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  PREFACE 

 Networked multiplayer games are a huge part of the games industry today. The number of 

players and amount of money involved are staggering. As of 2014,  League of Legends  boasts 

67 million active players each month. The 2015  DoTA 2  world championship has a prize pool of 

over $16 million at the time of writing. The  Call of Duty  series, popular in part due to the 

multiplayer mode, regularly has new releases break $1 billion in sales within the first few days of 

release. Even games that have historically been single-player only, such as  the Grand Theft Auto  

series, now include networked multiplayer components. 

 This book takes an in-depth look at all the major concepts necessary to program a networked 

multiplayer game. The book starts by covering the basics of networking—how the Internet 

works and how to send data to other computers. Once the fundamentals are established, the 

book discusses the basics of transmitting data for games—how to prepare game data to be 

sent over the network, how to update game objects over the network, and how to organize the 

computers involved in the game. The book next discusses how to compensate for unreliability 

and lag on the Internet, and how to design game code to scale and be secure.  Chapters   12    and 

   13    cover integrating gamer services into and using cloud hosting for dedicated servers—two 

topics that are extremely important for networked games today. 

 This book takes a very practical approach. Most chapters not only discuss the concepts, they 

walk you through the actual code necessary to get your networked game working. The full 

source code for two different games is provided on the companion website—one game is an 

action game and the other is a real-time strategy (RTS). To help with the progression of topics, 

multiple versions of these two games are presented throughout the course of this book. 

 Much of the content in this book is based on curriculum developed for a multiplayer-game 

programming course at the University of Southern California. As such, it contains a proven 

method for learning how to develop multiplayer games. That being said, this book is not 

written solely for those in an academic setting. The approach taken by this book is just as 

valuable to any game programmer interested in learning how to engineer for a networked 

game. 

  Who Should Read This Book? 
 While Appendix A covers some aspects of modern C++ used in this book, it is assumed that 

the reader already is comfortable with C++. It is further assumed that the reader is familiar with 
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the standard data structures typically covered in a CS2 course. If you are unfamiliar with C++ or 

want to brush up on data structures, an excellent book to refer to is  Programming Abstractions in 
C++  by Eric Roberts. 

 It is further assumed that the reader already knows how to program single-player games. The 

reader should ideally be familiar with game loops, game object models, vector math, and basic 

game physics. If you are unfamiliar with these concepts, you will want to first start with an 

introductory game programming book such as  Game Programming Algorithms and Techniques  

by Sanjay Madhav. 

 As previously mentioned, this book should be equally effective either in an academic 

environment or for game programmers who simply want to learn about networked games. 

Even game programmers in the industry who have not previously made networked games 

should find a host of useful information in this book.  

  Conventions Used in This Book 
 Code is always written in a fixed-point font. Small code snippets may be presented either 

 inline  or in standalone paragraphs: 

  std::cout << “Hello, world!” << std::endl;  

 Longer code segments are presented in code listings, as in Listing 0.1. 

  Listing 0.1 Sample Code Listing 

 // Hello world program! 
 int main() 
 { 
    std::cout << “Hello, world!” << std::endl; 
    return 0; 
 }  

 For readability, code samples are color coded much like in an IDE. 

 Throughout this book, you will see some paragraphs marked as notes, tips, sidebars, and 

warnings. Samples of each are provided for the remainder of this section. 

  note 

 Notes contain useful information that is separate from the flow of the normal text 

of the section. Notes should almost always be read.  
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  tip 

 Tips are used to provide helpful hints when implementing specific systems in your 

game’s code.  

  warning 

 Warnings are very important to read, as they contain common pitfalls or issues to 

watch out for, and ways to solve or work around these issues.  

    SIDEBAR 

 Sidebars contain lengthier discussions that usually are tangential to the main 

content of the chapter. These can provide some interesting insight to a variety of 

issues, but contain content that is deemed nonessential to the pedagogical goals 

of the chapter.   

  Why C++? 
 The vast majority of this book uses C++ because it is still the de facto language used in the 

game industry by game engine programmers. Although some engines allow a great deal 

of code for a game to be written in other languages, such as Unity in C#, it is important to 

remember that most of the lower-level code for these engines is still written in C++. Since 

this book is focused on writing a networked multiplayer game from the ground up, it makes 

the most sense to do so in the language that most game engines are written in. That being 

said, even if you are writing all your game’s networking code in another language, all the core 

concepts will still largely be the same. Still, it is recommended that you be familiar with C++, 

otherwise the code samples may not make much sense.  

  Why JavaScript? 
 Since starting off life as a hastily hacked together scripting language to support the Netscape 

browser, JavaScript has evolved into a standardized, full-featured, somewhat functional language. 

