
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134173269
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134173269
https://plusone.google.com/share?url=http://www.informit.com/title/9780134173269
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134173269
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134173269/Free-Sample-Chapter

Linux®Hardening
in Hostile
Networks

Linux®Hardening
in Hostile
Networks

Server Security from TLS to Tor

Kyle Rankin

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales depart-
ment at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2017942009

Copyright © 2018 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage
in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photo-
copying, recording, or likewise. For information regarding permissions, request forms and the appro-
priate contacts within the Pearson Education Global Rights & Permissions Department, please visit
www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-417326-9
ISBN-10: 0-13-417326-0

1 17

http://www.informit.com/aw
http://www.pearsoned.com/permissions/



This book is dedicated to my wife, Joy,

without whom it would have never been finished.



This page intentionally left blank

Contents

Foreword xiii

Preface xv

Acknowledgments xxiii

About the Author xxv

1 Overall Security Concepts 1
Section 1: Security Fundamentals 1

Essential Security Principles 2
Basic Password Security 4

Section 2: Security Practices Against a Knowledgeable
Attacker 10

Security Best Practices 10
Password-Cracking Techniques 13
Password-Cracking Countermeasures 16

Section 3: Security Practices Against an Advanced
Attacker 20

Advanced Password-Cracking Techniques 20
Advanced Password-Cracking Countermeasures 22

Summary 24

2 Workstation Security 25
Section 1: Security Fundamentals 25

Workstation Security Fundamentals 25
Web Security Fundamentals 27
Introduction to Tails 29
Download, Validate, and Install Tails 29
Use Tails 30

Section 2: Additional Workstation Hardening 33
Workstation Disk Encryption 33
BIOS Passwords 33
Tails Persistence and Encryption 34

Section 3: Qubes 37
Introduction to Qubes 38
Qubes Download and Installation 41
The Qubes Desktop 43
An AppVM Compartmentalization Example 46

viii Contents

Split GPG 49
USB VM 50

Summary 52

3 Server Security 53
Section 1: Server Security Fundamentals 53

Fundamental Server Security Practices 53
SSH Configuration 54
Sudo 55

Section 2: Intermediate Server-Hardening
Techniques 58

SSH Key Authentication 58
AppArmor 63
Remote Logging 66

Section 3: Advanced Server-Hardening Techniques 68
Server Disk Encryption 68
Secure NTP Alternatives 70
Two-Factor Authentication with SSH 72

Summary 74

4 Network 75
Section 1: Essential Network Hardening 76

Network Security Fundamentals 76
Man-in-the-Middle Attacks 78
Server Firewall Settings 79

Section 2: Encrypted Networks 87
OpenVPN Configuration 87
SSH Tunnels 93
SSL/TLS-Enabled Load Balancing 95

Section 3: Anonymous Networks 100
Tor Configuration 101
Tor Hidden Services 106

Summary 107

5 Web Servers 109
Section 1: Web Server Security Fundamentals 109

Permissions 109
HTTP Basic Authentication 110

ixContents

Section 2: HTTPS 113
Enable HTTPS 114
Redirect HTTP to HTTPS 115
HTTPS Reverse Proxy 116
HTTPS Client Authentication 117

Section 3: Advanced HTTPS Configuration 118
HSTS 118
HTTPS Forward Secrecy 119
Web Application Firewalls 120

Summary 131

6 Email 133
Section 1: Essential Email Hardening 133

Email Security Fundamentals 134
Basic Email Hardening 135

Section 2: Authentication and Encryption 137
SMTP Authentication 138
SMTPS 139

Section 3: Advanced Hardening 141
SPF 141
DKIM 146
DMARC 152

Summary 156

7 DNS 157
Section 1: DNS Security Fundamentals 158

Authoritative DNS Server Hardening 159
Recursive DNS Server Hardening 160

Section 2: DNS Amplification Attacks and Rate
Limiting 161

DNS Query Logging 162
Dynamic DNS Authentication 163

Section 3: DNSSEC 166
How DNS Works 166
DNS Security Issues 168
How DNSSEC Works 168
DNSSEC Terminology 171
Add DNSSEC to a Zone 172

Summary 175

x Contents

8 Database 177
Section 1: Database Security Fundamentals 177

Essential Database Security 177
Local Database Administration 179
Database User Permissions 182

Section 2: Database Hardening 185
Database Network Access Control 186
Enable SSL/TLS 188

Section 3: Database Encryption 191
Full Disk Encryption 192
Application-Side Encryption 192
Client-Side Encryption 195

Summary 195

9 Incident Response 197
Section 1: Incident Response Fundamentals 197

Who Performs Incident Response? 197
Do You Prosecute? 197
Pull the Plug 198
Image the Server 199
Server Redeployment 199
Forensics 199

Section 2: Secure Disk Imaging Techniques 200
Choose the Imaging System 201
Create the Image 201
Introduction to Sleuth Kit and Autopsy 202

Section 3: Walk Through a Sample Investigation 209
Cloud Incident Response 213

Summary 214

A Tor 215
What Is Tor? 215

Why Use Tor? 215
How Tor Works 216
Security Risks 219

Outdated Tor Software 219
Identity Leaks 219

xiContents

B SSL/TLS 221
What Is TLS? 221

Why Use TLS? 221
How TLS Works 222

Deciphering Cipher Names 223
TLS Troubleshooting Commands 224

View the Contents of a Certificate 224
View the Contents of a CSR 224
Troubleshoot a Protocol over TLS 224

Security Risks 224
Man-in-the-Middle Attacks 225
Downgrade Attacks 225
Forward Secrecy 226

Index 229

This page intentionally left blank

Foreword

Computer and software security has always been an important topic. Today it is also an
urgent one; security breaches continue to increase exponentially, and even GNU/Linux
systems, which have traditionally been less prone to problems, are subject to devastating
attacks. If you’re using a GNU/Linux system for anything at all critical—even if it’s just
your email and home tax accounting—you need to know how to protect it!

This book is the right “go-to” place to get started. Beginning with the basics, the
author covers what you need to know for all important areas of GNU/Linux system
management, in clear and readable prose. After reading it you’ll be able to improve the
safety of your systems and be prepared to go further on your own. The book is written
in a careful, vendor-neutral manner, so that everything applies as broadly as possible;
with any luck this book will be useful to you again and again, instead of becoming
obsolete upon the next release of Distro XYZ.

I hope you’ll agree with me that this book is worth your time. Keep safe!

—Arnold Robbins
Series Editor

This page intentionally left blank

Preface

We are living in the golden age of computer hacking. So much of our daily lives—from
how we communicate, to how we socialize, to how we read news, to how we shop—is
conducted on the Internet. Each of those activities rely on servers sitting somewhere
on the Internet, and those servers are being targeted constantly. The threats and risks on
the Internet today and the impact they can have on the average person are greater than
ever before.

While there are exceptions, most computer hackers a few decades ago were motivated
primarily by curiosity. If a hacker found a major vulnerability in a popular application,
she might break the news at a security conference. If she compromised a network, she
would look around a bit and might install a backdoor so she could get back in later, but
generally speaking the damage was minimal. These days, many hackers are motivated
by profit. A zero-day vulnerability (i.e., a new, unpatched vulnerability not disclosed
to the vendor) in a popular application can be sold for tens to hundreds of thousands of
dollars. Databases from hacked networks are sold on the black market to aid in identity
theft. Important files are encrypted and held for ransom.

Hacker motivations are not the only thing that’s changed; so have the hackers themselves.
While you will still find pasty, white male hackers wearing black hoodies and hacking
away in a basement, that stereotype doesn’t match the reality. The spread of high-speed,
always-on Internet throughout the world means that Internet users in general, and hackers
specifically, ref lect the diversity of the world itself. Instead of a black hoodie, a hacker
today might wear a dress, a tie, or a uniform, and may work for organized crime or the
military. Hackers are international and diverse, and so are their targets.

