 274

Summary . 277

Review Questions . 278

Additional Readings . 278

 11 Real-World Engines . 279

Unreal Engine 4 . 280

Unity . 284

Summary . 287

Review Questions . 288

Additional Readings . 288

 12 Gamer Services . 289

Choosing a Gamer Service . 290

Basic Setup . 290

Lobbies and Matchmaking . 294

Networking . 298

Player Statistics . 300

Player Achievements . 305

Leaderboards . 307

Other Services . 308

Summary . 309

Review Questions . 310

Additional Readings . 310

 13 Cloud Hosting Dedicated Servers 311

To Host or Not To Host . 312

Tools of the Trade . 313

Overview and Terminology . 315

Local Server Process Manager . 318

Virtual Machine Manager . 324

Summary . 333

Review Questions . 334

Additional Readings . 334

 Appendix A A Modern C++ Primer . 337

C++11 . 338

References . 339

Templates . 341

Smart Pointers . 343

STL Containers . 347

Iterators . 350

Additional Readings . 351

 Index . 353

This page intentionally left blank

 PREFACE xiii

 PREFACE

 Networked multiplayer games are a huge part of the games industry today. The number of

players and amount of money involved are staggering. As of 2014, League of Legends boasts

67 million active players each month. The 2015 DoTA 2 world championship has a prize pool of

over $16 million at the time of writing. The Call of Duty series, popular in part due to the

multiplayer mode, regularly has new releases break $1 billion in sales within the first few days of

release. Even games that have historically been single-player only, such as the Grand Theft Auto

series, now include networked multiplayer components.

 This book takes an in-depth look at all the major concepts necessary to program a networked

multiplayer game. The book starts by covering the basics of networking—how the Internet

works and how to send data to other computers. Once the fundamentals are established, the

book discusses the basics of transmitting data for games—how to prepare game data to be

sent over the network, how to update game objects over the network, and how to organize the

computers involved in the game. The book next discusses how to compensate for unreliability

and lag on the Internet, and how to design game code to scale and be secure. Chapters 12 and

 13 cover integrating gamer services into and using cloud hosting for dedicated servers—two

topics that are extremely important for networked games today.

 This book takes a very practical approach. Most chapters not only discuss the concepts, they

walk you through the actual code necessary to get your networked game working. The full

source code for two different games is provided on the companion website—one game is an

action game and the other is a real-time strategy (RTS). To help with the progression of topics,

multiple versions of these two games are presented throughout the course of this book.

 Much of the content in this book is based on curriculum developed for a multiplayer-game

programming course at the University of Southern California. As such, it contains a proven

method for learning how to develop multiplayer games. That being said, this book is not

written solely for those in an academic setting. The approach taken by this book is just as

valuable to any game programmer interested in learning how to engineer for a networked

game.

 Who Should Read This Book?
 While Appendix A covers some aspects of modern C++ used in this book, it is assumed that

the reader already is comfortable with C++. It is further assumed that the reader is familiar with

xiv PREFACE

the standard data structures typically covered in a CS2 course. If you are unfamiliar with C++ or

want to brush up on data structures, an excellent book to refer to is Programming Abstractions in
C++ by Eric Roberts.

 It is further assumed that the reader already knows how to program single-player games. The

reader should ideally be familiar with game loops, game object models, vector math, and basic

game physics. If you are unfamiliar with these concepts, you will want to first start with an

introductory game programming book such as Game Programming Algorithms and Techniques

by Sanjay Madhav.

 As previously mentioned, this book should be equally effective either in an academic

environment or for game programmers who simply want to learn about networked games.

Even game programmers in the industry who have not previously made networked games

should find a host of useful information in this book.

 Conventions Used in This Book
 Code is always written in a fixed-point font. Small code snippets may be presented either

 inline or in standalone paragraphs:

 std::cout << “Hello, world!” << std::endl;

 Longer code segments are presented in code listings, as in Listing 0.1.

 Listing 0.1 Sample Code Listing

 // Hello world program!
 int main()
 {
 std::cout << “Hello, world!” << std::endl;
 return 0;
 }

 For readability, code samples are color coded much like in an IDE.

 Throughout this book, you will see some paragraphs marked as notes, tips, sidebars, and

warnings. Samples of each are provided for the remainder of this section.

 note

 Notes contain useful information that is separate from the flow of the normal text

of the section. Notes should almost always be read.

 PREFACE xv

 tip

 Tips are used to provide helpful hints when implementing specific systems in your

game’s code.

 warning

 Warnings are very important to read, as they contain common pitfalls or issues to

watch out for, and ways to solve or work around these issues.

 SIDEBAR

 Sidebars contain lengthier discussions that usually are tangential to the main

content of the chapter. These can provide some interesting insight to a variety of

issues, but contain content that is deemed nonessential to the pedagogical goals

of the chapter.

 Why C++?
 The vast majority of this book uses C++ because it is still the de facto language used in the

game industry by game engine programmers. Although some engines allow a great deal

of code for a game to be written in other languages, such as Unity in C#, it is important to

remember that most of the lower-level code for these engines is still written in C++. Since

this book is focused on writing a networked multiplayer game from the ground up, it makes

the most sense to do so in the language that most game engines are written in. That being

said, even if you are writing all your game’s networking code in another language, all the core

concepts will still largely be the same. Still, it is recommended that you be familiar with C++,

otherwise the code samples may not make much sense.

 Why JavaScript?
 Since starting off life as a hastily hacked together scripting language to support the Netscape

browser, JavaScript has evolved into a standardized, full-featured, somewhat functional language.

Its popularity as a client-side language helped it make the leap to server side, where its first-class

procedures, simple closure syntax, and dynamically typed nature make it very efficient for the

rapid development of event-driven services. It’s a little hard to refactor and it provides worse

performance than C++, making it a bad choice for next-generation front-end development.

xvi PREFACE

 That’s not an issue on the backend, where scaling up a service can mean nothing more

than dragging a slider to the right. The backend examples in Chapter 13 use JavaScript, and

understanding them will require a decent knowledge of the language. As of this writing,

JavaScript is currently the number one most active language on GitHub by a margin of almost

50%. Following trends for the sake of trends is rarely a good idea, but being able to program in

the world’s most popular language definitely has its benefits.

 Companion Website
 The companion website for this book is at https://github.com/MultiplayerBook. The website has

a link to the sample code used throughout the book. It also contains the errata, as well as links

to PowerPoint slides and a sample syllabus for use in an academic setting.

https://github.com/MultiplayerBook

 ACKNOWLEDGMENTS

 We would like to thank the entire team at Pearson for guiding this book through completion.

This includes our Executive Editor, Laura Lewin, who convinced us to get the band together

and write this book. Olivia Basegio, our Assistant Editor, has been great to ensure the process

goes along smoothly. Michael Thurston, our Development Editor, has provided insight to help

us improve the content. We would also like to thank the entire production team, including Andy

Beaster, our production editor and Cenveo® Publisher Services.

 Our technical reviewers, Alexander Boczar, Jonathan Rucker, and Jeff Tucker, were instrumental

in ensuring the accuracy of this book. We would like to thank them for taking time out of their

busy schedule to review the chapters. Finally, we’d like to thank Valve Software for allowing us

to write about the Steamworks SDK, as well as reviewing Chapter 12 .

 Acknowledgments from Joshua Glazer
 Thank you so much Lori and McKinney for your infinite understanding, support, love, and smiles.

You are the best family ever. I lost a lot of time with you guys while writing this book, but hey, I’m

done now! Wooh! Thank you mom and dad for raising and loving me and making sure I could write

English at least within two orders of magnitude of how well I write code. Thank you Beth for the

innumerable amazing things you’ve done for the world and also for watching my cats sometimes.

Thank you all my extended family for the support and belief and for sounding impressed that

I’m writing a textbook. Thank you Charles and all my Naked Sky Pros (short for programmers) for

keeping me on my toes and pointing out whenever I’m being really daft. Thank you Tian and Sam

for dragging me into this ludicrous industry. Thank you Sensei Copping for teaching me that the

man who cleans his house by dirtying his closet has destroyed himself. And, of course, thank you

Sanjay for bringing me on board at USC and tackling this mega undertaking with me! I never could

have done this without your wisdom and cool-headedness, not to mention you writing half the

stuff! (Oh yeah, and thank you to Lori again, just in case you missed the first one!)

 Acknowledgments from Sanjay Madhav
 There is a correlation between the number of books an author has written and the length of

their acknowledgements. Since I wrote a lot of acknowledgements in my last book, I’ll keep

it short this time. I’d of course like to thank my parents and my sister. I’d also like to thank my

colleagues in the Information Technology Program at USC. Finally, I’d like to thank Josh for

agreeing to teach our “Multiplayer Game Programming” course, because this book would not

have happened were it not for that course.

 ABOUT THE AUTHORS

 Joshua Glazer is a cofounder and CTO of Naked Sky Entertainment, the independent

development studio behind console and PC games such as RoboBlitz , MicroBot , Twister Mania ,

and more recently, the mobile hits Max Axe and Scrap Force . As a leader of the Naked Sky

team, he has consulted on several external projects including Epic Games’ Unreal Engine, Riot

Games’ League of Legends , THQ’s Destroy All Humans franchise, and numerous other projects for

Electronic Arts, Midway, Microsoft, and Paramount Pictures.

 Joshua is also a part-time lecturer at the University of Southern California, where he has

enjoyed teaching courses in multiplayer game programming and game engine development.

 Sanjay Madhav is a senior lecturer at the University of Southern California, where he teaches

several programming and video game programming courses. His flagship course is an

undergraduate-level game programming course that he has taught since 2008, but he has

taught several other course topics, including game engines, data structures, and compiler

development. He is also the author of Game Programming Algorithms and Techniques .