Its popularity as a client-side language helped it make the leap to server side, where its first-class 

procedures, simple closure syntax, and dynamically typed nature make it very efficient for the 

rapid development of event-driven services. It’s a little hard to refactor and it provides worse 

performance than C++, making it a bad choice for next-generation front-end development. 
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 That’s not an issue on the backend, where scaling up a service can mean nothing more 

than dragging a slider to the right. The backend examples in  Chapter   13    use JavaScript, and 

understanding them will require a decent knowledge of the language. As of this writing, 

JavaScript is currently the number one most active language on GitHub by a margin of almost 

50%. Following trends for the sake of trends is rarely a good idea, but being able to program in 

the world’s most popular language definitely has its benefits.  

  Companion Website 
 The companion website for this book is at https://github.com/MultiplayerBook. The website has 

a link to the sample code used throughout the book. It also contains the errata, as well as links 

to PowerPoint slides and a sample syllabus for use in an academic setting.   

https://github.com/MultiplayerBook
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 OVERVIEW OF 

NETWORKED GAMES 

      Although there are notable exceptions, the concept 

of networked multiplayer games didn’t really catch 

on with mainstream gamers until the 1990s. This 

chapter first gives a brief history of how multiplayer 

games evolved from the early networked games of 

the 1970s to the massive industry today. Next, the 

chapter provides an overview of the architecture 

of two popular network games from the 1990s—   

Starsiege: Tribes   and   Age of Empires  . Many of the 

techniques used in these games are still in use 

today, so this discussion gives insight into the 

overall challenges of engineering a networked 

multiplayer game.    
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     A Brief History of Multiplayer Games 
 The progenitor of the modern networked multiplayer game began on university mainframe 

systems in the 1970s. However, this type of game didn’t explode until Internet access became 

common in the mid-to-late 1990s. This section gives a brief overview of how networked games 

first started out, and the many ways these types of games have evolved in the nearly half 

century since the first such games. 

  Local Multiplayer Games 

 Some of the earliest video games featured  local multiplayer , meaning they were designed 

for two or more players to play the game on a single computer. This included some very early 

games such as including  Tennis for Two  (1958) and  Spacewar!  (1962). For the most part, local 

multiplayer games can be programmed in the same manner as single-player games. The only 

differences typically are multiple viewpoints and/or supporting multiple input devices. Since 

programming local multiplayer games is so similar to single-player games, this book does not 

spend any time on them.  

  Early Networked Multiplayer Games 

 The first  networked multiplayer games  were run on small networks composed of mainframe 

computers. What distinguishes a networked multiplayer game from a local multiplayer game is 

that networked games have two or more computers connected to each other during an active 

game session. One such early mainframe network was the PLATO system, which was developed 

at the University of Illinois. It was on the PLATO system that one of the first networked games, 

the turn-based strategy game  Empire  (1973), was created. Around the same time as  Empire , the 

first-person networked game  Maze War  was created, and there is not a clear consensus as to 

which of these two games was created first. 

 As personal computers started to gain some adoption in the latter part of the 1970s, 

developers figured out ways to have two computers communicate with each other over 

serial ports. A  serial port  allows for data to be transmitted one bit at a time, and its typical 

purpose was to communicate with external devices such as printers or modems. However, 

it was also possible to connect two computers to each other and have them communicate 

via this connection. This made it possible to create a game session that persisted over 

multiple personal computers, and led to some of the earliest networked PC games. The 

December 1980 issue of  BYTE Magazine  featured an article on how to program so-called 

Multimachine Games in BASIC (Wasserman and Stryker 1980). 

 One big drawback of using serial ports was that computers typically did not have more than two 

serial ports (unless an expansion card was used). This meant that in order to connect more than 

two computers via serial port, a  daisy chain  scheme where multiple computers are connected 

to each other in a ring had to be used. This could be considered a type of network topology, a 

topic that is covered in far more detail in  Chapter   6   , “Network Topologies and Sample Games.” 
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 So in spite of the technology being available in the early 1980s, most games released during 

the decade did not really take advantage of local networking in this manner. It wasn’t until 

the 1990s that the idea of locally connecting several computers to play a game really gained 

traction, as discussed later in this chapter.  

  Multi-User Dungeons 

 A  multi-user dungeon  or MUD is a (usually text-based) style of multiplayer game where 

several players are connected to the same virtual world at once. This type of game first gained 

popularity on mainframes at major universities, and the term originates from the game  MUD  

(1978), which was created by Rob Trushaw at Essex University. In some ways, MUDs can be 

thought of as an early computer version of the role-playing game  Dungeons and Dragons , 

though not all MUDs are necessarily role-playing games. 

 Once personal computers became more powerful, hardware manufacturers began to offer 

modems that allowed two computers to communicate with each other over standard phone 

lines. Although the transmission rates were extraordinarily slow by modern standards, this 

allowed for MUDs to be played outside the university setting. Some ran MUD games on a 

  bulletin board system  (BBS), which allowed for multiple users to connect via modem to a 

system that could run many things including games.  

  Local Area Network Games 

 A  local area network  or LAN is a term used to describe several computers connected to each 

other within a relatively small area. The mechanism used for the local connection can vary—for 

example, the serial port connections discussed earlier in this chapter would be one example 

of a local area network. However, local area networks really took off with the proliferation of 

Ethernet (a protocol which is discussed in more detail in  Chapter   2   , “The Internet”). 