With everyone online, hacking has become a very important part of surveillance,
espionage, and even warfare. Nation-state hackers have become more overt over the years
to the point that now it’s not uncommon to hear of nation-state actors compromising
power grids, nuclear facilities, or major government networks. Nation-state hackers are
well-funded, well-trained, and as a result they have sophisticated tools and methods at
their disposal. Unlike conventional military tools, however, these tools find their way
into the ordinary hacker’s toolkit sometimes after only a year or two. This means that
even if your threat model doesn’t include a nation-state attacker, it must still account for
last year’s nation-state hacking capabilities.

Hackers aren’t the only thing that’s different; so are the targets. In the past, hackers
might target well-known, large companies, banks, or governments, and they would
target them primarily from the outside, spending a lot of time researching the target,
discovering vulnerabilities in their software, and then exploiting them. The external

xvi Preface

network was viewed as a hostile war zone, the internal network was viewed as a
safe haven, and the two were connected by computers in a network actually called a
“demilitarized zone” (DMZ). Systems administrators working at a random company
would throw up a firewall on the perimeter of their network, install antivirus software
on their workstations, and console themselves with the idea that their network isn’t
interesting enough, and their data isn’t valuable enough, to attract a hacker.

Today every computer on the network is a target, and every network is hostile.
While you still have hackers who spend a lot of time carefully probing a high-value
target, the bulk of the hacking that goes on these days is fully automated. The goal of
many hackers is to build the largest collection of compromised machines possible so they
can use them to launch further attacks. Those hackers don’t necessarily care which com-
puters they compromise, they just scan the Internet attempting to guess SSH passwords
or looking for computers with known vulnerabilities so they can automatically exploit
them. Each time a new vulnerability is announced in a major piece of software, it only
takes a short time before hackers are scanning for it and exploiting it. Once a hacker has
a foothold on any machine on your network, whether it’s a web server or a workstation,
they will automatically start probing and scanning the rest of the internal network for
vulnerable machines.

Cloud computing has further eroded the notion of an “internal” and an “external”
network. In the past, it would be really difficult for a hacker to buy a server and rack it
next to you on your network, yet cloud computing makes this as easy as a few clicks.
You have to throw out the assumption that your cloud servers are communicating with
each other over a private network and act like every packet is going over a hostile, public
network because in many cases it is.

 The Good News
Despite all of this, we defenders actually have the advantage! We get to define how our
networks look, what defenses we put in place, and if this is a battle, we have control of
the battlefield if we choose to take it. With all the talk about sophisticated hackers, the
fact is many of the compromises you hear about in the news didn’t require sophisticated
skills—they could have been prevented by a few simple, modern hardening steps. Time
and time again, companies spend a lot of money on security yet skip the simple steps
that would actually make them secure. Why?

One of the reasons administrators may not apply modern hardening procedures is that
while hacker capabilities continue to progress, many of the official hardening guides out
there read as though they were written for Red Hat from 2005. That’s because they were
written for Red Hat in 2005 and updated here and there through the years. I came
across one of these guides when I was referring to some official hardening benchmarks
for a PCI audit (a Payment Cards Industry certification that’s a requirement for orga-
nizations that handle credit cards) and realized if others who were new to Linux server
administration ran across the same guide, they likely would be overwhelmed with all
the obscure steps. Worse, though, they would spend hours performing obscure sysctl
tweaks and end up with a computer that was no more protected against a modern attack.

xviiPreface

Instead, they could have spent a few minutes performing a few simple hardening steps
and ended up with a more secure computer at the end.

For us defenders to realize our advantages, we have to make the most of our time and
effort. This book aims to strip away all that outdated information and skip past a lot
of the mundane hardening steps that take a lot of time for little benefit. Where possible,
I try to favor recommendations that provide the maximum impact for the minimum
amount of effort and favor simplicity over complexity. If you want a secure environ-
ment, it’s important to not just blindly apply hardening steps but to understand why
those steps are there, what they protect against, what they don’t protect against, and how
they may apply (or not) to your own environment. Throughout the book, I explain what
the threats are, how a particular hardening step protects you, and what its limitations are.

 How to Read This Book
The goal of this book is to provide you with a list of practical, modern hardening steps
that take current threats into account. The first few chapters of the book focus on more
general security topics including overall workstation, server, and network hardening.
The next few chapters focus on how to harden specific services such as web servers,
email, DNS, and databases. Finally, I end the book with a chapter on incident response,
just in case. I realize that not everyone has the same level of threat, not everyone has
the same amount of time, and not everyone has the same expertise. I’ve structured
every chapter in this book based on that and split each chapter into three main sections.
As you progress through each section, the threats and the hardening steps get more
advanced. The goal is for you to read through a particular chapter and follow the steps
at least up to the point where it meets your expertise and your threat, and hopefully
you’ll revisit that point in the chapter later, when you are ready to take your hardening
to the next level.

 Section 1
The first section of every chapter is aimed for every experience level. This section con-
tains hardening steps that are designed for maximum benefit for minimum time spent.
The goal is for these steps to only take you a few minutes. These are hardening steps
that I consider to be the low bar that everyone should try to meet no matter their level
of expertise. They should help protect you from your average hacker out there on the
Internet.

 Section 2
The second section of each chapter is aimed at hardening steps for intermediate to advanced
sysadmins to protect you from intermediate to advanced attackers. While many of the
hardening steps get more sophisticated in this section and may take a bit more time to
implement, I have still tried to keep things as simple and fast as possible. Ideally, every-
one would read at least part of the way into this section and apply some of the hardening
steps, no matter their threat model.

xviii Preface

 Section 3
The third section of each chapter is where I have a bit of fun and go all out with advanced
hardening steps aimed at advanced up to nation-state attackers. Some of these harden-
ing steps are rather sophisticated and time-consuming, whereas others are really just the
next step up from the intermediate approaches in Section 2. Although these steps are
aimed at protecting against advanced threats, remember that today’s advanced threats tend
to find their way into tomorrow’s script kiddie toolkits.

 What This Book Covers
Now that we know how the chapters are structured, let’s look at what each one covers.

 Chapter 1: Overall Security Concepts
Before we get into specific hardening techniques, it’s important to build a foundation
with the security principles we will apply to all hardening techniques in the rest of the
book. No security book can cover every possible type of threat or how to harden every
type of application, but if you understand some of the basic concepts behind security
you can apply them to whatever application you’d like to secure. Section 1 of Chapter 1
introduces some essential security concepts that you will apply throughout the book and
finishes up with a section on choosing secure passwords and general password manage-
ment. Section 2 elaborates on the security principles in the first section with a focus on
more sophisticated attacks and provides a general introduction to two-factor authen-
tication. Section 3 examines how general security principles apply in the face of an
advanced attacker and discusses advanced password-cracking techniques.