 Prior to joining USC, Sanjay worked as a programmer at several video game developers,

including Electronic Arts, Neversoft, and Pandemic Studios. His credited games include Medal of
Honor: Pacific Assault , Tony Hawk’s Project 8 , Lord of the Rings: Conquest , and The Saboteur— most

of which had networked multiplayer in one form or another.

 C H A P T E R 1

 OVERVIEW OF

NETWORKED GAMES

 Although there are notable exceptions, the concept

of networked multiplayer games didn’t really catch

on with mainstream gamers until the 1990s. This

chapter first gives a brief history of how multiplayer

games evolved from the early networked games of

the 1970s to the massive industry today. Next, the

chapter provides an overview of the architecture

of two popular network games from the 1990s—

Starsiege: Tribes and Age of Empires . Many of the

techniques used in these games are still in use

today, so this discussion gives insight into the

overall challenges of engineering a networked

multiplayer game.

2 CHAPTER 1 OVERVIEW OF NETWORKED GAMES

 A Brief History of Multiplayer Games
 The progenitor of the modern networked multiplayer game began on university mainframe

systems in the 1970s. However, this type of game didn’t explode until Internet access became

common in the mid-to-late 1990s. This section gives a brief overview of how networked games

first started out, and the many ways these types of games have evolved in the nearly half

century since the first such games.

 Local Multiplayer Games

 Some of the earliest video games featured local multiplayer , meaning they were designed

for two or more players to play the game on a single computer. This included some very early

games such as including Tennis for Two (1958) and Spacewar! (1962). For the most part, local

multiplayer games can be programmed in the same manner as single-player games. The only

differences typically are multiple viewpoints and/or supporting multiple input devices. Since

programming local multiplayer games is so similar to single-player games, this book does not

spend any time on them.

 Early Networked Multiplayer Games

 The first networked multiplayer games were run on small networks composed of mainframe

computers. What distinguishes a networked multiplayer game from a local multiplayer game is

that networked games have two or more computers connected to each other during an active

game session. One such early mainframe network was the PLATO system, which was developed

at the University of Illinois. It was on the PLATO system that one of the first networked games,

the turn-based strategy game Empire (1973), was created. Around the same time as Empire , the

first-person networked game Maze War was created, and there is not a clear consensus as to

which of these two games was created first.

 As personal computers started to gain some adoption in the latter part of the 1970s,

developers figured out ways to have two computers communicate with each other over

serial ports. A serial port allows for data to be transmitted one bit at a time, and its typical

purpose was to communicate with external devices such as printers or modems. However,

it was also possible to connect two computers to each other and have them communicate

via this connection. This made it possible to create a game session that persisted over

multiple personal computers, and led to some of the earliest networked PC games. The

December 1980 issue of BYTE Magazine featured an article on how to program so-called

Multimachine Games in BASIC (Wasserman and Stryker 1980).

 One big drawback of using serial ports was that computers typically did not have more than two

serial ports (unless an expansion card was used). This meant that in order to connect more than

two computers via serial port, a daisy chain scheme where multiple computers are connected

to each other in a ring had to be used. This could be considered a type of network topology, a

topic that is covered in far more detail in Chapter 6 , “Network Topologies and Sample Games.”

 A BRIEF HISTORY OF MULTIPLAYER GAMES 3

 So in spite of the technology being available in the early 1980s, most games released during

the decade did not really take advantage of local networking in this manner. It wasn’t until

the 1990s that the idea of locally connecting several computers to play a game really gained

traction, as discussed later in this chapter.

 Multi-User Dungeons

 A multi-user dungeon or MUD is a (usually text-based) style of multiplayer game where

several players are connected to the same virtual world at once. This type of game first gained

popularity on mainframes at major universities, and the term originates from the game MUD

(1978), which was created by Rob Trushaw at Essex University. In some ways, MUDs can be

thought of as an early computer version of the role-playing game Dungeons and Dragons ,

though not all MUDs are necessarily role-playing games.

 Once personal computers became more powerful, hardware manufacturers began to offer

modems that allowed two computers to communicate with each other over standard phone

lines. Although the transmission rates were extraordinarily slow by modern standards, this

allowed for MUDs to be played outside the university setting. Some ran MUD games on a

 bulletin board system (BBS), which allowed for multiple users to connect via modem to a

system that could run many things including games.

 Local Area Network Games

 A local area network or LAN is a term used to describe several computers connected to each

other within a relatively small area. The mechanism used for the local connection can vary—for

example, the serial port connections discussed earlier in this chapter would be one example

of a local area network. However, local area networks really took off with the proliferation of

Ethernet (a protocol which is discussed in more detail in Chapter 2 , “The Internet”).

 While by no means the first game to support LAN multiplayer, Doom (1993) was in many

ways the progenitor of the modern networked game. The initial version of the id Software

first-person shooter supported up to four players in a single game session, with the option to

play cooperatively or in a competitive “deathmatch.” Since Doom was a fast-paced action game,

it required implementation of several of the key concepts covered in this book. Of course, these

techniques have evolved a great deal since 1993, but the influence of Doom is widely accepted.

For much greater detail on the history and creation of Doom , read Masters of Doom (2003), listed

in the references at the conclusion of this chapter.

 Many games that support networked multiplayer over a LAN also supported networked

 multiplayer in other ways—whether by modem connection or an online network. For many years,

the vast majority of networked games also supported gaming on a LAN. This led to the rise of LAN

parties where people would meet at a location and connect their computers to play networked

games. Although some networked multiplayer games are still released with LAN play, the trend in

recent years seems to have developers forgoing LAN play for exclusively online multiplayer.

4 CHAPTER 1 OVERVIEW OF NETWORKED GAMES

 Online Games

 In an online game , players connect to each other over some large network with geographically

distant computers. Today, online gaming is synonymous with Internet gaming, but the term

“online” is a bit broader and can include some of the earlier networks such as CompuServe that,

originally, did not connect to the Internet.

 As the Internet started to explode in the late 1990s, online games took off alongside it. Some

of the popular games in the earlier years included id Software’s Quake (1996) and Epic Game’s

 Unreal (1998).

 Although it may seem like an online game could be implemented in much the same way as a

LAN game, a major consideration is latency , or the amount of time it takes data to travel over

the network. In fact, the initial version of Quake wasn’t really designed to work over an Internet

connection, and it wasn’t until the QuakeWorld patch that the game was reliably playable over

the Internet. Methods to compensate for latency are covered in much greater detail in Chapter 7 ,

“Latency, Jitter, and Reliability” and Chapter 8 , “Improved Latency Handling.”

 Online games took off on consoles with the creation of services such as Xbox Live and

PlayStation Network in the 2000s, services that were direct descendants of PC-based services

such as GameSpy and DWANGO. These console services now regularly have several million

active users during peak hours (though with expansion of video streaming and other services

to consoles, not all of these active users may be playing a game). Chapter 12 , “Gamer Services,”

discusses how to integrate one such gamer service—Steam—into a PC game.

 Massively Multiplayer Online Games

 Even today, most online multiplayer games are limited to a small number of players per game

session—somewhere from 4 to 32 is commonly the number of supported players. In a Massively
Multiplayer Online Game (MMO), however, hundreds if not thousands of players can participate

in a single game session. Most MMO games are role-playing games and thus called MMORPGs .

However, there are certainly other styles of MMO games such as first-person shooters (MMOFPS).

 In many ways, MMORPGs can be thought of as the graphical evolution of multi-user dungeons.

Some of the earliest MMORPGs actually predated the widespread adoption of the Internet,

and instead functioned over dial-in networks such as Quantum Link (later America Online)

and CompuServe. One of the first such games was Habitat (1986) which implemented several

pieces of novel technology (Morningstar and Farmer 1991). However, it wasn’t until the Internet

became more widely adopted that the genre gained more traction. One of the first big hits was

 Ultima Online (1997).

 Other MMORPGs such as EverQuest (1999) were also successful, but the genre took the world by

storm with the release of World of Warcraft (2004). At one point, Blizzard’s MMORPG had over

 STARSIEGE: TRIBES 5

12 million active subscribers worldwide, and the game became such a large part of popular

culture that it was featured in a 2006 episode of the animated series South Park .

 Architecting an MMO is a complex technical challenge, and some of these challenges are

discussed in Chapter 9 , “Scalability.” However, most of the techniques necessary to create an

MMO are well beyond the scope of this book. That being said, the foundations of creating

a smaller-scale networked game are important to understand before it’s possible to even

consider creating an MMO.

 Mobile Networked Games

 As gaming has expanded to the mobile landscape, multiplayer games have followed right along.

Many multiplayer games on these platforms are asynchronous —typically turn-based games

that do not require real-time transmission of data. In this model, players are notified when it is

their turn, and have a large amount of time to make their move. The asynchronous model has

existed from the very beginning of networked multiplayer games. Some BBS only had one

incoming phone line connection, which meant that only one user could be connected at any

one time. Thus, a player would connect, take their turn, and disconnect. Then at some point in

the future, another player would connect and be able to respond and take their own turn.

 An example of a mobile game that uses asynchronous multiplayer is Words with Friends (2009).

From a technical standpoint, an asynchronous networked game is simpler to implement than a

real-time one. This is especially true on mobile platforms, because the platform APIs (application

program interfaces) have built-in functionality for asynchronous communication. Originally,

using an asynchronous model for mobile games was somewhat out of necessity because the

reliability of mobile networks is comparatively poor to wired connections. However, with the

proliferation of Wi-Fi–capable devices and improvements to mobile networks, more and more

real-time networked games are appearing on these devices. An example of a mobile game that

takes advantage of real-time network communication is Hearthstone: Heroes of Warcraft (2014).