 While by no means the first game to support LAN multiplayer,  Doom  (1993) was in many 

ways the progenitor of the modern networked game. The initial version of the id Software 

first-person shooter supported up to four players in a single game session, with the option to 

play cooperatively or in a competitive “deathmatch.” Since  Doom  was a fast-paced action game, 

it required implementation of several of the key concepts covered in this book. Of course, these 

techniques have evolved a great deal since 1993, but the influence of  Doom  is widely accepted. 

For much greater detail on the history and creation of  Doom , read  Masters of Doom  (2003), listed 

in the references at the conclusion of this chapter. 

 Many games that support networked multiplayer over a LAN also supported networked 

 multiplayer in other ways—whether by modem connection or an online network. For many years, 

the vast majority of networked games also supported gaming on a LAN. This led to the rise of LAN 

parties where people would meet at a location and connect their computers to play networked 

games. Although some networked multiplayer games are still released with LAN play, the trend in 

recent years seems to have developers forgoing LAN play for exclusively online multiplayer.  
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  Online Games 

 In an  online game , players connect to each other over some large network with geographically 

distant computers. Today, online gaming is synonymous with Internet gaming, but the term 

“online” is a bit broader and can include some of the earlier networks such as CompuServe that, 

originally, did not connect to the Internet. 

 As the Internet started to explode in the late 1990s, online games took off alongside it. Some 

of the popular games in the earlier years included id Software’s  Quake  (1996) and Epic Game’s 

 Unreal  (1998). 

 Although it may seem like an online game could be implemented in much the same way as a 

LAN game, a major consideration is  latency , or the amount of time it takes data to travel over 

the network. In fact, the initial version of  Quake  wasn’t really designed to work over an Internet 

connection, and it wasn’t until the  QuakeWorld  patch that the game was reliably playable over 

the Internet. Methods to compensate for latency are covered in much greater detail in  Chapter   7   , 

“Latency, Jitter, and Reliability” and  Chapter   8   , “Improved Latency Handling.” 

 Online games took off on consoles with the creation of services such as Xbox Live and 

PlayStation Network in the 2000s, services that were direct descendants of PC-based services 

such as GameSpy and DWANGO. These console services now regularly have several million 

active users during peak hours (though with expansion of video streaming and other services 

to consoles, not all of these active users may be playing a game).  Chapter   12   , “Gamer Services,” 

discusses how to integrate one such gamer service—Steam—into a PC game.  

  Massively Multiplayer Online Games 

 Even today, most online multiplayer games are limited to a small number of players per game 

session—somewhere from 4 to 32 is commonly the number of supported players. In a  Massively 
Multiplayer Online Game  (MMO), however, hundreds if not thousands of players can participate 

in a single game session. Most MMO games are role-playing games and thus called  MMORPGs . 

However, there are certainly other styles of MMO games such as first-person shooters (MMOFPS). 

 In many ways, MMORPGs can be thought of as the graphical evolution of multi-user dungeons. 

Some of the earliest MMORPGs actually predated the widespread adoption of the Internet, 

and instead functioned over dial-in networks such as Quantum Link (later America Online) 

and CompuServe. One of the first such games was  Habitat  (1986) which implemented several 

pieces of novel technology (Morningstar and Farmer 1991). However, it wasn’t until the Internet 

became more widely adopted that the genre gained more traction. One of the first big hits was 

 Ultima Online  (1997). 

 Other MMORPGs such as  EverQuest  (1999) were also successful, but the genre took the world by 

storm with the release of  World of Warcraft  (2004). At one point, Blizzard’s MMORPG had over 
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12 million active subscribers worldwide, and the game became such a large part of popular 

culture that it was featured in a 2006 episode of the animated series  South Park . 

 Architecting an MMO is a complex technical challenge, and some of these challenges are 

discussed in  Chapter   9   , “Scalability.” However, most of the techniques necessary to create an 

MMO are well beyond the scope of this book. That being said, the foundations of creating 

a smaller-scale networked game are important to understand before it’s possible to even 

consider creating an MMO.  

  Mobile Networked Games 

 As gaming has expanded to the mobile landscape, multiplayer games have followed right along. 

Many multiplayer games on these platforms are  asynchronous —typically turn-based games 

that do not require real-time transmission of data. In this model, players are notified when it is 

their turn, and have a large amount of time to make their move. The asynchronous model has 

existed from the very beginning of networked multiplayer games. Some BBS only had one 

incoming phone line connection, which meant that only one user could be connected at any 

one time. Thus, a player would connect, take their turn, and disconnect. Then at some point in 

the future, another player would connect and be able to respond and take their own turn. 

 An example of a mobile game that uses asynchronous multiplayer is  Words with Friends  (2009). 

From a technical standpoint, an asynchronous networked game is simpler to implement than a 

real-time one. This is especially true on mobile platforms, because the platform APIs (application 

program interfaces) have built-in functionality for asynchronous communication. Originally, 

using an asynchronous model for mobile games was somewhat out of necessity because the 

reliability of mobile networks is comparatively poor to wired connections. However, with the 

proliferation of Wi-Fi–capable devices and improvements to mobile networks, more and more 

real-time networked games are appearing on these devices. An example of a mobile game that 

takes advantage of real-time network communication is  Hearthstone: Heroes of Warcraft  (2014).   