 Chapter 2: Workstation Security
A sysadmin workstation is a high-value target for an attacker or thief because administrators
typically have privileged access to all servers in their environments. Chapter 2 covers a series
of admin-focused workstation-hardening steps. Section 1 covers basic workstation-hardening
techniques including the proper use of lock screens, suspend, and hibernation, and intro-
duces the security-focused Linux distribution Tails as a quick path to a hardened worksta-
tion. The section finishes up by covering a few fundamental principles of how to browse the
web securely including an introduction to HTTPS, concepts behind cookie security, and
how to use a few security-enhancing browser plugins. Section 2 starts with a discussion
of disk encryption, BIOS passwords, and other techniques to protect a workstation against
theft, a nosy coworker, or a snooping customs official. The section also features more
advanced uses of Tails as a high-security replacement for a traditional OS including the use
of the persistent disk and the GPG clipboard applet. Section 3 covers advanced techniques
such as using the Qubes OS to compartmentalize your different workstation tasks into their
own VMs with varying levels of trust. With this in place if, for instance, your untrusted
web browser VM gets compromised by visiting a bad website, that compromise won’t put
the rest of your VMs or your important files at risk.

xixPreface

 Chapter 3: Server Security
If someone is going to compromise your server, the most likely attack will either be through
a vulnerability in a web application or other service the server hosts, or through SSH. In
other chapters, we cover hardening steps for common applications your server may
host, so Chapter 3 focuses more on general techniques to secure just about any server you
have, whether it’s hosting a website, email, DNS, or something completely different. This
chapter includes several techniques to harden SSH and covers how to limit the damage an
attacker or even a malicious employee can do if he gains access to the server with tools like
apparmor and sudo. We also cover disk encryption to protect data at rest and how to set up
a remote syslog server to make it more difficult for an attacker to cover her tracks.

 Chapter 4: Network
Along with workstation and server hardening, network hardening is a fundamental
part of infrastructure security. Section 1 of Chapter 4 provides an overview of network
security and then introduces the concept of the man-in-the-middle attack in the con-
text of an attacker on an upstream network. Section 1 finishes up with an introduction
to iptables firewall settings. Section 2 covers how to set up a secure private VPN using
OpenVPN and how to leverage SSH to tunnel traffic securely when a VPN isn’t an
option. It then covers how to configure a software load balancer that can both termi-
nate SSL/TLS connections and can initiate new ones downstream. Section 3 focuses on
Tor servers, including how to set up a standalone Tor service strictly for internal use, as
an external node that routes traffic within Tor, and as an external exit node that accepts
traffic from the Internet. It also discusses the creation and use of hidden Tor services and
how to set up and use hidden Tor relays for when you need to mask even that you are
using Tor itself.

 Chapter 5: Web Servers
Chapter 5 focuses on web server security and covers both the Apache and Nginx
web servers in all examples. Section 1 covers the fundamentals of web server security
including web server permissions and HTTP basic authentication. Section 2 discusses
how to configure HTTPS, how to set it as the default by redirecting all HTTP traffic
to HTTPS, how to secure HTTPS reverse proxies, and how to enable client certifi-
cate authentication. Section 3 discusses more advanced web server hardening including
HTTPS forward secrecy and then web application firewalls with ModSecurity.

 Chapter 6: Email
Email was one of the first services on the Internet, and it’s still relied on by many people not
just for communication but also security. Section 1 of Chapter 6 introduces overall email
security fundamentals and server hardening, including how to avoid becoming an open
relay. Section 2 covers how to require authentication for SMTP relays and how to enable
SMTPS. Section 3 covers more advanced email security features that both aid in spam
prevention and overall security such as SPF records, DKIM, and DMARC.

xx Preface

 Chapter 7: DNS
Domain Name Service (DNS) is one of those fundamental network services to which
many people never give a second thought (as long as it’s working). In Chapter 7, we cover
how to harden any DNS server before you put it on a network. Section 1 describes the
fundamentals behind DNS security and how to set up a basic hardened DNS server.
Section 2 goes into more advanced DNS features such as rate limiting to help prevent
your server from being used in DDOS attacks, query logging to provide forensics data
for your environment, and authenticated dynamic DNS. Section 3 provides an intro-
duction to DNSSEC and the new DNSSEC records and discusses how to configure
DNSSEC for your domain and how to set up and maintain DNSSEC keys.

 Chapter 8: Database
If there is only one place in your infrastructure that holds important information,
it’s likely to be a database. In Chapter 8, we discuss a number of different approaches
to database security for the two most popular open-source database servers: MySQL
(MariaDB) and Postgres. Starting with Section 1, we cover some simple security prac-
tices you should follow as you set up your database. Section 2 then dives into some
intermediate hardening steps including setting up network access control and encrypting
traffic with TLS. Section 3 focuses on database encryption and highlights some of the
options available for encrypted data storage in MySQL and Postgres.

 Chapter 9: Incident Response
Even with the best intentions, practices, and efforts, sometimes an attacker still finds
a way in. When that happens, you will want to collect evidence and try to find out
how he got in and how to stop it from happening again. Chapter 9 covers how to best
respond to a server you suspect is compromised, how to collect evidence, and how to
use that evidence to figure out what the attacker did and how he got in. Section 1 lays
down some fundamental guidelines for how to approach a compromised machine and
safely shut it down so other parties can start an investigation. Section 2 gives an over-
view on how to perform your own investigation and discusses how to create archival
images of a compromised server and how to use common forensics tools including
Sleuth Kit and Autopsy to build a file system timeline to identify what the attacker did.
Section 3 includes walking through an example investigation and guides to forensics
data collection on cloud servers.

Appendix A: Tor
Chapter 4 discusses how to use Tor to protect your anonymity on a network, but it focuses
more on how to use Tor and less about how Tor works. Here I dive a bit deeper into
how Tor works and how it can protect your anonymity. I also discuss some of the secu-
rity risks around Tor and how you can mitigate them.

xxiPreface

Appendix B: SSL/TLS
Throughout the book, I explain how to protect various services with TLS. Instead of
bogging you down with the details of how TLS works in almost every chapter, I’ve put
those details here as a quick reference in case you are curious about how TLS works, how
it protects you, its limitations, and some of its security risks and how to mitigate them.

Conventions
This book uses a monospace font for code. Code lines that exceed the width of the
printed page are indicated by a continuation character () at the start of the portion of
the line that has wrapped to indicate it is all one line.

Register your copy of Linux® Hardening in Hostile Networks on the InformIT site for
convenient access to updates and corrections as they become available. To start the
registration process, go to informit.com/register and log in or create an account. Enter
the product ISBN (9780134173269) and click Submit. Look on the Registered Products
tab for an Access Bonus Content link next to this product, and follow that link to
access any available bonus materials. If you would like to be notified of exclusive offers
on new editions and updates, please check the box to receive email from us.

http://www.informit.com/register

This page intentionally left blank

Acknowledgments

First, thanks to Aaron, who’s been encouraging me for years to shift more of my
sysadmin focus over to security (I’m finally starting to listen) and who provided some
great feedback on this book. Thanks also to Shawn, Anthony, and Marielle for all
their valuable comments on the book.

Thanks to my editor, Debra Williams Cauley, who believed in this book and patiently
worked with me to make some ideas we threw around a reality. Thanks specifically to
Chris Zahn and also the rest of the Addison-Wesley team for their help in structuring,
editing, and laying out this book.

Finally, thanks to all of the defenders out there trying to keep everyone safe and
secure. Attackers get the bulk of the press, conference talks, awards, and overall
attention in the security community. Like sysadmin work, defense work often goes
unnoticed unless there’s a problem. Keep at it. Despite what they say, I think we are
starting to win.

This page intentionally left blank

About the Author

Kyle Rankin is a long-time systems administrator with a particular focus on infra-
structure security, architecture, automation, and troubleshooting. In addition to this
book he is the author of DevOps Troubleshooting (Addison-Wesley, 2012), The Official
Ubuntu Server Book, Third Edition (Prentice Hall, 2013), and Knoppix Hacks, Second Edition
(O’Reilly, 2007), among others. Rankin is an award-winning columnist for Linux
Journal magazine, and he chairs the Purism advisory board. He speaks frequently
on open-source software and security, including at O’Reilly Security Conference,
CactusCon, SCALE, OSCON, LinuxWorld Expo, Penguicon, and a number of Linux
Users’ Groups.