 Starsiege: Tribes
 Starsiege: Tribes is a sci-fi first-person shooter that was released at the end of 1998. At the time of

release, it was well regarded as a game featuring both fast-paced combat and a comparatively

massive number of players. Some game modes supported 128 players over either a LAN or the

Internet. To gain some perspective on the magnitude of the challenge in implementing such a

game, keep in mind that during this time period, the vast majority of players with an Internet

connection used a dial-up service. At best, these dial-up users had a modem capable of speeds

up to 56.6 kbps. In the case of Tribes , it actually supported users with modem speeds of only

28.8 kbps. By modern standards, these are extremely slow connection speeds. Another factor

was that dial-up connections also had relatively high latency—a latency of several hundred

milliseconds was rather common.

6 CHAPTER 1 OVERVIEW OF NETWORKED GAMES

 It may seem that a networking model designed for a game with low bandwidth constraints

would be irrelevant in the modern day. However, it turns out that the model used in Tribes still

has a great deal of validity even today. This section summarizes the original Tribes networking

model—for a more in-depth discussion, refer to the article by Frohnmayer and Gift referenced

at the end of this chapter.

 Do not be concerned if some of the concepts covered in this section don’t entirely make sense

right now. The intent is that by looking at a networked multiplayer game’s architecture at a high

level, you will gain an appreciation for the numerous technical challenges faced and decisions to

be made. All the topics touched on in this section are covered in much greater detail throughout

the remainder of this book. Furthermore, one of the sample games built throughout this book,

 RoboCat Action , ultimately uses a model similar to the Tribes networking model.

 One of the first choices made when engineering a networked game is to choose a

 communications protocol , or an established convention by which data is exchanged

between two computers. Chapter 2 , “The Internet,” covers how the Internet works and the

commonly used protocols. Chapter 3 , “Berkeley Sockets,” covers a ubiquitous library used to

facilitate communication via these protocols. For the sake of the current discussion, the only

thing you need to know is that, for efficiency reasons, Tribes uses an unreliable protocol. This

means that data sent over the network is not guaranteed to be received by the destination.

 However, using an unreliable protocol can be problematic when a game needs to send

information that is important to all the players in the game. Thus, the engineers needed to

consider the different types data they wanted to send out. The developers of Tribes ultimately

separated their data requirements into the following four categories:

 1. Non-guaranteed data. As one might expect, this is data that the game designates as

nonessential to the game. When bandwidth-starved, the game can choose to drop this

data first.

 2. Guaranteed data. This data guarantees both arrival and ordering of the data in question.

This is used for data deemed critical by the game, such as an event signifying when a player

has fired a weapon.

 3. “Most recent state” data. This type of data is for cases where only the most recent version

of the data is of importance. One example is the hit points of a particular player. A player’s

hit points 5 seconds ago are not terribly relevant if the game knows what their hit points

are right now.

 4. Guaranteed quickest data. This data is given the highest priority in order to transmit

as quickly as possible with guaranteed delivery. An example of this type of data is player

movement information, which is typically relevant for a very short period of time, and thus

should be transmitted quickly.

 Many of the implementation decisions made in the Tribes Networking Model center on

providing these four types of data transmission.

 STARSIEGE: TRIBES 7

 Another important design decision was to utilize a client-server model instead of a peer-to-peer

model. In a client-server model , players all connect to a central server, whereas in a

peer-to-peer model , every player connects to every other player. As discussed in Chapter 6 ,

“Network Topologies and Sample Games,” a peer-to-peer model requires O(n2) bandwidth. This

means that the bandwidth grows at a quadratic rate based on the number of users. In this case,

with n being as high as 128, using peer-to-peer would lead to very little bandwidth per player.

To avoid this issue, Tribes instead implemented a client-server model. In this configuration, the

bandwidth requirements of each player remain constant, while the server must handle only O(n)

bandwidth. However, this meant that the server needed to be on a network that would allow for

several incoming connections—the type of connection that only a company or university might

have owned at the time.

 Next, Tribes split up their networking implementation into several different layers—one can

think of this as a “layer cake” of the Tribes Networking Model. This is illustrated in Figure 1.1 . The

remainder of this section briefly describes the composition of each of these layers.

Game’s Simulation Layer

Stream Manager

Connection Manager

Platform Packet Module

Ghost
Manager

Move
Manager

Event
Manager

Other
…

 Figure 1.1 The main components of the Tribes Networking Model

 Platform Packet Module

 A packet is a formatted set of data sent over a network. In the Tribes model, the platform
packet module is the lowest layer. It is the only layer in the model that is platform-specific. In

essence, this layer is a wrapper for the standard socket APIs that can construct and send various

packet formats. The implementation of this layer might look rather similar to the systems

implemented in Chapter 3 , “Berkeley Sockets.”

 Since Tribes utilized an unreliable protocol, the developers needed to add some mechanism to

handle the data they decided needed to be guaranteed. Similar to the approach discussed

in Chapter 7 , “Latency, Jitter, and Reliability,” Tribes implemented a custom reliability layer.

However, this reliability layer is not handled by the platform packet module; instead the higher

level managers such as the ghost manager, move manager, or event manager are responsible

for adding any reliability.

8 CHAPTER 1 OVERVIEW OF NETWORKED GAMES

 Connection Manager

 The job of the connection manager is to abstract the connection between two computers

over the network. It receives data from the layer above it, the stream manager, and transmits

data to the layer below it, the platform packet module.

 The connection manager level is still unreliable. It does not guarantee delivery of data sent to it.

However, the connection manager does guarantee a delivery status notification —that is to

say, the status of a request passed to the connection manager can be verified. In this way, it is

possible for the level above the connection manager (the stream manager) to know whether or

not particular data was successfully delivered.

 The delivery status notification is implemented with a sliding window bit field of

acknowledgments. Although the original Tribes Networking Model paper does not contain

a detailed discussion regarding the implementation of the connection manager, an

implementation of a similar system is discussed in Chapter 7 , “Latency, Jitter, and Reliability.”

 Stream Manager

 The primary job of the stream manager is to send data to the connection manager. One

important aspect of this is determining the maximum rate of data transmission that is allowed.

This will vary depending on the quality of the Internet connection. An example given in the

original paper is where a user on a 28.8-kbps modem might have their packet rate set to

10 packets per second with a maximum size of 200 bytes per packet, for approximately 2 kB of

data per second. This rate and size is sent to the server upon connection of the client, in order

to ensure that the server does not overwhelm the client’s connection with too much data.

 Since several other systems will ask the stream manager to send data, it is also the duty of the

stream manager to prioritize these requests. The move, event, and ghost managers are given

the highest priority when in a bandwidth-bound scenario. Once the stream manager decides

on what data to send, the packets are dispatched to the connection manager. In turn, the

higher-level managers will be informed by the stream manager regarding the status of delivery.

 Because of the set interval and packet size enforced by the stream manager, it is very much

possible for a packet to be dispatched with multiple types of data in it. For example, a packet

may have some data from the move manager, some data from the event manager, and some

data from the ghost manager.

 Event Manager

 The event manager maintains a queue of events that are generated by the game’s simulation.

These events can be thought of as a simple form of a remote procedure call or RPC , a

function that can be executed on a remote machine. RPCs are discussed in Chapter 5 , “Object

Replication.”

 STARSIEGE: TRIBES 9

 For example, when a player fires a weapon, this would likely cause a “player fired” event to be

sent to the event manager. This event can then be sent to the server, which will actually validate

and execute the weapon firing. It is also the purview of the event manager to prioritize the

events—it will try to write as many of the highest priority events as possible until any of the

following conditions are true: the packet is full, the event queue is empty, or there are currently

too many active events.

 The event manager also tracks the transmission records for each event marked as reliable.

In this way, it is very simple for the event manager to enforce reliability. If a reliable event is

 unacknowledged, then the event manager can simply prepend the event to the event queue

and try again. Of course, there will be some events that are marked as unreliable. For these

unreliable events, there is no need to even track their transmission records.

 Ghost Manager

 The ghost manager is perhaps the most important system in terms of supporting up to

128 players. At a high level, the job of the ghost manager is to replicate or “ghost” dynamic

objects that are deemed relevant to a particular client. In other words, the server sends

information about dynamic objects to the clients, but only the objects that the server thinks

the client needs to know about. The game’s simulation layer is responsible for determining

what a client absolutely needs to know and what a client ideally should know. This adds an

inherent prioritization to game objects in the world: “need to know” objects are the highest

priority, while “should know” objects are lower priority. In order to determine whether or not

an object is relevant to a particular client, there are several different approaches that can be

employed. Chapter 9 , “Scalability,” covers some of these approaches. In general, determining

object relevancy is very game-specific.

 Regardless of how the set of relevant objects is computed, the job of the ghost manager is to

transmit object state from server to client for as many relevant objects as possible. It’s very

important that the ghost manager guarantees that the most recent data is always successfully

transmitted to all of the clients. The reason for this is that the game object information that is

ghosted will often contain information such as health, weapons, ammo count, and so on—all

cases where the most recent data is the only information that matters.

 When an object becomes relevant (or “in scope”), the ghost manager will assign some

information to the object, which is appropriately called a ghost record . This record will include

items such as a unique ID, a state mask, the priority, and status change (whether or not the

object has been marked as in or out of scope).

 For transmission of the ghost records, the objects are prioritized first by status change and

then by the priority level. Once the ghost manager determines the objects that should be sent,

their data can be added to the outgoing packet using an approach similar to what is covered in

 Chapter 5 , “Object Replication.”

10 CHAPTER 1 OVERVIEW OF NETWORKED GAMES

 Move Manager

 The responsibility of the move manager is to transmit player movement data as quickly as

possible. If you’ve ever played a fast-paced multiplayer game, you are likely cognizant of the

fact that accurate movement information is extremely important. If the information regarding a

player’s position is slow to arrive, it could result in players shooting at where a player used to be

instead of where a player is, which can result in frustrating gameplay. Quick movement updates

can be an important way to reduce the perception of latency on the part of player.