  Starsiege: Tribes 
  Starsiege: Tribes  is a sci-fi first-person shooter that was released at the end of 1998. At the time of 

release, it was well regarded as a game featuring both fast-paced combat and a comparatively 

massive number of players. Some game modes supported 128 players over either a LAN or the 

Internet. To gain some perspective on the magnitude of the challenge in implementing such a 

game, keep in mind that during this time period, the vast majority of players with an Internet 

connection used a dial-up service. At best, these dial-up users had a modem capable of speeds 

up to 56.6 kbps. In the case of  Tribes , it actually supported users with modem speeds of only 

28.8 kbps. By modern standards, these are extremely slow connection speeds. Another factor 

was that dial-up connections also had relatively high latency—a latency of several hundred 

milliseconds was rather common. 
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 It may seem that a networking model designed for a game with low bandwidth constraints 

would be irrelevant in the modern day. However, it turns out that the model used in  Tribes  still 

has a great deal of validity even today. This section summarizes the original  Tribes  networking 

model—for a more in-depth discussion, refer to the article by Frohnmayer and Gift referenced 

at the end of this chapter. 

 Do not be concerned if some of the concepts covered in this section don’t entirely make sense 

right now. The intent is that by looking at a networked multiplayer game’s architecture at a high 

level, you will gain an appreciation for the numerous technical challenges faced and decisions to 

be made. All the topics touched on in this section are covered in much greater detail throughout 

the remainder of this book. Furthermore, one of the sample games built throughout this book, 

 RoboCat Action , ultimately uses a model similar to the  Tribes  networking model. 

 One of the first choices made when engineering a networked game is to choose a 

 communications protocol , or an established convention by which data is exchanged 

between two computers.  Chapter   2   , “The Internet,” covers how the Internet works and the 

commonly used protocols.  Chapter   3   , “Berkeley Sockets,” covers a ubiquitous library used to 

facilitate communication via these protocols. For the sake of the current discussion, the only 

thing you need to know is that, for efficiency reasons,  Tribes  uses an  unreliable  protocol. This 

means that data sent over the network is  not  guaranteed to be received by the destination. 

 However, using an unreliable protocol can be problematic when a game needs to send 

information that is important to all the players in the game. Thus, the engineers needed to 

consider the different types data they wanted to send out. The developers of  Tribes  ultimately 

separated their data requirements into the following four categories: 

   1.    Non-guaranteed data.  As one might expect, this is data that the game designates as 

nonessential to the game. When bandwidth-starved, the game can choose to drop this 

data first.  

  2.    Guaranteed data.  This data guarantees both arrival and ordering of the data in question. 

This is used for data deemed critical by the game, such as an event signifying when a player 

has fired a weapon.  

  3.    “Most recent state” data.  This type of data is for cases where only the most recent version 

of the data is of importance. One example is the hit points of a particular player. A player’s 

hit points 5 seconds ago are not terribly relevant if the game knows what their hit points 

are right now.  

  4.    Guaranteed quickest data.  This data is given the highest priority in order to transmit 

as quickly as possible  with  guaranteed delivery. An example of this type of data is player 

movement information, which is typically relevant for a very short period of time, and thus 

should be transmitted quickly.   

 Many of the implementation decisions made in the  Tribes  Networking Model center on 

providing these four types of data transmission. 
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 Another important design decision was to utilize a client-server model instead of a peer-to-peer 

model. In a  client-server model , players all connect to a central server, whereas in a  

peer-to-peer model , every player connects to every other player. As discussed in  Chapter   6   , 

“Network Topologies and Sample Games,” a peer-to-peer model requires    O(n2)    bandwidth. This 

means that the bandwidth grows at a quadratic rate based on the number of users. In this case, 

with    n    being as high as 128, using peer-to-peer would lead to very little bandwidth per player. 

To avoid this issue,  Tribes  instead implemented a client-server model. In this configuration, the 

bandwidth requirements of each player remain constant, while the server must handle only    O(n)    

bandwidth. However, this meant that the server needed to be on a network that would allow for 

several incoming connections—the type of connection that only a company or  university might 

have owned at the time. 

 Next,  Tribes  split up their networking implementation into several different layers—one can 

think of this as a “layer cake” of the  Tribes  Networking Model. This is illustrated in  Figure   1.1   . The 

remainder of this section briefly describes the composition of each of these layers.  

Game’s Simulation Layer

Stream Manager

Connection Manager

Platform Packet Module

Ghost
Manager

Move
Manager

Event
Manager

Other
…

  Figure 1.1  The main components of the  Tribes  Networking Model       

  Platform Packet Module 

 A  packet  is a formatted set of data sent over a network. In the  Tribes  model, the  platform 
packet module  is the lowest layer. It is the only layer in the model that is platform-specific. In 

essence, this layer is a wrapper for the standard socket APIs that can construct and send various 

packet formats. The implementation of this layer might look rather similar to the systems 

implemented in  Chapter   3   , “Berkeley Sockets.” 