This page intentionally left blank

3
Server Security

If someone is going to compromise your server, the most likely attack will either be through
a vulnerability in a web application or other service the server hosts or through SSH.
In other chapters, we cover hardening steps for common applications your server
may host, so this chapter focuses more on general techniques to secure just about any
server you have, whether it’s hosting a website, email, DNS, or something completely
different.

This chapter includes a number of different techniques to harden SSH and also covers
how to limit the damage an attacker or even a malicious employee can do if she does
get access to the server with tools like AppArmor and sudo. We also cover disk encryp-
tion to protect data at rest and how to set up a remote syslog server to make it more diffi-
cult for an attacker to cover her tracks.

Section 1: Server Security Fundamentals
Before we get into specific hardening techniques, we’ll start with some fundamental
server security practices. When attempting to secure your server, it’s important to approach
it with the appropriate mindset. With that in mind, there are a few principles you should
apply no matter what your server does.

Fundamental Server Security Practices
Fundamental server security practices include the principle of least privilege, keeping it
simple, and keeping your servers up to date.

 The Principle of Least Privilege

We apply the principle of least privilege throughout the book (such as in Chapter 4,
“Network,” when we discuss firewall rules), but in general on a host you want users
and applications to have only the privileges they need to do their job and nothing more.
For instance, while all developers may have accounts on servers, you may restrict root
access to systems administrators. You might also go further and only allow your average
developer to have shell access to the development environment and restrict production
server access only to systems administrators or other support staff that must have it.

When applied to applications, the principle of least privilege means that your applica-
tion should only run as root if it is absolutely necessary; otherwise, it should run as some
other account on the system. One common reason applications need root privileges is

54 Chapter 3 Server Security

to open a low port (all ports below 1025 require root privileges to open). Web servers
provide a good example of this principle in that they must be root to open network
ports 80 and 443; however, once those ports are open, the average worker process for
the web server runs as a less-privileged user (such as the www-data user). It is common
practice these days for web applications themselves to pick some other high port like
3000 or 8080 to listen on so that they can run as a normal user.

Keep It Simple

A simple server is easier to secure than a complicated one. Avoid installing and running
extra services (especially network-facing services) that you don’t need. That way, you
have fewer applications that can have security holes and fewer applications to keep track
of with security patches. It will be easier for your team and for external auditors to validate
your configuration if you try to keep files and executables in their standard places and
try to stick to default configurations when possible.

Simplicity is also important when designing the overall architecture of your envi-
ronment. The more complicated your architecture and the more moving parts, the more
difficult to understand and the more difficult to secure. If your network diagram looks
like a bad plate of spaghetti, you may want to consider simplifying how servers com-
municate in the environment. Once we get to the network security chapter (Chapter 4)
this will make that task simpler as well.

 Keep Your Servers Up to Date

New vulnerabilities are found in applications or libraries all the time. One easy way to stay
on top of security for your servers is to subscribe to the security mailing list for your
distribution and then make sure, as security vulnerabilities are announced, that you
prioritize patching servers. The more homogeneous your environment, the easier it will
be to keep up with different versions of software, so you will have an easier time if you can
stick to a single Linux distribution and a particular version of that distribution. Distribu-
tion security mailing lists won’t cover any third-party software you run, however, so
you will need to sign up for any security advisory lists those products provide.

 SSH Configuration
One of the most common services on just about every server is SSH. While in the past
administrators used tools like telnet that sent everything (including passwords!) over
plain text, SSH encrypts the communications between you and your server. While that
in and of itself is a security improvement, unfortunately it’s not enough. In this section,
we go over some basic SSH-hardening techniques you should be employing on all of
your servers.

 Disable Root Login

One of the simplest things you can do to make your SSH configuration more secure is
to disable root logins. While later in this chapter we will talk about how you can avoid
password logins to root via the sudo utility (and some systems default to that approach),

55Section 1: Server Security Fundamentals

in this case we are talking about restricting the ability to log in as the root user whether
via password, SSH keys, or any other method. Because of how much power the root
user has, it’s simply safer to remove the possibility that an attacker could directly log in
with root privileges. Instead, have administrators log in as a regular user and then use
local tools like sudo to become root.

To disable root login on a server, simply edit the SSH server configuration file (usu-
ally found at /etc/ssh/sshd_config config) and change

PermitRootLogin yes

to

PermitRootLogin no

and then restart the SSH service, which, depending on your system, may be one of the
following:

$ sudo service ssh restart
$ sudo service sshd restart

 Disable Protocol 1

The old SSH Protocol 1 has a number of known security vulnerabilities, so if your
distribution doesn’t already disable it you should do so. Locate the Protocol line
in /etc/ssh/sshd_config and ensure it says

Protocol 2

If you did have to make a change to the file, be sure to restart the SSH service.

 Sudo
In the old days when an administrator needed to do something as root, he either logged
in directly as the root user or used a tool like su to become root. This approach had some
problems, however. For one, it encouraged users to stay logged in as root. Because root
can do pretty much anything you would want to do on the system, mistakes made as
root could have much worse consequences than those made as a regular user. Also, from
an administrative overhead standpoint, if you have multiple systems administrators who
all have root access to a server, you would have to create a shared password that every-
one knew. When an administrator inevitably left the company, the remaining team had
to scramble to change the passwords for all of the shared accounts.

Sudo helps address many of these security concerns and provides a much stronger secu-
rity model that helps you stick to the principle of least privilege. With sudo, an admin-
istrator can define groups of users who can perform tasks as other users including root.
Sudo has a few specific advantages over su:

 Each user types his own password, not the password of the privileged account.

This means you no longer have to manage shared passwords for privileged accounts.
If a user leaves the company, you only have to disable her account. This also means

56 Chapter 3 Server Security

that administrators don’t need to maintain passwords at all for role accounts
(including root) on the system, so users or attackers can’t get privileges they shouldn’t
have by guessing a password.

 Sudo allows fine-grained access control.

With su, accessing a user’s privileges is an all-or-nothing affair. If I can su to root,
I can do anything I want as the root user. While you can certainly create sudo rules
that allow the same level of access, you can also restrict users so that they can only
run specific commands as root or as another user.

 Sudo makes it easier to stay out of privileged accounts.

While you can certainly use sudo to get a complete root shell, the simplest invo-
cations of sudo are just sudo followed by the command you want to run as root.
This makes it easy to run privileged commands when you need to, and the rest of
the time operate as your regular user.

 Sudo provides an audit trail.

When a user on the system uses sudo, it looks at what user used sudo, what com-
mand was run, and when it was run. It also logs when a user tries to access sudo
privileges they don’t have. This provides a nice audit trail an administrator can use
later to track down unauthorized access attempts on the system.

 Sudo Examples and Best Practices

Sudo, like most access control systems, provides an extensive set of configuration options
and methods to group users, roles, and commands. That configuration is usually found
in /etc/sudoers although modern systems now often include an /etc/sudoers.d/ directory
where one can better organize specific sets of sudo rules into his own files. The sudoers
man page (type “man sudoers”) goes into exhaustive detail on how to build your own
complex sudo rules, and there are also plenty of other guides available. Instead of rehashing
that documentation here, I describe some best practices when it comes to sudo rules
and provide a few examples of useful sudo rules along the way. To get started, though,
let’s break down a generic sudo command:

root ALL=(ALL) ALL

This command allows the root user to run any command as any user on any system. The
first column is the user or group that the sudo rule applies to; in this case, the root user.
The second column allows you to specify specific hosts this sudo rule applies to, or ALL if it
applies on any host. The next entry in parentheses lists which user or users (separated by
commas in the case of more than one user) can run commands—in this case, all users. The
final column is a comma-separated list of specific executables on the system that you can
run with these elevated privileges. In this case, it’s all commands.

 Use visudo to edit /etc/sudoers.