 The other reason the move manager is assigned a high priority is because input data is

captured at 30 FPS. This means there is new input information available 30 times per second,

so the latest data is sent as quickly as possible. This higher priority also means that, when move

data is available, the stream manager will always first add any pending move manager data

to an outgoing packet. Each client is responsible for transmitting their move information to

the server. The server then applies this move information in its simulation of the game, and

acknowledges the receipt of the move information to the client who sent it.

 Other Systems

 There are a few other systems in the Tribes model, though these are less critical to the overarching

design. For example, there is a datablock manager, which handles transmission of game objects

that are relatively static in nature. This differs from the relatively dynamic objects that are handled

by the ghost manager. An example for this might be a static vehicle such as a turret—the object

doesn’t really move, but it exists to serve a purpose when a player interacts with it.

 Age of Empires
 As with Tribes , the real-time strategy (RTS) game Age of Empires was released in the late 1990s.

This means that Age of Empires faced many of the same bandwidth and latency constraints

of dial-up Internet access. Age of Empires uses a deterministic lockstep networking model.

In this model, all the computers are connected to each other, meaning it is peer-to-peer. A

guaranteed deterministic simulation of the game is concurrently performed by each of the

peers. It is lockstep because peers use communication to ensure that they remain synchronized

throughout the game. As with Tribes , even though the deterministic lockstep model has existed

for many years, it is still commonly used in modern RTS games. The other sample game built

during the course of this book, RoboCat RTS , implements a deterministic lockstep model.

 One of the largest differences between implementing networked multiplayer for an RTS

instead of an FPS is the number of relevant units. In Tribes , even though there are up to

128 players, at any particular point in time only a fraction of these players is going to be relevant

to a particular client. This means that the ghost manager in Tribes rarely has to send information

about more than 20 to 30 ghosts at a time.

 AGE OF EMPIRES 11

 Contrast this with an RTS such as Age of Empires . Although the player cap is much smaller

(limited to eight simultaneous players in the original game), each player can control a large

number of units. The original Age of Empires capped the number of units for each player at

50, whereas in later games the cap was as high as 200. Using the cap of 50, this means that

in a massive eight-player battle, there could be up to 400 units active at a time. Although it

is natural to wonder if some sort of relevancy system could reduce the number of units that

need to be synchronized, it’s important to consider the worst-case scenario. What if a battle

toward the end of a game featured the armies of all eight players? In this case, there are

going to be several hundred units that are relevant at the same time. It would be hard for the

synchronization to keep up even if a minimal amount of information is sent per unit.

 To alleviate this issue, the engineers for Age of Empires decided to synchronize the commands

each player issued, rather than synchronizing the units. There’s a subtle but important

distinction in this implementation—even a professional RTS player may be able to issue no

more than 300 commands per minute. This means that even in an extreme case, the game

need only transmit a few commands per second per each player. This requires a much more

manageable amount of bandwidth than transmitting information about several hundred units.

However, given that the game is no longer transmitting unit information over the network,

each instance of the game needs to independently apply the commands transmitted by each

player. Since each game instance is performing an independent simulation, it is of the utmost

importance that each game instance remains synchronized with the other game instances. This

ends up being the largest challenge of implementing the deterministic lockstep model.

 Turn Timers

 Since every game instance is performing an independent simulation, it makes sense to utilize

a peer-to-peer topology. As discussed in Chapter 6 , “Network Topologies and Sample Games,”

one advantage of a peer-to-peer model is that data can reach every computer more quickly.

This is because the server is not acting as a middleman. However, one disadvantage is that each

player needs to send their information to every other player, as opposed to just a single server.

So for example, if player A issues an attack command, then every game instance needs to be

aware of this attack command, or their simulations would diverge from each other.

 However, there is another key factor to consider. Different players are going to run the game

at different frame rates, and different players are going to have different quality connections.

Going back to the example where player A issues an attack command, it’s just as important

that player A does not immediately apply the attack command. Instead, player A should only

apply the attack command once players B, C, and D are all ready to simultaneously apply the

command. But this introduces a conundrum: If player A’s game waits too long to execute the

attack command, the game will seem very unresponsive.

 The solution to this problem is to introduce a turn timer to queue up commands. With the

turn timer approach, first a turn length is selected—in the case of Age of Empires , the default

12 CHAPTER 1 OVERVIEW OF NETWORKED GAMES

duration was 200 ms. All commands during these 200 ms are saved into a buffer. When the

200 ms are over, all the commands for that player’s turn are transmitted over the network to all

other players. Another key aspect of this system is a turn execution delay of two turns. What

this means is that, for example, commands that are issued by the player on turn 50 will not be

executed by any game until turn 52. In the case of a 200-ms turn timer, this means that the

 input lag , the amount of time it takes for a player’s command to be displayed on screen, could

be as high as 600 ms. However, the two turns of slack allows for every other player to receive

and acknowledge the commands for a particular turn. It may seem slightly counterintuitive for

an RTS game to actually have turns, but you can see the hallmarks of the turn timer approach in

many different RTS games, including StarCraft II . Of course, modern games can have the luxury

of shorter turn timers since bandwidth and latency are much better for most users today in

comparison to the late 1990s.

 There is one important edge case to consider with the turn timer approach. What happens

if one of the players experiences a lag spike and they can no longer keep up with the

200-ms timer? Some games might temporarily pause the simulation to see if the lag spike can

be overcome—eventually, the game may decide to drop the player if they continue to slow

down the game for everyone else. Age of Empires also tries to compensate for this scenario by

dynamically adjusting the rendering frame rate based on network conditions—thus a computer

with a particularly slow Internet connection might allocate more time to receive data over the

network, with less time being allotted for rendering graphics. For more detail on the dynamic

turn adjustment, consult the original Bettner and Terrano article listed in the references.

 There’s also an extra benefit of transmitting the commands issued by the clients. With such an

approach, it does not take much extra memory or work to save the commands issued over the

course of an entire match. This directly leads to the possibility of implementing savable match

replays, as in Age of Empires II . Replays are very popular in RTS games because it allows players

to evaluate matches to gain a deeper understanding of strategies. It would require significantly

more memory and overhead to create replays in an approach that transmitted unit information

instead of commands.

 Synchronization

 Turn timers alone are not enough to guarantee synchronization between each peer. Since each

machine is receiving and processing commands independently, it is of the utmost importance

that each machine arrives at an identical result. In their paper, Bettner and Terrano write that

“the difficulty with finding out-of-sync errors is that very subtle differences would multiply over

time. A deer slightly out of alignment when the random map was created would forage slightly

differently—and minutes later a villager would path a tiny bit off, or miss with his spear and

take home no meat.”

 One concrete example arises from the fact that most games have some amount of randomness

in actions. For instance, what if the game performs a random check in order to determine

 SUMMARY 13

whether or not an archer hits an infantry? It would be conceivable that player A’s instance

decides the archer does hit the infantry, whereas player B’s instance decides the archer doesn’t

hit the infantry. The solution to this problem is to exploit the “pseudo” prefix of the pseudo-
random number generator (PRNG). Since all PRNGs use some sort of seeding, the way you can

guarantee both players A and B arrive at the same random results is to synchronize the seed

value across all game instances. One should keep in mind, however, that a seed only guarantees

a particular sequence of numbers. So not only is it important that each game instance uses the

same seed, it’s equally important that each game instance makes the same number of calls to

the random generation number—otherwise the PRNG numbers will become out of sync. PRNG

synchronization in a peer-to-peer configuration is further elaborated in Chapter 6 , “Network

Topologies and Sample Games.”

 There is also an implicit advantage to checking for synchronization—it reduces the opportunity

for players to cheat. For example, if one player gives themselves 500 extra resources, the other

game instances could immediately detect the desynchronization in the game state. It would

then be trivial to kick the offending player out of the game. However, as with any system, there

are tradeoffs—the fact that each game state simulates each unit in the game means that it is

possible to create cheats that reveal information that should not be visible. This means that the

so-called “map hacks” that reveal the entire map are still a common issue in most RTS games.

This and other security concerns are covered in Chapter 10 , “Security.”

 Summary
 Networked multiplayer games have a lengthy history. They began as games playable on networks

of mainframe computers, such as Empire (1973), which was playable on the PLATO network.

Networked games later expanded to text-based multi-user dungeon games. These MUDs later

expanded to bulletin board systems which allowed for users to dial in over phone lines.

 In the early 1990s, local area network games, led by Doom (1993), took the computer gaming

world by storm. These games allowed for players to locally connect multiple computers and

play with or against each other. As adoption of the Internet expanded in the late 1990s, online

games such as Unreal (1998) became very popular. Online games also started to see adoption

on consoles in the early 2000s. One type of online game is the massively multiplayer online

game, which supports hundreds if not thousands of players in the same game session at once.

 Starsiege: Tribes (1998) implemented a network architecture still relevant to a modern-day

action game. It uses a client-server model, so each player in the game is connected to a server

that coordinates the game. At the lowest level, the platform packet module abstracts sending

packets over the network. Next, the connection manager maintains connections between the

players and the server, and provides delivery status notifications. The stream manager takes data

from the higher-level managers (including the event, ghost, and move managers), and based on

priority, adds this data to outgoing packets. The event manager takes important events, such as

“player fired” and ensures that this data is received by the relevant parties. The ghost manager

14 CHAPTER 1 OVERVIEW OF NETWORKED GAMES

handles sending object updates for the set of objects deemed relevant for a particular player.

The move manager sends the most recent movement information for each player.

 Age of Empires (1997) implemented a deterministic lockstep model. All computers in the game

connect to each other in a peer-to-peer manner. Rather than sending information about each

unit over the network, the game instead sends commands to each peer. These commands are

then independently evaluated by each peer. In order to ensure the machines stay synchronized,

a turn timer is used to save up commands over a period of time before sending them over the

network. These commands are not executed until two turns later, which gives enough time for

each peer to send and receive turn commands. Additionally, it is important that each peer runs

a deterministic simulation, which means, for example, pseudo-random number generators

need to be synchronized.