 Since  Tribes  utilized an unreliable protocol, the developers needed to add some mechanism to 

handle the data they decided needed to be guaranteed. Similar to the approach discussed 

in  Chapter   7   , “Latency, Jitter, and Reliability,”  Tribes  implemented a custom reliability layer. 

However, this reliability layer is not handled by the platform packet module; instead the higher 

level managers such as the ghost manager, move manager, or event manager are responsible 

for adding any reliability.  
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  Connection Manager 

 The job of the  connection manager  is to abstract the connection between two computers 

over the network. It receives data from the layer above it, the stream manager, and transmits 

data to the layer below it, the platform packet module. 

 The connection manager level is still unreliable. It  does not  guarantee delivery of data sent to it. 

However, the connection manager  does  guarantee a  delivery status notification —that is to 

say, the status of a request passed to the connection manager can be verified. In this way, it is 

possible for the level above the connection manager (the stream manager) to know whether or 

not particular data was successfully delivered. 

 The delivery status notification is implemented with a sliding window bit field of 

acknowledgments. Although the original  Tribes  Networking Model paper does not contain 

a detailed discussion regarding the implementation of the connection manager, an 

implementation of a similar system is discussed in  Chapter   7   , “Latency, Jitter, and Reliability.”  

  Stream Manager 

 The primary job of the  stream manager  is to send data to the connection manager. One 

important aspect of this is determining the maximum rate of data transmission that is allowed. 

This will vary depending on the quality of the Internet connection. An example given in the 

original paper is where a user on a 28.8-kbps modem might have their packet rate set to 

10 packets per second with a maximum size of 200 bytes per packet, for approximately 2 kB of 

data per second. This rate and size is sent to the server upon connection of the client, in order 

to ensure that the server does not overwhelm the client’s connection with too much data. 

 Since several other systems will ask the stream manager to send data, it is also the duty of the 

stream manager to prioritize these requests. The move, event, and ghost managers are given 

the highest priority when in a bandwidth-bound scenario. Once the stream manager decides 

on what data to send, the packets are dispatched to the connection manager. In turn, the 

higher-level managers will be informed by the stream manager regarding the status of delivery. 

 Because of the set interval and packet size enforced by the stream manager, it is very much 

possible for a packet to be dispatched with multiple types of data in it. For example, a packet 

may have some data from the move manager, some data from the event manager, and some 

data from the ghost manager.  

  Event Manager 

 The  event manager  maintains a queue of events that are generated by the game’s simulation. 

These events can be thought of as a simple form of a  remote procedure call  or  RPC , a 

function that can be executed on a remote machine. RPCs are discussed in  Chapter   5   , “Object 

Replication.” 
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 For example, when a player fires a weapon, this would likely cause a “player fired” event to be 

sent to the event manager. This event can then be sent to the server, which will actually validate 

and execute the weapon firing. It is also the purview of the event manager to prioritize the 

events—it will try to write as many of the highest priority events as possible until any of the 

following conditions are true: the packet is full, the event queue is empty, or there are currently 

too many active events. 

 The event manager also tracks the transmission records for each event marked as reliable. 

In this way, it is very simple for the event manager to enforce reliability. If a reliable event is 

 unacknowledged, then the event manager can simply prepend the event to the event queue 

and try again. Of course, there will be some events that are marked as unreliable. For these 

unreliable events, there is no need to even track their transmission records.  

  Ghost Manager 

 The  ghost manager  is perhaps the most important system in terms of supporting up to 

128 players. At a high level, the job of the ghost manager is to  replicate  or “ghost”  dynamic  

objects that are deemed relevant to a particular client. In other words, the server sends 

information about dynamic objects to the clients, but only the objects that the server thinks 

the client needs to know about. The game’s simulation layer is responsible for determining 

what a client absolutely  needs  to know and what a client ideally  should  know. This adds an 

inherent  prioritization to game objects in the world: “need to know” objects are the highest 

priority, while “should know” objects are lower priority. In order to determine whether or not 

an object is relevant to a particular client, there are several different approaches that can be 

employed.  Chapter   9   , “Scalability,” covers some of these approaches. In general, determining 

object  relevancy is very game-specific. 

 Regardless of how the set of relevant objects is computed, the job of the ghost manager is to 

transmit object state from server to client for as many relevant objects as possible. It’s very 

important that the ghost manager guarantees that the most recent data is always successfully 

transmitted to all of the clients. The reason for this is that the game object information that is 

ghosted will often contain information such as health, weapons, ammo count, and so on—all 

cases where the most recent data is the only information that matters. 

 When an object becomes  relevant  (or “in scope”), the ghost manager will assign some 

information to the object, which is appropriately called a  ghost record . This record will include 

items such as a unique ID, a state mask, the priority, and status change (whether or not the 

object has been marked as in or out of scope). 