It may be tempting to just fire up your preferred text editor and edit /etc/sudoers
directly, but the problem is that if you accidentally introduce a syntax error into /etc/
sudoers you could lock yourself out of root access completely! When you use the

57Section 1: Server Security Fundamentals

visudo tool, it performs a syntax validation on the file before it saves it, so you
don’t risk writing an invalid file.

 Grant access to groups, not specific users.

This is more for ease of administration than specifically for security, but sudo
allows you to grant access to a group on the system instead of a specific user. For
instance, here are some examples of sudo rules you may have on your system to
grant administrators root access:
%admin ALL=(ALL:ALL) ALL
%wheel ALL=(ALL:ALL) ALL
%sudo ALL=(ALL:ALL) ALL

Each of these rules is an equivalent to root access. They let you become any user
on the system and run any command you want as that user. The admin, wheel,
and sudo groups are common groups on the system that a distribution might use
to define who can become root.

For a more useful example, let’s say that you administer some tomcat servers and
the developers need access to the local tomcat user in the development environment
so they can troubleshoot their code. If we had all of their users in a group called
developers, for instance, we could add the following rule to /etc/sudoers:
%developers ALL=(tomcat) ALL

 Restrict access to specific commands as much as possible.

While it’s certainly easier to just allow someone to run all commands as a user, if
we want to follow the principle of least privilege, we want to grant users access to
only the privileged commands they need. This is particularly true when granting root
access. For instance, if the database administrators (DBAs) needed access to run
the psql command as postgres users so they could have more control over system-
level database configuration, the lazy way would be to add a rule like the following:
%dbas ALL=(postgres) ALL

The problem is I don’t necessarily want or need the DBAs to do more than run psql,
so I could restrict the rule to just the command they need:
%dbas ALL=(postgres) /usr/bin/psql

 Always use the full path to scripts.

When writing sudo rules, always make sure to list the complete path to the executable
you intend the user to run. Otherwise, if I had just listed psql instead of /usr/bin/psql,
a malicious user could create a local script, name it psql, and have it do whatever
she wanted.

 Write wrapper scripts to restrict risky commands to specific arguments.

In many cases when you write sudo rules, you end up granting more powers than
a user really needs. For instance, if I wanted to allow a user to restart the Nginx
service, I could grant him access to the service command:
bob ALL=(root) /usr/sbin/service

58 Chapter 3 Server Security

That would certainly give him the ability to restart Nginx, but he would also be able
to start and stop any other service on the system. In this circumstance, it’s better to
create a small wrapper script named /usr/local/bin/restart_nginx like the following:
#!/bin/bash

/usr/sbin/service nginx restart

Then I would write a sudo rule that just allowed access to that script:
bob ALL=(root) /usr/local/bin/restart_nginx

If I wanted to allow bob to stop and start nginx as well, I could either modify the
existing script to accept (and thoroughly validate) input, or I could create two new
scripts along the same lines as the restart for the stop and start functions. In the latter
case, I would update the sudo rule to be the following:
bob ALL=(root) /usr/local/bin/restart_nginx, /usr/local/bin/stop_nginx, /usr/
local/bin/start_nginx

Make sure that your wrapper scripts are only owned and writable only by root
(chmod 775). In general, be careful about executing any scripts that a user can break
out of and run shell commands from (such as vi).

 Resist writing NOPASSWD sudo rules unless absolutely necessary.

Sudo provides a f lag called NOPASSWD that doesn’t require the user to enter a
password when executing sudo. This can be a time saver; however, it removes one of
the primary protections you have with sudo—namely, that a user has to authenticate
herself to the system with her password before sudo allows her to run a command.

That said, there are valid reasons to use the NOPASSWD f lag, in particular if you
want to execute a command from a role account on the system that may not have
a password itself. For instance, you might want to allow the postgres database user
to be able to trigger a cron job that runs a special database backup script as root,
but the postgres role account doesn’t have a password. In that case, you would add
a sudo rule like the following:
postgres ALL=(root) NOPASSWD: /usr/local/bin/backup_databases

 Section 2: Intermediate Server-Hardening
Techniques
 Intermediate server-hardening techniques have to do with SSH key authentication,
AppArmor, and remote logging.

SSH Key Authentication
Most administrators access their machines over SSH, and unfortunately, sometimes hackers
do too! In fact, if you have a server exposed to the public Internet and have ever both-
ered to check your authentication logs (/var/log/auth.log on Debian-based systems),

59Section 2: Intermediate Server-Hardening Techniques

you might have been surprised at just how many ssh attempts your machine constantly
gets. What’s happening here is called an SSH brute force attack. A number of attackers
have realized that often the easiest way to compromise a Linux server is to guess a user’s
password. If one user (or common role account, like oracle or nagios for instance) happens
to use a password that’s in an attacker’s dictionary, then it’s just a matter of time before
a script guesses it.

So how do you protect against an SSH brute force attack? One way would be to audit
user passwords and enforce a strict password-complexity policy. Another might be to pick
a different port for SSH, hoping that obscurity will save you. Yet another involves setting
up systems that parse through SSH attempts and modify your firewall rules if too many
attempts come from a single IP. Despite the fact that you can risk locking yourself out
with systems like this, attackers have already moved on and will often only make a few
attempts from a single IP in their vast botnet. Each of these methods can help reduce the
risk of a successful SSH brute force attack, but it can’t eliminate it completely.

If you want to eliminate SSH brute force attacks completely, the best way is also one
of the simplest: eliminate password SSH logins. If you remove password SSH logins from
the equation, then attackers can guess all of the passwords they want, and even if they
guess right, SSH won’t allow them to log in.

So if you remove password logins, how do you log in to SSH? The most common
replacement for password-based login for SSH is to use SSH keypairs. With SSH keypairs,
your client (a laptop or some other server) has both a public and private key. The private
key is treated like a secret and stays on your personal machine, and the public key is
copied to the ~/.ssh/authorized_keys file on the remote servers you want to log into.

 Create SSH Keys

The first step is to create your SSH keypair. This is done via the ssh-keygen tool and while
it accepts a large number of options and key types, we will use one that should work
across a large number of servers:

$ ssh-keygen -t rsa -b 4096

The -t option selects the key type (RSA) and -b selects the bit size for the key (4096 bit),
and this 4096-bit RSA key should be acceptable currently. When you run the com-
mand, it will prompt you for an optional passphrase to use to unlock the key. If you
don’t select a passphrase, then you can ssh into remote servers without having to type
in a password. The downside is that if anyone gets access to your private key (by default
in ~/.ssh/id_rsa), then he can immediately use it to ssh into your servers. I recommend
setting a passphrase, and in a later section I talk about how to use ssh-agent to cache
your passphrase for a period of time (much like sudo passwords are often cached for a
few minutes so you don’t have to type them with every command).

Once the command completes, you will have two new files: the private key at
~/.ssh/id_rsa and the public key at ~/.ssh/id_rsa.pub. The public key is safe to share with
other people and it is the file that will get copied to remote servers, but the private key
should be protected like your passwords or any other secrets and not shared with anyone.

60 Chapter 3 Server Security

You may want to consider creating different SSH keys for different purposes. Like
using different passwords for different accounts, having different SSH keys for different
accounts applies the principle of compartmentalization to your SSH keys and will help
protect you if one key gets compromised. If you want to store a keypair with a different
file name than the default, use the -f option to specify a different file. For instance, if you
use the same computer for personal and work use, you will want to create a separate key-
pair for each environment:

$ ssh-keygen -t rsa -b 4096 -f ~/.ssh/workkey

The preceding command creates a workkey and workkey.pub file inside the ~/.ssh/
directory.