 Review Questions
 1. What is the difference between a local multiplayer game and a networked multiplayer game?

 2. What are three different types of local network connections?

 3. What is a major consideration when converting a networked game that works over a LAN

to work over the Internet?

 4. What is an MUD, and what type of game did it evolve into?

 5. How does an MMO differ from a standard online game?

 6. In the Tribes model, which system(s) provide reliability?

 7. Describe how the ghost manager in the Tribes model reconstructs the minimal necessary

transmission in the event that a packet is dropped.

 8. In the Age of Empires peer-to-peer model, what is the purpose of the turn timer? What

 information is transmitted over the network to the other peers?

 Additional Readings
 Bettner, Paul and Mark Terrano. “1500 Archers on a 28.8: Network Programming in Age of

Empires and Beyond.” Presented at the Game Developer’s Conference, San Francisco, CA, 2001.

 Frohnmayer, Mark and Tim Gift. “The Tribes Engine Networking Model.” Presented at the Game

Developer’s Conference, San Francisco, CA, 2001.

 Koster, Raph. “Online World Timeline.” Raph Koster’s Website . Last modified February 20, 2002.

 http://www.raphkoster.com/gaming/mudtimeline.shtml .

 Kushner, David. Masters of Doom: How Two Guys Created an Empire and Transformed Pop Culture .

New York: Random House, 2003.

 Morningstar, Chip and F. Randall Farmer. “The Lessons of Lucasfilm’s Habitat.” In Cyberspace: First
Steps , edited by Michael Benedikt, 273-301. Cambridge: MIT Press, 1991.

 Wasserman, Ken and Tim Stryker. “Multimachine Games.” Byte Magazine , December 1980, 24-40.

http://www.raphkoster.com/gaming/mudtimeline.shtml

This page intentionally left blank

 INDEX

 Page numbers followed by " f " and " t " indicate fi gures and tables, respectively.

 A

 AchieveData, 305
 Achieve.def, 305
 ACK fl ag, 46
 acknowledgment. See also packet delivery

notifi cation
 delivery status and, 216 – 221
 pending, 213 – 216
 processing, 216 – 218

 acknowledgment number (32 -bits), 43
 ACK packet, 51 , 52
 AckRange, 213 – 215 , 216 – 218
 Actor class, 281
 actor replication

 defi ned, 282
 Unreal Engine 4 , 282 – 283

 AddPendingAck(), 213
 address, bind function, 78
 address_len, bind function, 79
 address resolution protocol (ARP), 26 – 28

 hardware address length (8 bits), 28
 hardware type (16 bits), 27
 operation (16 bits), 28
 packet structure, 27 – 28 , 27 f
 protocol address length (8 bits), 28
 protocol type (16 bits), 27
 sender hardware address (variable length), 28
 sender protocol address (variable length), 28
 table, 27 t
 target hardware address (variable length), 28
 target protocol address (variable length), 28

 AddToStat, 304 – 305
 AF_INET, 66 , 66 t
 AF_INET 6 , 66 , 66 t
 AF_IPX, 66 t
 af parameter, 66

 AF_UNSPEC, 66 t
 Age of Empires, 10 – 13

 deterministic lockstep model, 10
 synchronization, 12 – 13
 turn timer, 11 – 12

 AIController class, 281
 API, socket creation, 66
 app ID, 290
 application layer, 52 – 53

 DHCP, 52
 DNS, 52 – 53

 ARPANET, 16
 Asheron's Call, 256
 askCloudProviderForVM function, 329
 assertions

 runtime, 342
 static, 342 – 343

 asynchronous, 5
 async.series function, 329
 authoritative server, 167
 authority, 282 – 283
 autonomous proxy, 282

 B

 backend server development, 313
 bad data, 274 – 275
 ban wave, 273
 Battlefi eld , 167
 BBN Report 1822, 17
 BBS. See bulletin board system (BBS)
 Berkeley Sockets API. See socket
 Bettner, Paul, 12
 bind function, 78 – 79
 binding address to socket, 78 –7912
 bit streams, 114 – 119

 input memory, 119

INDEX354

 client function, 283 – 284
 client proxy, 177
 ClientProxy class, 180 – 181
 client RPC function, 286
 client-server topology, 7 , 166 – 168 , 166 f

 authoritative server, 167
 dedicated server, 167
 host migration, 168
 implementing, 170 – 182
 listen server, 168
 Unity, 285
 Unreal, 281 – 282

 client side interpolation, 236 – 237
 interpolation period, 237
 packet period, 237
 timing, 236 f

 client side prediction, 238 – 248
 dead reckoning, 240 – 242 , 241 f
 optimistic algorithm, 241

 closesocket function, 67
 cloud hosting dedicated server

 benefi ts, 313
 drawbacks, 312
 game server machine, 317
 game server process, 316 – 317
 hardware, 317
 JSON, 314
 LSPM, 318 – 324
 Node.JS, 314 – 315
 overview, 311
 REST, 313 – 314
 server game instance, 316
 terminology, 315 – 317
 tools, 313 – 315
 VMM, 324 – 333

 cloudProviderId, 327
 command, in Unity, 286
 Command class, 186 – 187
 CommandList, 188
 communications protocol, 6
 complexity, cloud hosting server, 312
 Component classes, 285
 compression, 123 – 130

 entropy encoding, 125 – 127
 fi xed point, 127 – 129
 geometry, 129 – 130
 sparse array, 124 – 125

 ComputeGlobalCRC, 194 – 195

 bit streams (continued)
memory, 114
 output memory, 114 – 119
 serialization of fi eld's value, 149 – 150

 Blizzard Entertainment, 273
 Blueprint, 283
 Bluetooth, 21
 bot, 272
 bReplicateMovement fl ag, 283
 broadcast address

 MAC address, 30
 subnet mask, 30

 buf, receiving data
 TCP socket, 86
 UDP socket, 80

 buf, sending data
 TCP socket, 85
 UDP socket, 79 – 80

 bulletin board system (BBS), 3
 BYTE Magazine, 2
 bytes, 43
 ByteSwap function, 113
 ByteSwapper, 113
 byte swapping functions, 111 – 113

 C

 C#, built-in refl ection systems, 133
 C++, 337

 offsetof macro, 135
 refl ection systems, 133

 C++ 11 , 338 – 339
 auto, 338
 nullptr, 339

 callback function, 329
 cheat prevention, cloud hosting server, 313
 checkHeartbeat function, 323 , 332
 checksum (16 bits), 194

 IPv 4 packet header, 25
 UDP header, 42

 CheckSync function, 195
 CIDR. See classless inter-domain routing (CIDR)
 circuit switching, 16 , 16 f
 class identifi er

 object creation registry, 144 – 148
 replication, 142 – 144

 classless inter-domain routing (CIDR), 31
 client code for move lists, 179 – 180

 355 INDEX

 destination address (32 bits), 26
 destination port (16 bits)

 TCP header, 42
 UDP header, 41

 deterministic lockstep model, 10
 DHCP. See Dynamic host confi guration protocol

(DHCP)
 DHCPDISCOVER message, 52
 DHCPOFFER packet, 52
 digital rights management (DRM), 313
 display lag, 202
 distributed denial-of-service attack (DDoS), 274
 DNS. See Domain name system (DNS)
 Docker Container format, 325
 DoClientSidePredictionAfter

ReplicationForLocalCat, 247
 DoClientSidePredictionAfter

ReplicationForRemoteCat, 247
 Domain name system (DNS), 52 – 53
 do not fragment fl ag, 36
 DownloadLeaderboardEntries

function, 308
 DRM. See digital rights management (DRM)
 dumb terminal client, 234 – 236
 Dynamic host confi guration protocol (DHCP), 52
 dynamic ports, 40

 E

 eMachineState object, 321
 embedding. See inlining/embedding
 Empire, 2
 endianness, 110 – 113

 big-endian, 110
 byte swapping functions, 111 – 113
 little-endian, 110

 Engine::DoFrame, 293
 Engine::StaticInit, 292
 EnterLobby function, 295
 entropy, 125 , 192
 entropy encoding, 125 – 127 . See also compression
 EPrimitiveType, 134
 errno, 70
 Ethernet, 21 – 23

 FCS, 23
 hubs, 23
 MAC address, 21 – 22
 NIC, 21 , 22

 congestion control, 50 – 51
 connection manager, 8
 conservative algorithm, 235
 const-correctness, 341
 const member function, 340 – 341
 const reference, 340
 control bits (9 bits), 43
 Controller class, 281
 cost, cloud hosting server, 312
 Counter-Strike, 248
 CRC. See cyclic redundancy check (CRC)
 Create function, 280
 CreateGameObjectFromStream

functions, 144
 CreateTCPSocket function, 88
 C++ REST SDK, 324
 cryptography, 267 – 269
 CSteamID class, 293
 cyclic redundancy check (CRC), 23 , 194 – 195

 D

 daisy chain, 2
 data driven serialization, 133 – 135
 data off set (4 bits), 43
 data transmission, TCP, 46 – 51

 congestion control, 50 – 51
 delayed acknowledgment, 50
 fl ow control, 49 – 50 , 49 f
 with no packet loss, 47 f
 in order, 48
 packet lost and retransmitted, 47 f

 DataType class, 134
 data type registry, 148
 DDoS. See distributed denial-of-service attack

(DDoS)
 dead reckoning, 240 – 242 , 241 f . See also client

side prediction
 dedicated server, 167

 Unity, 285
 Unreal, 281 – 282

 default address, 34
 delayed acknowledgment, 50
 DeliveryNotificationManager,

 216 – 221 , 227 – 228
 delivery status, receiving acknowledgment

and, 216 – 221
 delivery status notifi cation, 8

INDEX356

 choosing, 290
 leaderboards, 307 – 308
 lobbies and matchmaking, 294 – 298
 networking, 298 – 300
 other options, 308 – 309
 overview, 289
 player achievements, 305 – 306
 player statistics, 300 – 305