 For transmission of the ghost records, the objects are prioritized first by status change and 

then by the priority level. Once the ghost manager determines the objects that should be sent, 

their data can be added to the outgoing packet using an approach similar to what is covered in 

 Chapter   5   , “Object Replication.”  
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  Move Manager 

 The responsibility of the  move manager  is to transmit player movement data as quickly as 

possible. If you’ve ever played a fast-paced multiplayer game, you are likely cognizant of the 

fact that accurate movement information is extremely important. If the information regarding a 

player’s position is slow to arrive, it could result in players shooting at where a player used to be 

instead of where a player is, which can result in frustrating gameplay. Quick movement updates 

can be an important way to reduce the perception of latency on the part of player. 

 The other reason the move manager is assigned a high priority is because input data is 

captured at 30 FPS. This means there is new input information available 30 times per second, 

so the latest data is sent as quickly as possible. This higher priority also means that, when move 

data is available, the stream manager will always first add any pending move manager data 

to an outgoing packet. Each client is responsible for transmitting their move information to 

the server. The server then applies this move information in its simulation of the game, and 

acknowledges the receipt of the move information to the client who sent it.  

  Other Systems 

 There are a few other systems in the  Tribes  model, though these are less critical to the overarching 

design. For example, there is a datablock manager, which handles transmission of game objects 

that are relatively static in nature. This differs from the relatively dynamic objects that are handled 

by the ghost manager. An example for this might be a static vehicle such as a turret—the object 

doesn’t really move, but it exists to serve a purpose when a player interacts with it.   

  Age of Empires 
 As with  Tribes , the real-time strategy (RTS) game  Age of Empires  was released in the late 1990s. 

This means that  Age of Empires  faced many of the same bandwidth and latency constraints 

of dial-up Internet access.  Age of Empires  uses a  deterministic lockstep  networking model. 

In this model, all the computers are connected to each other, meaning it is peer-to-peer. A 

guaranteed  deterministic  simulation of the game is concurrently performed by each of the 

peers. It is  lockstep  because peers use communication to ensure that they remain synchronized 

throughout the game. As with  Tribes , even though the deterministic lockstep model has existed 

for many years, it is still commonly used in modern RTS games. The other sample game built 

during the course of this book,  RoboCat RTS , implements a deterministic lockstep model. 

 One of the largest differences between implementing networked multiplayer for an RTS 

instead of an FPS is the number of relevant units. In  Tribes , even though there are up to 

128 players, at any particular point in time only a fraction of these players is going to be relevant 

to a particular client. This means that the ghost manager in  Tribes  rarely has to send information 

about more than 20 to 30 ghosts at a time. 
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 Contrast this with an RTS such as  Age of Empires . Although the player cap is much smaller 

(limited to eight simultaneous players in the original game), each player can control a large 

number of units. The original  Age of Empires  capped the number of units for each player at 

50, whereas in later games the cap was as high as 200. Using the cap of 50, this means that 

in a massive eight-player battle, there could be up to 400 units active at a time. Although it 

is natural to wonder if some sort of relevancy system could reduce the number of units that 

need to be synchronized, it’s important to consider the worst-case scenario. What if a battle 

toward the end of a game featured the armies of all eight players? In this case, there are 

going to be several hundred units that are relevant at the same time. It would be hard for the 

synchronization to keep up even if a minimal amount of information is sent per unit. 

 To alleviate this issue, the engineers for  Age of Empires  decided to synchronize the  commands  

each player issued, rather than synchronizing the units. There’s a subtle but important 

distinction in this implementation—even a professional RTS player may be able to issue no 

more than 300 commands per minute. This means that even in an extreme case, the game 

need only transmit a few commands per second per each player. This requires a much more 

manageable amount of bandwidth than transmitting information about several hundred units. 

However, given that the game is no longer transmitting unit information over the network, 

each instance of the game needs to independently apply the commands transmitted by each 

player. Since each game instance is performing an independent simulation, it is of the utmost 

importance that each game instance remains synchronized with the other game instances. This 

ends up being the largest challenge of implementing the deterministic lockstep model. 

  Turn Timers 

 Since every game instance is performing an independent simulation, it makes sense to utilize 

a peer-to-peer topology. As discussed in  Chapter   6   , “Network Topologies and Sample Games,” 

one advantage of a peer-to-peer model is that data can reach every computer more quickly. 

This is because the server is not acting as a middleman. However, one disadvantage is that each 

player needs to send their information to every other player, as opposed to just a single server. 

So for example, if player A issues an attack command, then every game instance needs to be 

aware of this attack command, or their simulations would diverge from each other. 

 However, there is another key factor to consider. Different players are going to run the game 

at different frame rates, and different players are going to have different quality connections. 

Going back to the example where player A issues an attack command, it’s just as important 

that player A does not immediately apply the attack command. Instead, player A should only 

apply the attack command once players B, C, and D are all ready to simultaneously apply the 

command. But this introduces a conundrum: If player A’s game waits too long to execute the 

attack command, the game will seem very unresponsive. 