 Copy SSH Keys to Other Hosts

Once you have your SSH keys in place, you will need to copy the contents of your public
key to the ~/.ssh/authorized_keys file on the remote server. While you could just ssh
into the remote server and do this by hand, a tool called ssh-copy-id has been provided
to make this easy. For instance, if I wanted to copy my public key to a server called
web1.example.com and my username was kyle, I would type:

$ ssh-copy-id kyle@web1.example.com

Replace the user and server with the username and server that you would use to log in
to your remote server. At this point it will still prompt you for the password you use to
log in to the remote machine, but once the command completes it will be the last time!
Just like with regular SSH logins, if your local username is the same as the user on the
remote server, you can omit it from the command. By default ssh-copy-id will copy
your id_rsa.pub file, but if your keypair has a different name, then use the -i argument
to specify a different public key. So if we wanted to use the custom workkey file we created
previously, we would type:

$ ssh-copy-id -i ~/.ssh/workkey.pub kyle@web1.example.com

The nice thing about the ssh-copy-id command is that it takes care of setting the proper
permissions on the ~/.ssh directory if it doesn’t already exist (it should be owned by its own
user, with 700 permissions), and it will also create the authorized_keys file if it needs to.
This will help you avoid a lot of the headaches that come along with setting up SSH keys
resulting from improper permissions on the local or remote ~/.ssh directory or local key files.

Once the ssh-copy-id command completes, you should be able to ssh into the remote
server and not be prompted for the remote password. Now if you did set a passphrase for
your SSH key, you will be prompted for that, but hopefully you chose a different pass-
phrase for the key than the password you use on the remote server so it’s easier to demon-
strate that keys work.

 Disable Password Authentication

Once you can ssh to the machine using keys, you are ready to disable password authen-
tication. You will want to be careful with this step, of course, because if for some

61Section 2: Intermediate Server-Hardening Techniques

reason your keys didn’t work and you disable password authentication, you can risk
locking yourself out of the server. If you are transitioning a machine being used by a
number of people from password authentication to keys, you will want to make sure
that everyone has pushed keys to the server before you proceed any further; otherwise,
someone with root privileges will need to update their ~/.ssh/authorized_keys file with
their public key by hand.

To disable password authentication, ssh into the remote server and get root privileges.
Then edit the /etc/ssh/sshd_config file and change

PasswordAuthentication yes

to

PasswordAuthentication no

and then restart the SSH service which, depending on your system, may be one of the
following:

$ sudo service ssh restart
$ sudo service sshd restart

Now, you don’t want to risk locking yourself out, so keep your current SSH session
active. Instead, open a new terminal and attempt to ssh into the server. If you can ssh in,
then your key works and you are done. If not, run ssh with the -vvv option to get more
verbose errors. To be safe, also undo the change to /etc/ssh/sshd_config and restart
your SSH service to make sure you don’t get completely locked out while you perform
troubleshooting.

 Working with Password-Protected SSH Keys

Some administrators enjoy the convenience of SSH keys that were created without a
password. You can ssh to all your servers immediately without having to type in a pass-
word, and that can be pretty convenient. If you use a source control management tool
like Git over ssh, you probably also want to avoid having to type in a password every time
you push or pull from remote repositories. The downside to this approach is that with-
out a password-protected SSH key, the security of your servers is only as good as the
security behind your private SSH key. If someone gets access to your ~/.ssh/id_rsa file,
they can immediately access any servers you can.

With a password-protected SSH key, even if your private key gets compromised, the
attacker still needs to guess the password to unlock it. At the very least, that gives you time
to create and deploy a new key, and depending on the attacker, the password-protected
key may never be compromised. Password-protected keys are particularly important if
you happen to store any keys on systems where you share root with other administrators.
Without a password, any administrator with root on the system could log in to servers
with your credentials.

You don’t have to sacrifice convenience with a password-protected SSH key. There
are tools in place that make it almost as convenient as any other method while giving you

62 Chapter 3 Server Security

a great deal of security. The main tool that makes SSH key passwords more manageable
is the ssh-add utility. This tool is part of the ssh-agent utility; it allows you to type the
password once and caches the unlocked key in RAM using SSH agent. Most Linux
desktop systems these days have SSH agent running in the background (or via a wrapper
like Gnome keyring). By default, it caches the key in RAM indefinitely (until the sys-
tem powers down); however, I don’t recommend that practice. Instead, I like to use
ssh-add much like sudo password caching. I specify a particular time period to cache
the key, after which I will be prompted for a password again.

For instance, if I wanted to cache the key for 15 minutes, much like sudo on some
systems, I could type:

$ ssh-add -t 15m
Enter passphrase for /home/kyle/.ssh/id_rsa:
Identity added: /home/kyle/.ssh/id_rsa (/home/kyle/.ssh/id_rsa)
Lifetime set to 900 seconds

Note that I was able to specify the time in minutes to the -t argument by appending
“m” to the end; otherwise, it assumes the number is in seconds. You will probably want
to cache the key for a bit longer than that, though; for instance, to cache the key for an
hour you could type:

$ ssh-add -t 1h
Enter passphrase for /home/kyle/.ssh/id_rsa:
Identity added: /home/kyle/.ssh/id_rsa (/home/kyle/.ssh/id_rsa)
Lifetime set to 3600 seconds

From now until the key expires, you can ssh into servers and use tools like Git without
being prompted for the password. Once your time is up, the next time you use SSH you
will be prompted for a password and can choose to run ssh-add again. If the key you want
to add is not in the default location, just add the path to the key at the end of the ssh-add
command:

$ ssh-add -t 1h ~/.ssh/workkey

What I like to do is use this tool like a personal timer. When I start work in the morn-
ing, I calculate the number of hours or minutes from now until when I want to go
to lunch and set the ssh-add timer to that number. Then I work as usual and once the
next Git push or ssh command prompts me for a password, I realize it’s time to go grab
lunch. When I get back from lunch I do the same thing to notify me when it’s time to
leave for the day.

Of course, using a tool like this does mean that if an attacker were able to compro-
mise your machine during one of these windows where the key is cached, she would be
able to have all of the access you do without typing in a password. If you are working
in an environment where that’s too much of a risk, just keep your ssh-add times short,
or run ssh-add -D to delete any cached keys any time you leave your computer. You
could even potentially have your lock command or screensaver call this command so it
happens every time you lock your computer.

63Section 2: Intermediate Server-Hardening Techniques

 AppArmor 1

The UNIX permissions model has long been used to lock down access to users and
programs. Even though it works well, there are still areas where extra access control can
come in handy. For instance, many services still run as the root user, and therefore if they
are exploited, the attacker potentially can run commands throughout the rest of the system
as the root user. There are a number of ways to combat this problem, including sand-
boxes, chroot jails, and so on, but Ubuntu has included a system called AppArmor,
installed by default, that adds access control to specific system services.

AppArmor is based on the security principle of least privilege; that is, it attempts
to restrict programs to the minimal set of permissions they need to function. It works
through a series of rules assigned to particular programs. These rules define, for instance,
which files or directories a program is allowed to read and write to or only read from.
When an application that is being managed by AppArmor violates these access con-
trols, AppArmor steps in and prevents it and logs the event. A number of services
include AppArmor profiles that are enforced by default, and more are being added in
each Ubuntu release. In addition to the default profiles, the universe repository has an
apparmor-profiles package you can install to add more profiles for other services. Once
you learn the syntax for AppArmor rules, you can even add your own profiles.