 GamerServices class, 291 , 298
 GamerServices.h, 291
 GamerServices::Impl, 295 , 303
 GamerServices object, 291 , 303
 GamerServiceSocket class, 292
 GamerServices::StaticInit, 292
 GamerServicesSteam.cpp, 291
 GamerServices::Update, 293
 game server machine, 317
 game server process, 316 – 317
 gAvailableVMs map, 326 , 329 , 330
 geometry compression, 129 – 130
 GetDataType virtual function, 148
 GetDesiredHorizontalDelta

function, 178
 GetDesiredVerticalDelta function, 178
 getFirstAvailableVM function, 327
 GetLobbyPlayerMap function, 297
 GetLocalPlayerId function, 293
 GetOffsetof method, 135
 GetPrimitiveType method, 135
 GetSize, 74
 GetStatInt, 304 – 305
 GetTimeDispatched(), 219
 gHeartbeatCheckPeriod, 323
 ghost manager, 9
 gMachineState, 321 , 332
 gMaxProcessCount, 321
 gMaxRunningHeartbeat, 323
 Google on IPv 6 , 38
 gProcessCount, 321
 gProcesses, 321
 gProcesses map, 321
 guaranteed data, 6
 guaranteed quickest data, 6

 H

 HandleDeliveryFailure(), 226
 hardware address length (8 bits), 28

 Ethernet (continued)
OUI, 21
 switches, 23

 EtherType, 22 , 25
 event manager, 8 – 9
 Express JS, 315
 ExtendIfShould(), 215

 F

 FCS. See frame check sequence (FCS)
 fi le output stream, 105
 FIN packet, 51 – 52
 FIN packet, 67 – 68
 fi xed point compression, 127 – 129
 fl agging functions, in Unity, 286
 flags, receiving data

 TCP socket, 86
 UDP socket, 80

 flags, sending data
 TCP socket, 85
 UDP socket, 80

 fl ow control, TCP, 49 – 50 , 49 f
 fragmentation, IPv 4 , 35 – 38

 concept, 35
 do not fragment fl ag, 36
 fragment fl ags (3 bits), 25 , 36
 fragment identifi cation (16 bits), 25 , 35
 fragment off set (13 bits), 25 , 35
 relevant header fi elds, 36 , 36 t

 fragment fl ags (3 bits), 25 , 36
 fragment identifi cation (16 bits), 25 , 35
 fragment off set (13 bits), 25 , 35
 frame, 19

 delivery of, 20
 jumbo, 22

 frame check sequence (FCS), 23
 frequency, 263
 from, receiving data

 UDP socket, 81
 fuzz testing, 274 – 275

 G

 game instance. See server game instance
 GameObject class, 285
 gamer service

 basic setup, 290 – 294

 357 INDEX

 interpolation period, 237 . See also client side
interpolation

 intrusions, 276 – 277
 IP address

 DHCP server, 52
 DNS and, 52 – 53
 ICANN distribution, 53
 loopback, 35
 name server and, 53
 ports and, 41
 privately routable, 53 – 54 , 54 t
 as publically routable, 53
 subnet mask and, 30 , 30 t
 zero network broadcast address, 35

 IPPROTO_TCP options, 97 t
 IPv 4 , 24 – 38

 ARP, 26 – 28
 concept, 24
 fragmentation, 35 – 38
 IP address, 24
 IPv 6 vs., 39
 packet, 24 – 26
 prefi x, 39
 subnet and indirect routing, 29 – 35 . See also

subnet mask
 IPv 6 , 38 – 39

 address forms, 39 t
 fi nal 64 bits of, 39
 fi rst 64 bits of, 39
 Google on, 38
 interface identifi er, 39
 IPv 4 vs., 39

 IsInput method, 131
 ISocketSubsystem class, 280
 iterators, 350 – 351

 J

 Java, 314
 built-in refl ection systems, 133

 JavaScript object notation (JSON), 314
 jitter, 204 – 205

 defi ned, 204
 processing delay, 205
 propagation delay, 205
 queuing delay, 205
 simulating, 228 – 230
 transmission delay, 205

 hardware type (16 bits), 27
 hashing algorithm for passwords, 277
 hash maps, VMM, 326
 header checksum (16 bits), 25
 header length (4 bits), 25
 heartbeat monitoring system, 330 – 332
 Hearthstone: Heroes of Warcraft, 5
 helper functions, 178
 host migration, 168
 how, 67 – 68
 HTTP, 313 – 314
 hubs, 23

 I

 IANA. See Internet Assigned Numbers Authority
(IANA)

 ICANN. See Internet Corporation for Assigned
Names and Numbers (ICANN)

 IGDP. See Internet gateway device protocol
(IGDP)

 indirect routing, IPv 4 . See subnet mask
 InFlightPackets, 217 – 218 , 228
 in-fl ight packets, optimization from, 226 – 228
 information cheat, 269
 inGameObject, 142
 InitDataType function, 134
 inlining/embedding, 120 – 121
 input lag, 12
 InputManager class, 177 , 178
 InputMemoryStream class, 131
 input memory streams, 108 – 109
 input sampling latency, 200
 input sharing model, 169
 InputState class, 177 – 178
 input stream, 105
 input validation, 270 – 271
 instancing, 262
 interface identifi er, 39 . See also IPv 6
 Internet. See IP address; TCP/IP suit
 Internet Assigned Numbers Authority (IANA), 40
 Internet Corporation for Assigned Names and

Numbers (ICANN), 40 , 53
 Internet gateway device protocol (IGDP), 60
 Internet protocol version 4 . See IPv 4
 Internet Service Provider (ISP), 32 – 33
 InterpolateClientSidePrediction(),

 247

INDEX358

 kill routes, 319 – 321
 launch, 319 – 321
 process monitoring, 322 – 324
 sending heartbeat to, 323 – 324

 loopback, 35
 lpWSAData, 70
 LSPM. See local server process manager (LSPM)

 M

 MAC (media access control) address, 21 – 22
 mAchieveArray, 305
 machine images, 317
 machineState, 326
 man-in-the-middle attack, 266 – 269 , 266 f

 concept, 266
 public key cryptography, 267 – 268 , 268 f

 map hacking, 272
 map hacks, 13
 Massively Multiplayer Online Game (MMO), 4 – 5
 master peer, 169 , 183
 matchmaking, 169

 gamer service, 294 – 298
 Unity, 285 – 286

 maximum segment size (MSS), 48
 maximum transmission unit (MTU), 22
 Maze War, 2
 media access control (MAC). See MAC (media

access control) address
 members, VM object, 326 – 327
 MemberVariable class, 134 , 135
 MemoryStream, 131 – 132 , 141
 memory streams, 106 – 110
 mMemberVariables, 134
 MMOFPS, 4
 MMORPG, 4 – 5
 mNetworkReplicationCommand, 222
 mobile networked games, 5
 MonoBehaviour, 285 , 287
 more fragments fl ag, 36
 most recent state data, 6
 MouseStatus function, 134
 Move class, 178 – 179
 MoveList class, 179 , 188
 move manager, 10
 MSS. See maximum segment size (MSS)
 MTU. See maximum transmission unit (MTU)
 MUD. See multi-user dungeon (MUD)

 JSON. See JavaScript object notation (JSON)
 jumbo frames, 22

 L

 lastHeartbeat, 321 , 326 , 332
 lastSequenceIndex, 326 , 332
 latency, 200 – 204

 defi ned, 200
 display lag, 202
 dumb terminal client, 234 – 236
 input sampling, 200
 multithreaded render pipeline, 201
 network, 202 – 204
 non-network, 200 – 202
 pixel response time, 202
 render pipeline, 200 – 201
 simulating, 228 – 230
 VSync, 201

 leaderboards, 307 – 308 . See also gamer service
 Leaderboards.def, 307
 League of Legends, 316
 len, sending data

 TCP socket, 85
 UDP socket, 80

 length (16 bits)
 IPv 4 packet, 25
 UDP header, 41

 linking, 121 – 123
 LinkingContext class, 122 – 123
 link layer, 19 – 23

 concept, 19
 duties of, 19
 Ethernet, 21 – 23
 physical medium and, 20 , 20 t
 shortcomings, 23 – 24

 listen server, 168
 Unity, 285
 Unreal, 282

 lobbies, gamer service, 294 – 298
 LobbyChatMsg_t callback, 297
 LobbySearchAsync function, 294 , 295
 local area network (LAN), 3 , 54
 localhost address. See loopback
 local multiplayer games, 2
 local perception fi lter, 236
 local server process manager (LSPM), 318 – 324

 initialization, 319 – 321

 359 INDEX

 NetworkManager::EnterLobby function, 296
 NetworkMatch class, 287
 NetworkServer, 285
 network stream, 105
 network topologies

 client-server, 166 – 168 , 166 f
 concept, 166
 peer-to-peer, 168 – 169 , 168 f
 Unity game engine, 285
 Unreal Engine 4 , 281 – 282

 NetworkTransport.Connect function, 285
 NIC. See network interface controller (NIC)
 Node.JS, 314 – 315
 Node package manager (npm), 314
 nodes, 17
 non-guaranteed data, 6
 non-network latency, 200 – 202
 nullptr, 339