 The solution to this problem is to introduce a  turn timer  to queue up commands. With the 

turn timer approach, first a turn length is selected—in the case of  Age of Empires , the default 
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duration was 200 ms. All commands during these 200 ms are saved into a buffer. When the 

200 ms are over, all the commands for that player’s turn are transmitted over the network to all 

other players. Another key aspect of this system is a turn execution delay of two turns. What 

this means is that, for example, commands that are issued by the player on turn 50 will not be 

executed by any game until turn 52. In the case of a 200-ms turn timer, this means that the 

 input lag , the amount of time it takes for a player’s command to be displayed on screen, could 

be as high as 600 ms. However, the two turns of slack allows for every other player to receive 

and acknowledge the commands for a particular turn. It may seem slightly counterintuitive for 

an RTS game to actually have turns, but you can see the hallmarks of the turn timer approach in 

many different RTS games, including  StarCraft II . Of course, modern games can have the luxury 

of shorter turn timers since bandwidth and latency are much better for most users today in 

comparison to the late 1990s. 

 There is one important edge case to consider with the turn timer approach. What happens 

if one of the players experiences a lag spike and they can no longer keep up with the 

200-ms timer? Some games might temporarily pause the simulation to see if the lag spike can 

be overcome—eventually, the game may decide to drop the player if they continue to slow 

down the game for everyone else.  Age of Empires  also tries to compensate for this scenario by 

dynamically adjusting the rendering frame rate based on network conditions—thus a computer 

with a particularly slow Internet connection might allocate more time to receive data over the 

network, with less time being allotted for rendering graphics. For more detail on the dynamic 

turn adjustment, consult the original Bettner and Terrano article listed in the references. 

 There’s also an extra benefit of transmitting the commands issued by the clients. With such an 

approach, it does not take much extra memory or work to save the commands issued over the 

course of an entire match. This directly leads to the possibility of implementing savable match 

replays, as in  Age of Empires II . Replays are very popular in RTS games because it allows players 

to evaluate matches to gain a deeper understanding of strategies. It would require significantly 

more memory and overhead to create replays in an approach that transmitted unit information 

instead of commands.  

  Synchronization 

 Turn timers alone are not enough to guarantee synchronization between each peer. Since each 

machine is receiving and processing commands independently, it is of the utmost importance 

that each machine arrives at an identical result. In their paper, Bettner and Terrano write that 

“the difficulty with finding out-of-sync errors is that very subtle differences would multiply over 

time. A deer slightly out of alignment when the random map was created would forage slightly 

differently—and minutes later a villager would path a tiny bit off, or miss with his spear and 

take home no meat.” 

 One concrete example arises from the fact that most games have some amount of randomness 

in actions. For instance, what if the game performs a random check in order to determine 
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whether or not an archer hits an infantry? It would be conceivable that player A’s instance 

decides the archer does hit the infantry, whereas player B’s instance decides the archer doesn’t 

hit the infantry. The solution to this problem is to exploit the “pseudo” prefix of the pseudo-
random number generator (PRNG). Since all PRNGs use some sort of seeding, the way you can 

guarantee both players A and B arrive at the same random results is to synchronize the seed 

value across all game instances. One should keep in mind, however, that a seed only guarantees 

a particular sequence of numbers. So not only is it important that each game instance uses the 

same seed, it’s equally important that each game instance makes the same number of calls to 

the random generation number—otherwise the PRNG numbers will become out of sync. PRNG 

synchronization in a peer-to-peer configuration is further elaborated in  Chapter   6   , “Network 

Topologies and Sample Games.” 

 There is also an implicit advantage to checking for synchronization—it reduces the opportunity 

for players to cheat. For example, if one player gives themselves 500 extra resources, the other 

game instances could immediately detect the desynchronization in the game state. It would 

then be trivial to kick the offending player out of the game. However, as with any system, there 

are tradeoffs—the fact that each game state simulates each unit in the game means that it is 

possible to create cheats that reveal information that should not be visible. This means that  the 

so-called “map hacks” that reveal the entire map are still a common issue in most RTS games. 

This and other security concerns are covered in  Chapter   10   , “Security.”    

     Summary 
 Networked multiplayer games have a lengthy history. They began as games playable on networks 

of mainframe computers, such as  Empire  (1973), which was playable on the PLATO network. 

Networked games later expanded to text-based multi-user dungeon games. These MUDs later 

expanded to bulletin board systems which allowed for users to dial in over phone lines. 

 In the early 1990s, local area network games, led by  Doom  (1993), took the computer gaming 

world by storm. These games allowed for players to locally connect multiple computers and 

play with or against each other. As adoption of the Internet expanded in the late 1990s, online 

games such as  Unreal  (1998) became very popular. Online games also started to see adoption 

on consoles in the early 2000s. One type of online game is the massively multiplayer online 

game, which supports hundreds if not thousands of players in the same game session at once. 