Probably the simplest way to see how AppArmor works is to use an example program.
The BIND DNS server is one program that is automatically managed by AppArmor
under Ubuntu, so first I install the BIND package with sudo apt-get install bind9.
Once the package is installed, I can use the aa-status program to see that AppArmor is
already managing it:

$ sudo aa-status
apparmor module is loaded.
5 profiles are loaded.
5 profiles are in enforce mode.
/sbin/dhclient3
/usr/lib/NetworkManager/nm-dhcp-client.action
/usr/lib/connman/scripts/dhclient-script
/usr/sbin/named
/usr/sbin/tcpdump
0 profiles are in complain mode.
2 processes have profiles defined.
1 processes are in enforce mode :
/usr/sbin/named (5020)
0 processes are in complain mode.
1 processes are unconfined but have a profile defined.
/sbin/dhclient3 (607)

Here you can see that the /usr/sbin/named profile is loaded and in enforce mode,
and that my currently running /usr/sbin/named process (PID 5020) is being managed
by AppArmor.

1. Rankin, Kyle; Hill, Benjamain Mako, The Official Ubuntu Server Book, Third Edition, © 2014.
Reprinted by permission of Pearson Education, Inc., New York, New York.

64 Chapter 3 Server Security

AppArmor Profiles

The AppArmor profiles are stored within /etc/apparmor.d/ and are named after the
binary they manage. For instance, the profile for /usr/sbin/named is located at /etc/
apparmor.d/usr.sbin.named. If you look at the contents of the file, you can get an idea
of how AppArmor profiles work and what sort of protection they provide:

vim:syntax=apparmor
Last Modified: Fri Jun 1 16:43:22 2007
#include <tunables/global>
/usr/sbin/named {
 #include <abstractions/base>
 #include <abstractions/nameservice>

 capability net_bind_service,
 capability setgid,
 capability setuid,
 capability sys_chroot,

 # /etc/bind should be read-only for bind
 # /var/lib/bind is for dynamically updated zone (and journal) files.
 # /var/cache/bind is for slave/stub data, since we're not the origin
 #of it.
 # See /usr/share/doc/bind9/README.Debian.gz
 /etc/bind/** r,
 /var/lib/bind/** rw,
 /var/lib/bind/ rw,
 /var/cache/bind/** rw,
 /var/cache/bind/ rw,

 # some people like to put logs in /var/log/named/
 /var/log/named/** rw,

 # dnscvsutil package
 /var/lib/dnscvsutil/compiled/** rw,

 /proc/net/if_inet6 r,
 /usr/sbin/named mr,
 /var/run/bind/run/named.pid w,
 # support for resolvconf
 /var/run/bind/named.options r,
}

For instance, take a look at the following excerpt from that file:

/etc/bind/** r,
/var/lib/bind/** rw,
/var/lib/bind/ rw,
/var/cache/bind/** rw,
/var/cache/bind/ rw,

The syntax is pretty straightforward for these files. First there is a file or directory path,
followed by the permissions that are allowed. Globs are also allowed, so, for instance,
/etc/bind/** applies to all the files below the /etc/bind directory recursively. A single *
would apply only to files within the current directory. In the case of that rule, you can see
that /usr/sbin/named is allowed only to read files in that directory and not write there.

65Section 2: Intermediate Server-Hardening Techniques

This makes sense, since that directory contains only BIND configuration files—the
named program should never need to write there. The second line in the excerpt allows
named to read and write to files or directories under /var/lib/bind/. This also makes sense
because BIND might (among other things) store slave zone files here, and since those files
are written to every time the zone changes, named needs permission to write there.

Enforce and Complain Modes

You might have noticed that the aa-status output mentions two modes: enforce and
complain. In enforce mode, AppArmor actively blocks any attempts by a program to violate
its profile. In complain mode, AppArmor simply logs the attempt but allows it to happen.
The aa-enforce and aa-complain programs allow you to change a profile to be in enforce
or complain mode, respectively. So if my /usr/sbin/named program did need to write
to a file in /etc/bind or some other directory that wasn’t allowed, I could either modify
the AppArmor profile to allow it or I could set it to complain mode:

$ sudo aa-complain /usr/sbin/named
Setting /usr/sbin/named to complain mode

If later I decided that I wanted the rule to be enforced again, I would use the aa-enforce
command in the same way:

$ sudo aa-enforce /usr/sbin/named
Setting /usr/sbin/named to enforce mode

If I had decided to modify the default rule set at /etc/apparmor.d/usr.sbin.named, I
would need to be sure to reload AppArmor so it would see the changes. You can run
AppArmor’s init script and pass it the reload option to accomplish this:

$ sudo /etc/init.d/apparmor reload

Be careful when you modify AppArmor rules. When you first start to modify rules,
you might want to set that particular rule into complain mode and then monitor /var/
log/syslog for any violations. For instance, if /usr/sbin/named were in enforce mode and
I had commented out the line in the /usr/sbin/named profile that granted read access
to /etc/bind/**, then reloaded AppArmor and restarted BIND, not only would BIND
not start (since it couldn’t read its config files), I would get a nice log entry in /var/log/
syslog from the kernel to report the denied attempt:

Jan 7 19:03:02 kickseed kernel: [2311.120236]
 audit(1231383782.081:3): type=1503 operation="inode_permission"
 requested_mask="::r" denied_mask="::r" name="/etc/bind/named.conf"
 pid=5225 profile="/usr/sbin/named" namespace="default"

Ubuntu AppArmor Conventions

The following list details the common directories and files AppArmor uses, including
where it stores configuration files and where it logs:

 /etc/apparmor/: This directory contains the main configuration files for the
AppArmor program, but note that it does not contain AppArmor rules.

66 Chapter 3 Server Security

 /etc/apparmor.d/: You will find all the AppArmor rules under this directory
along with subdirectories that contain different sets of include files to which cer-
tain rule sets refer.

 /etc/init.d/apparmor: This is the AppArmor init script. By default, AppArmor
is enabled.

 /var/log/apparmor/: AppArmor stores its logs under this directory.
 /var/log/syslog: When an AppArmor rule is violated in either enforce or com-

plain mode, the kernel generates a log entry under the standard system log.

 Remote Logging
Logs are an important troubleshooting tool on a server but they are particularly useful
after an attacker has compromised a server. System logs show every local and SSH login
attempt, any attempt to use sudo, kernel modules that are loaded, extra file systems that
are mounted, and if you use a software firewall with logging enabled it might show inter-
esting networking traffic from the attacker. On web, database, or application servers,
you also get extra logging from attempting accesses of those systems.

The problem is that attackers know how useful and revealing logs are, too, so any
reasonably intelligent attacker is going to try to modify any log on the system that might
show her tracks. Also, one of the first things many rootkits and other attack scripts do
is wipe the local logs and make sure their scripts don’t generate new logs.

As a security-conscious administrator, you will find it important that all logs on a
system that might be useful after an attack also be stored on a separate system. Central-
ized logging is useful for overall troubleshooting, but it also makes it that much more
difficult for an attacker to cover her tracks since it would mean not only compromising
the initial server but also finding a way to compromise your remote logging server.
Depending on your company, you may also have regulatory requirements to log certain
critical logs (like login attempts) to a separate server for longer-term storage.

There are a number of systems available such as Splunk and Logstash, among others,
that not only collect logs from servers but can also index the logs and provide an interface
an administrator can use to search through the logs quickly. Many of these services provide
their own agent that can be installed on the system to ease collection of logs; however,
just about all of them also support log collection via standard syslog network protocol.

Instead of going through all the logging software out there, in this section I describe
how to configure a client to ship logs to a remote syslog server, and in case you don’t
have a central syslog server in place yet, I follow up with a few simple steps to configure
a basic centralized syslog server. I’ve chosen rsyslog as my example syslog server because
it supports classic syslog configuration syntax, has a number of extra features for admin-
istrators that want to fine-tune the server, and should be available for all major Linux
distributions.