 O

 object
 identifying serialized object, 141 – 142
 multiple, per packet, 148
 replication. See replication
 serialization. See serialization

 object creation registry, 144 – 148
 ObjectCreationRegistry, 163
 object relevancy, 254
 ObjectReplicationHeader, 162
 object state delta, 152 – 153
 octets, 43
 offsetof macro, 135
 OnDeserialize, 286
 online game, 4
 OnLobbyChatUpdate, 297
 OnLobbyCreateCallback, 295
 OnLobbyEnteredCallback, 295
 OnLobbyMatchListCallback functions, 295
 OnSerialize, 286
 OnStatsReceived, 303
 Open Systems Interconnection (OSI) model, 18
 operating system diff erences, for sockets, 68 – 71
 operation (16 bits), 28
 ## operator, 302
 optimistic algorithm, 241
 optimization from in-fl ight packets, 226 – 228
 organizationally unique identifi er (OUI), 21

 multicast function, 284
 multiplayer games

 brief history of, 2 – 5
 early networked, 2 – 3
 local area network, 3
 local multiplayer, 2
 MMO, 4 – 5
 mobile networked games, 5
 multi-user dungeon, 3
 online games, 4

 multithreaded render pipeline latency, 201
 multi-user dungeon (MUD), 3

 N

 Nagle's algorithm, 51
 name server, 53
 NAT. See network address translation (NAT)
 NAT table, 56

 original destination IP address and port to, 57
 STUN, 58 f

 NDP. See neighbor discovery protocol (NDP)
 neighbor discovery protocol (NDP), 39
 network address, 30
 network address translation (NAT), 53 – 60

 concept, 53
 functioning, 54 – 56
 privately routable IP address, 53 – 54 , 54 t
 STUN, 57 – 59
 traversal, 57 – 59

 NetworkBehaviour, 286
 networked multiplayer games. See multiplayer

games
 NetworkEventType, 285
 network interface controller (NIC), 21 , 22
 network latency

 processing delay, 202 – 203
 propagation delay, 203 , 204
 queuing delay, 203
 transmission delay, 203

 network layer, 23 – 39
 duty, 24
 IPv 4 , 24 – 38
 IPv 6 , 38 – 39

 NetworkManager class, 185
 Unity, 285
 Unreal, 280

 NetworkManagerClient, 179

INDEX360

 PlayerCat component, 285
 PlayerController, 281 , 283
 player IDs and name, 293 – 294
 pointers, 343 – 345

 shared, 345 – 346
 unique, 346
 weak, 346 – 347

 pointer to implementation, 291
 port(s)

 bind, 40
 concept, 40
 dynamic (49152 to 65535), 40
 IP addresses and, 41
 system (0 to 1023), 40
 user (1024 -49151), 40

 port assignment prediction, 60
 port number registry, 40
 POSIX-compatible operating systems, sockets

on, 68 – 69 , 70 – 71
 potentially visible set (PVS), 258 – 259
 preamble, 22
 prefab in Unity, 285 – 286
 prefi x, IPv 6 , 39
 prioritization, 263
 privately routable IP address, 53 – 54 , 54 t
 PRNG. See pseudo-random number generator

(PRNG)
 ProcessAcks(), 216 – 217
 ProcessCommand, 188
 ProcessCommand, 187 , 188
 processing delay

 jitter, 205
 network latency, 202 – 203

 ProcessReplicationAction, 160
 ProcessSequenceNumber(), 211 – 213
 ProcessTimedOutPackets(), 218
 propagation delay

 jitter, 205
 network latency, 203 , 204

 protocol (8 bits), 25
 protocol address length (8 bits), 28
 protocol type (16 bits), 27
 pseudo-random number generator (PRNG), 13

 synchronizing, 191 – 194
 PT_ReplicationData, 141 , 148
 publically routable IP address, 53
 public key cryptography, 267 – 269 , 268 f
 pure servers, 273
 PVS. See potentially visible set (PVS)

 OUI. See organizationally unique identifi er
(OUI)

 OutputMemoryBiyStream class
 declaration, 114
 WriteBits methods, 114 – 116

 OutputMemoryStream class, 131
 output memory streams, 106 – 108
 output stream, 105

 P

 packet, IPv 4 , 24 – 26
 packet delivery notifi cation, 209 – 221

 acknowledgments and delivery status, 216 – 221
 pending acknowledgment, 213 – 216
 processing incoming sequence number,

 211 – 213
 tagging outgoing packets, 210 – 211

 packet length (16 bits), IPv 4 header, 25
 packet loss, 206 – 207

 simulating, 228 – 230
 packet period, 237
 packets, 7 , 17
 packet sniffi ng

 concept, 266
 host machine, 269 – 270
 man-in-the-middle attack, 266 – 269

 packet switching, 16 – 17 , 17 f
 PacketType enum, 140 – 141 , 162
 partial object state replication, 156 – 159
 passwords, 276 – 277
 peer-to-peer topology, 7 , 11 , 168 – 169 , 168 f

 connecting new players in, 169
 implementing, 182 – 196
 input sharing model, 169
 synchronization, 191 – 196

 peer-to-peer validation system, 270 , 271
 pending acknowledgment

 adding, 213 – 215
 writing, 215 – 216

 perfect forwarding, 348
 physical layer, 19
 pixel response time, 202
 platform packet module, 7
 PLATO system, 2
 player, gamer service and

 achievements, 305 – 306
 IDs and name, 293 – 294
 statistics, 300 – 305

 361 INDEX

 render pipeline latency, 200 – 201
 rendezvous server, 184 , 184 f
 replication

 customization, 162
 defi ned, 140
 identifying class, 142 – 144
 marking packet, 140 – 141
 object creation registry, 144 – 148
 preparatory steps, 140
 reliability, 221 – 228
 RPC as serialized object, 159 – 162
 serialized object identifi er, 141 – 142
 Unity game engine, 286
 world state. See world state

 ReplicationCommand, 223
 replication commands, 177
 replication header, 153 – 154
 ReplicationHeader serialization

code, 160
 ReplicationManager, 161 , 162 , 221 – 227
 ReplicationTransmissionData, 227
 ReplicationTransmissions, 228
 replication update packets, 177
 representational state transfer (REST), 313 – 314
 RequestCurrentStats function, 305
 request library for REST, 329
 reserved ports. See system ports
 REST. See representational state transfer (REST)
 RetrieveStatsAsync, 303
 RFC 1122, 18
 RMI. See Remote Method Invocation (RMI)
 Robo Cat Action, 167

 client-server model, 170 – 182
 controls for, 170

 Robo Cat RTS
 hello packet, 183
 introduction packet, 183 – 184
 launching, 183
 master peer, 183
 peer-to-peer model, 182 – 196

 roles, 282
 authority, 282 , 283
 autonomous proxy, 282
 simulated proxy, 282

 round trip time (RTT), 167 , 204 , 234
 routing table, 31 , 31 t
 RPC. See remote procedure calls (RPC)
 RPCManager, 160 – 161 , 162
 RSA system, 268 – 269

 Q

 QosType enum, 284
 Quake, 234 – 235
 quaternion, 129
 queuing delay

 jitter, 205
 network latency, 203

 R

 random_device class, 193
 range-based for loop, 351
 Read function, 187
 ReadLastMoveProcessedOnServer

Timestamp, 245
 real-time strategy game. See Age of Empires
 reasonable copy protection, 313
 receive window (16 bits), 43
 receiving data

 TCP socket, 86
 UDP socket, 80 – 81

 recentLaunchUnknown, 330
 recv, TCP socket, 86
 recvfrom function, UDP socket, 80 – 81
 redis, 333
 reference, 339 – 341

 const, 340
 const member function, 340 – 341

 referenced data
 inlining/embedding, 120 – 121
 linking, 121 – 123

 refl ection systems, 133 – 134
 registered ports. See user ports
 reliability

 object replication, 221 – 228
 TCP, 207 – 208 , 209 t
 UDP, 208 – 209 , 209 t

 Reliable, 285
 reliable data transfer, 43 – 44 , 44 f
 ReliableFragmented, 285
 reliance on third party, 312
 Remote Method Invocation (RMI), 162
 remote players, dead reckoning for, 242
 remote procedure calls (RPC)

 as serialized objects, 159 – 162
 Unity game engine, 286
 Unreal Engine 4 , 283 – 284

 RemovedProcessedMoves, 245

INDEX362

 server function, 283
 server game instance, 316
 server partitioning/sharding, 260 – 262 , 261 f
 server security

 bad data, 274 – 275
 DDoS, 274
 fuzz testing, 274 – 275
 intrusions, 276 – 277
 timing attacks, 275 – 276

 server side rewind, 248 – 249
 service-level agreements, 312
 setInterval call, 323
 SetLobbyChatMsg function, 297
 SetLobbyGameServer function, 297
 setsockopt, 96
 SFD. See start frame delimiter (SFD)
 shutdown function, 67
 shuttingDown state, 332
 simple traversal of UDP through NAT. See STUN
 simulated proxy, 282
 simulating

 jitter, 228 – 230
 latency, 228 – 230
 packet loss, 228 – 230

 sin_addr, 71 – 72
 sin_family, 71
 sin_port, 71
 sin_zero, 72
 smart pointers. See pointers
 sock, bind function, 78
 sock, receiving data

 TCP socket, 86
 UDP socket, 80

 sock, sending data
 TCP socket, 85
 UDP socket, 79

 sockaddr
 data type, 71
 from string, 75 – 78

 sockaddr_in, 71
 SOCK_DGRAM, 66 t
 socket

 additional options, 96 , 97 t, 98 t
 closing, 67
 creating, 66 – 68
 operating system diff erences, 68 – 71
 POSIX-based platforms, 68 – 69
 TCP, 83 – 88
 UDP, 79 – 83

 RTT. See round trip time (RTT)
 runtime assertions, 342

 S

 scalability
 frequency, 263
 instancing, 262
 overview, 253
 prioritization, 263
 server partitioning/sharding, 260 – 262 , 261 f
 visibility culling, 255 – 260