  Starsiege: Tribes  (1998) implemented a network architecture still relevant to a modern-day 

action game. It uses a client-server model, so each player in the game is connected to a server 

that coordinates the game. At the lowest level, the platform packet module abstracts sending 

packets over the network. Next, the connection manager maintains connections between the 

players and the server, and provides delivery status notifications. The stream manager takes data 

from the higher-level managers (including the event, ghost, and move managers), and based on 

priority, adds this data to outgoing packets. The event manager takes important events, such as 

“player fired” and ensures that this data is received by the relevant parties. The ghost manager 
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handles sending object updates for the set of objects deemed relevant for a particular player. 

The move manager sends the most recent movement information for each player. 

  Age of Empires  (1997) implemented a deterministic lockstep model. All computers in the game 

connect to each other in a peer-to-peer manner. Rather than sending information about each 

unit over the network, the game instead sends commands to each peer. These commands are 

then independently evaluated by each peer. In order to ensure the machines stay synchronized, 

a turn timer is used to save up commands over a period of time before sending them over the 

network. These commands are not executed until two turns later, which gives enough time for 

each peer to send and receive turn commands. Additionally, it is important that each peer runs 

a deterministic simulation, which means, for example, pseudo-random number generators 

need to be synchronized.  

  Review Questions 
  1.    What is the difference between a local multiplayer game and a networked multiplayer game?   

  2.    What are three different types of local network connections?   

  3.    What is a major consideration when converting a networked game that works over a LAN 

to work over the Internet?   

  4.    What is an MUD, and what type of game did it evolve into?   

  5.    How does an MMO differ from a standard online game?   

  6.    In the  Tribes  model, which system(s) provide reliability?   

  7.    Describe how the ghost manager in the  Tribes  model reconstructs the minimal necessary 

transmission in the event that a packet is dropped.   

  8.    In the  Age of Empires  peer-to-peer model, what is the purpose of the turn timer? What 

 information is transmitted over the network to the other peers?    
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  loopback,  35   
  lpWSAData,  70   
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 leaderboards,  307 – 308 .    See also  gamer service  
  Leaderboards.def,  307   
   League of Legends,   316   
  len, sending data 

 TCP socket,  85  
 UDP socket,  80   

  length ( 16  bits) 
 IPv 4  packet,  25  
 UDP header,  41   

  linking,  121 – 123   
  LinkingContext class,  122 – 123   
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  local area network (LAN),  3 ,  54   
  localhost address.    See  loopback  
  local multiplayer games,  2   
  local perception fi lter,  236   
  local server process manager (LSPM),  318 – 324  

 initialization,  319 – 321  



 359 INDEX

  NetworkManager::EnterLobby function,  296   
  NetworkMatch class,  287   
  NetworkServer,  285   
  network stream,  105   
  network topologies 

 client-server,  166 – 168 ,  166  f  
 concept,  166  
 peer-to-peer,  168 – 169 ,  168  f  
 Unity game engine,  285  
 Unreal Engine  4 ,  281 – 282   

  NetworkTransport.Connect function,  285   
  NIC.    See  network interface controller (NIC)  
  Node.JS,  314 – 315   
  Node package manager (npm),  314   
  nodes,  17   
  non-guaranteed data,  6   
  non-network latency,  200 – 202   
  nullptr,  339    

  O 

  object 
 identifying serialized object,  141 – 142  
 multiple, per packet,  148  
 replication.    See  replication 
 serialization.    See  serialization  

  object creation registry,  144 – 148   
  ObjectCreationRegistry,  163   
  object relevancy,  254   
  ObjectReplicationHeader,  162   
  object state delta,  152 – 153   
  octets,  43   
  offsetof macro,  135   
  OnDeserialize,  286   
  online game,  4   
  OnLobbyChatUpdate,  297   
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  ProcessReplicationAction,  160   
  ProcessSequenceNumber(),  211 – 213   
  ProcessTimedOutPackets(),  218   
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  protocol ( 8  bits),  25   
  protocol address length ( 8  bits),  28   
  protocol type ( 16  bits),  27   
  pseudo-random number generator (PRNG),  13  

 synchronizing,  191 – 194   
  PT_ReplicationData,  141 ,  148   
  publically routable IP address,  53   
  public key cryptography,  267 – 269 ,  268  f   
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 serialized object identifi er,  141 – 142  
 Unity game engine,  286  
 world state.    See  world state  

  ReplicationCommand,  223   
  replication commands,  177   
  replication header,  153 – 154   
  ReplicationHeader serialization 

code,  160   
  ReplicationManager,  161 ,  162 ,  221 – 227   
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 POSIX-based platforms,  68 – 69  
 TCP,  83 – 88  
 UDP,  79 – 83  

  RTT.    See  round trip time (RTT)  
  runtime assertions,  342    

  S 

  scalability 
 frequency,  263  
 instancing,  262  
 overview,  253  
 prioritization,  263  
 server partitioning/sharding,  260 – 262 ,  261  f  
 visibility culling,  255 – 260   

  SD_BOTH,  67   
  SD_RECEIVE,  67   
  SD_SEND,  67 – 68   
  security 

 input validation,  270 – 271  
 packet sniffi  ng,  266 – 270  
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