 SD_BOTH, 67
 SD_RECEIVE, 67
 SD_SEND, 67 – 68
 security

 input validation, 270 – 271
 packet sniffi ng, 266 – 270
 server, 274 – 276
 software cheat detection, 271 – 274

 seeds, 191
 segment, TCP, 42 – 43

 ACK fl ag, 46
 SYN fl ag, 46

 semiprime, 268
 sender hardware address (variable length), 28
 sender protocol address (variable length), 28
 sending data

 TCP socket, 85 – 86
 UDP socket, 79 – 80

 SendInputPacket, 180 , 245
 SendP 2 PPacket, 299
 sendto function

 TCP socket, 85 – 86
 UDP socket, 79 – 80

 sequence number (32 -bits), 42 – 43
 serialization

 abstracting direction, 131 – 132
 compression, 123 – 130
 data driven, 133 – 135
 defi ned, 102
 of fi eld's value, bits for, 149 – 150
 maintainability, 130 – 135
 need for, 102 – 105
 referenced data, 119 – 123
 streams, 105 – 119

 Serialize function, 135
 Serialize method, 131 – 132
 serial port, 2

 363 INDEX

 StatData instantiation, 303
 StatData structure, 302
 static assertion, 342 – 343
 StaticCreate function, 187 – 188
 StaticReadAndCreate function, 187
 static zones, 255 – 256
 Stat_. Next, 302
 Stat_NumGames, 302
 STAT(NumGames,INT), 302
 Stats.def, 302
 Steam, 290

 integrating, 290
 SteamAPICall_t, 295
 SteamAPI_Init, 292
 SteamAPI_RunCallbacks, 292 – 293
 steam_appid.txt fi le, 292
 STEAM_CALLBACK macro, 296
 SteamFriends function, 292
 SteamGameServer_Init, 293
 SteamGameServer_Shutdown, 293
 SteamUser function, 292
 SteamUtils function, 292
 Steamworks partner, 290
 Steamworks SDK Access Agreement, 290
 store and forward process, 17
 stream manager, 8
 streams

 bit, 114 – 119
 defi ned, 105
 endian compatibility, 110 – 113
 fi le output, 105
 input, 105
 memory, 106 – 110
 network, 105
 output, 105

 STUN, 57 – 59
 data fl ow, 58 f
 defi ned, 57
 NAT tables, 58 f
 packets exchanged, 58 f

 subnet mask
 in binary form, 30 – 31
 broadcast address, 30
 CIDR notation, 31
 default address, 34
 defi ned, 30
 indirect routing and, 29 – 35
 IP addresses and, 30 , 30 t
 ISP, 32 – 33

 Unreal Engine 4 , 280
 socket address, 71 – 79

 binding, 78 – 79
 sockaddr from string, 75 – 78

 SocketAddress class, 74
 SocketAddressFactory, 77 – 78
 socket function, 66

 af parameter, 66
 protocol parameter, 67
 type parameter, 66 – 67

 SOCK_RAW, 66 t
 SOCK_SEQPACKET, 66 t
 SOCK_STREAM, 66 t, 67
 software cheat detection, 271 – 274

 bot, 272
 concept, 272
 map hacking, 272
 VAC, 273
 Warden, 273 – 274

 SO_KEEPALIVE, 97 t
 SOL_SOCKET options, 97 t
 SO_RCVBUF, 97 t
 SO_RECVTIMEO, 97 t
 SO_REUSEADDR, 97 t
 SO_SNDBUF, 97 t
 SO_SNDTIMEO, 97 t
 source address (32 bits), 26
 source port (16 bits)

 TCP header, 42
 UDP header, 41

 SpaceWar, 290
 sparse array compression, 124 – 125
 spatial approach, 254
 spawning objects, in Unity game engine, 285 – 286
 spear phishing attack, 276
 standard template library (STL) containers,

 347 – 350
 array, 348
 forward_list, 349
 list, 349
 map, 349
 unordered_map, 349 – 350
 unordered_set, 350
 vector, 348 – 349

 Starsiege: Tribes, 5 – 10
 start frame delimiter (SFD), 22
 start packet, 185
 Star Wars: The Old Republic, 262
 STAT, 302

INDEX364

 segment, 42 – 43
 state variables, 44 , 45 t
 three-way handshake, 45 – 46 , 45 f

 transmission delay
 jitter, 205
 network latency, 203

 transport layer, 39 – 52
 bind, 40
 concept, 39 – 40
 ports, 40
 TCP, 42 – 52 . See also transmission control

protocol (TCP)
 UDP, 41 – 42

 transport layer API
 Unity game engine, 284 – 285

 transport layer protocol, 41 , 41 t
 TryAdvanceTurn function, 189 – 190
 TTL. See time to live (8 bits)
 TurnData class, 188
 TurnData constructor, 189
 turn timer, 11 – 12
 TypeAliaser, 113
 type of service (8 bits), 25
 type-safe

 socket address, 73 – 74
 TCP sockets, 86 – 88

 U

 UDP. See user datagram protocol (UDP)
 UDP socket

 receiving data, 80 – 81
 sending data, 79 – 80
 type-safe, 81 – 83

 udpSocket, 67
 UDP sockets

 creating, 67
 UNetDriver class, 280
 UNET library, 284 , 285
 unexpected hardware changes, 312
 uniform_int_distribution class, 193
 uniqueness, between networks, 54
 United States Advanced Research Projects

Agency, 16
 Unity game engine, 284 – 287

 game objects, 285
 matchmaking, 286 – 287
 network topology, 285

 network address, 30 , 31
 routing table, 31
 sample, 30 t

 Sweeney, Tim, 234
 switches, 23
 symmetric NAT, 59 – 60
 SYN-ACK segment, 46
 SyncVars, 286
 SYN fl ag, 46
 system ports, 40

 T

 target hardware address (variable length), 28
 target protocol address (variable length), 28
 TCP header, 42 – 43 , 42 f
 TCP hole punching, 60
 TCP/IP suite, 17 – 19

 layers, 18 – 19 , 18 f . See also specifi c layer
 TCP_NODELAY, 98 t
 TCP phantom byte, 46
 tcpSocket, 67
 TCPSocket class, 323 – 324
 TCPSocket class

 type-safe, 87 – 88
 TCPSocketPtr, 88
 TCP sockets, 83 – 88

 connection, 83 – 85
 creating, 67
 disposing, 67
 type-safe, 86 – 88

 template, 341 – 343
 specialization, 342

 template metaprogramming, 150
 Terrano, Mark, 12
 third party, reliance on, 312
 third-party host, STUN and, 57 – 59
 time dilation, 262
 time to live (8 bits), 25
 timing attack, 275 – 276
 transmission control protocol (TCP), 42 – 52

 concept, 42
 data transmission, 46 – 51
 delayed acknowledgment, 50
 disconnecting, 51 – 52
 Nagle's algorithm, 51
 reliability, 207 – 208 , 209 t
 reliable data transfer, 43 – 44 , 44 f

 365 INDEX

 virtual machines (VM), 317 , 318
 visibility culling

 defi ned, 255
 hierarchical techniques, 259 – 260
 PVS, 258 – 259 , 259 f
 relevancy when not visible, 260
 static zones, 255 – 256
 view frustum, 256 – 257 , 258 f

 VMI. See virtual machine image (VMI)
 VMM. See virtual machine manager (VMM)
 VSync, 201

 W

 WAN. See wide area network (WAN)
 Warden, 273 – 274
 wide area network (WAN), 54
 Wi-Fi, 21
 Windows version of socket library, 69 – 71
 Winsock 2 -specifi c functions, 69 – 71
 Words with Friends, 5
 World of Warcraft, 261
 world state, 140

 changes, 152 – 159
 replication, 148 – 152

 world state delta, 152
 WriteBatchedCommand(), 223 – 225
 WriteBits methods, 114 – 116
 WriteForCRC function, 194
 Write function, 187
 Write method, 119
 WritePendingAcks(), 215
 WSACleanup, 70
 WSAGetLastError, 70
 WSAStartup functions, 69 – 70
 wVersionRequested, 69

 X

 Xbox Live games, 290
 Xbox One games, 290
 X macro, 301 – 303 , 305

 Z

 zero network broadcast address, 35

 remote procedure calls, 286
 replication, 286
 spawning objects, 285 – 286
 transport layer API, 284 – 285

 Universal Plug and Play (UPnP), 60
 Unreal Engine 4

 actor replication, 282 – 283
 game object class, 281
 networking, 280
 network topology, 281 – 282
 remote procedure calls (RPC), 283 – 284
 socket subsystem, 280

 Unreliable, 284
 UnreliableSequenced, 284
 UpdateLobbyPlayers function, 296 , 297
 UPnP. See Universal Plug and Play (UPnP)
 urgent pointer (16 bits), 43
 url, 326
 user datagram protocol (UDP), 41 – 42

 checksum (16 bits), 42
 destination port (16 bits), 41
 length (16 bits), 41
 reliability, 208 – 209 , 209 t
 source port (16 bits), 41

 user passwords, 276 – 277
 user ports, 40
 uuid, 326

 V

 VAC. See Valve Anti-Cheat (VAC)
 values

 af parameter, 66 t
 protocol parameter, 67 t
 type parameter, 66 t

 Valve Anti-Cheat (VAC), 273
 Valve Software, 290
 version (4 bits), IPv 4 packet, 25
 view frustum, 256 – 257 , 258 f
 virtual machine image (VMI), 325
 virtual machine manager (VMM), 324 – 333

 hash maps, 326
 initialization and data structure, 325 – 326
 members, 326 – 327
 monitoring, 330 – 333
 spawning and provisioning, 327 – 329

	Contents
	1 Overview of Networked Games
	A Brief History of Multiplayer Games
	Starsiege: Tribes
	Age of Empires
	Summary
	Review Questions
	Additional Readings

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200066006f007200200052005200200044006f006e006e0065006c006c0065007900200042006f006f006b00200070006c0061006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