 Client-Side Remote Syslog Configuration
It is relatively straightforward to configure a syslog client to ship logs to a remote
server. Essentially you can go into your syslog configuration (in the case of rsyslog, this

67Section 2: Intermediate Server-Hardening Techniques

is at /etc/rsyslog.conf in many cases along with independent configuration files in /etc/
rsyslog.d) and find the configuration for the log file that you want to ship remotely. For
instance, I may have a regulatory requirement that all authentication logs be shipped to
a remote source. On a Debian-based system, those logs are in /var/log/auth.log, and if
I look through my configuration files I should see the line that describes what type of
events show up in this log:

auth,authpriv.* /var/log/auth.log

Since I want to ship these logs remotely as well, I need to add a new line almost
identical to the preceding line, except I would replace the path to the local log file with
the location of the remote syslog server. For instance, if I named the remote syslog server
“syslog1.example.com,” I would either add a line below the preceding line or create a
new configuration file under /etc/rsyslog.d with the following syntax:

auth,authpriv.* @syslog1.example.com:514

The syntax for this line is an @ sign for User Datagram Protocol (UDP), or @@ for
Transmission Control Protocol (TCP), the hostname or IP address to ship the logs to,
and optionally a colon and the port to use. If you don’t specify a port, it will use the default
syslog port at 514. Now restart the rsyslog service to use the new configuration:

$ sudo service rsyslog restart

In the preceding example, I use UDP to ship my logs. In the past, UDP was preferred
since it saved on overall network traffic when shipping logs from a large number of
servers; however, with UDP you do risk losing logs if the network gets congested. An
attacker could even attempt to congest the network to prevent logs from getting to a
remote log server. While TCP does provide extra overhead, the assurance that your logs
will not get dropped is worth the extra overhead. So, I would change the previous
configuration line to

auth,authpriv.* @@syslog1.example.com:514

If you find after some time that this does create too much network load, you can always
revert back to UDP.

 Server-Side Remote Syslog Configuration

If you don’t already have some sort of central logging server in place, it’s relatively simple
to create one with rsyslog. Once rsyslog is installed, you will want to make sure that
remote servers are allowed to connect to port 514 UDP and TCP on this system, so make
any necessary firewall adjustments. Next, add the following options to your rsyslog con-
figuration file (either /etc/rsyslog.conf directly, or by adding an extra file under /etc/
rsyslog.d):

$ModLoad imudp
$UDPServerRun 514
$ModLoad imtcp
$InputTCPServerRun 514

http://www.�syslog1.example.com

68 Chapter 3 Server Security

This will tell rsyslog to listen on port 514 both for UDP and TCP. You also will want
to restrict what IPs can communicate with your rsyslog server, so add extra lines that
restrict which networks can send logs to this server:

$AllowedSender UDP, 192.168.0.0/16, 10.0.0.0/8, 54.12.12.1
$AllowedSender TCP, 192.168.0.0/16, 10.0.0.0/8, 54.12.12.1

These lines allow access from the internal 192.168.x.x and 10.x.x.x networks as well as
an external server at 54.12.12.1. Obviously, you will want to change the IPs mentioned
here to ref lect your network.

If you were to restart rsyslog at this point, the local system logs would grow not just with
logs from the local host, but also with any logs from remote systems. This can make it difficult
to parse through and find logs just for a specific host, so we also want to tell rsyslog to orga-
nize logs in directories based on hostname. This requires that we define a template for each
type of log file that we want to create. In our client example, we showed how to ship auth.log
logs to a remote server, so here we follow up with an example configuration that will accept
those logs and store them locally with a custom directory for each host based on its hostname:

$template Rauth,"/var/log/%HOSTNAME%/auth.log"
auth.*,authpriv.* ?Rauth`

In the first line, I define a new template I named Rauth and then specify where to store
logs for that template. The second line looks much like the configuration we used on
our client, only in this case at the end of the line I put a question mark and the name of
my custom template. Once your configuration is in place, you can restart rsyslog with:

$ sudo service rsyslog restart

You should start to see directories being created under /var/log for each host that sends
the server authentication logs. You can repeat the preceding template lines for each of
the log types you want to support; just remember that you need to define the template
before you can use it.

 Section 3: Advanced Server-Hardening Techniques
Depending on your level of threat, you may want to add some additional hardening tech-
niques to each of your servers. The advanced server-hardening techniques we cover include
server disk encryption, secure NTP alternatives, and two-factor authentication with SSH.

 Server Disk Encryption
Like many more advanced security-hardening techniques, disk encryption is one of those
security practices that many administrators skip unless they are required to engage it by
regulations, by the sensitivity of the data they store, or by the presence of an overall high-
security environment. After all, it requires extra work to set up, it can lower your overall
disk performance, and it can require that you manually intervene to enter a passphrase
to unlock a disk whenever you boot. As you consider whether you should encrypt your disks,
it is important to recognize what security it provides and what security it can’t provide.

69Section 3: Advanced Server-Hardening Techniques

 Encryption protects data at rest. Disk encryption will encrypt data as it is written to
disk but provides the data in unencrypted form while the file system is mounted.
When the disk is unmounted (or the server is powered off), the data is encrypted
and can’t be read unless you know the passphrase.

 Encryption does not protect the live file system. If an attacker compromises a server
while the encrypted disk is mounted (which would usually be the case for most
running servers), he will be able to read the data as though it were any other unen-
crypted file system. In addition, if the attacker has root privileges, he can also retrieve
the decryption key from RAM.

 The encryption is only as strong as your passphrase. If you pick a weak password
for your disk encryption, then an attacker will eventually guess it.

 Root Disk Encryption

The examples I give next are to encrypt non-root disks. For servers, it’s simpler to segregate
your sensitive data to an encrypted disk and leave the OS root partition unencrypted.
That way you could set up your system to be able to boot to a command prompt and
be accessible over the network in the event of a reboot without prompting you for a
passphrase. That said, if your environment is sensitive enough that even the root disk
must be encrypted, the simplest way to set it up is via your Linux distribution’s installer,
either manually in the partitioning section of your installation disk, or through an auto-
mated installation tool like kickstart or preseed.

 Non-root Disk Encryption

I’m assuming that if you chose to encrypt your root disk, you probably encrypted all
the remaining disks on your server during installation. However, if you haven’t chosen
to encrypt everything, you likely have a disk or partition you intend to use for sensitive
information. In the examples that follow, we use the Linux Unified Key Setup (LUKS)
disk encryption tools and, in particular, we use the cryptsetup script that simplifies the
process of creating a new LUKS volume. If cryptsetup isn’t already installed on your
server, the package of the same name should be available for your distribution.

In the following example, we will set up an encrypted volume on the /dev/sdb disk
but you could also select a partition on the disk instead. All commands will require
root permissions. In the end, we will have a disk device at /dev/mapper/crypt1 we can
format, mount, and treat like any other disk.

The first step is to use the cryptsetup tool to create the initial encrypted drive with
your chosen passphrase and format it with random data before you use it:

$ sudo cryptsetup --verbose --verify-passphrase luksFormat /dev/sdb
WARNING!
========
This will overwrite data on /dev/sdb irrevocably.

Are you sure? (Type uppercase yes): YES
Enter passphrase:
Verify passphrase:
Command successful.

70 Chapter 3 Server Security

At this point, you have a LUKS encrypted disk on /dev/sdb, but before you can use it
you need to open the device (which will prompt you for the passphrase) and map it to a
device under /dev/mapper/ that you can mount:

$ sudo cryptsetup luksOpen /dev/sdb crypt1
Enter passphrase for /dev/sdb:

The syntax for this command is to pass cryptsetup the luksOpen command followed
by the LUKS device you want to access, and finally the label you want to assign to this
device. The label will be the name that shows up under /dev/mapper, so in the preceding
example, after the command completes, I will have a device under /dev/mapper/crypt1.

Once /dev/mapper/crypt1 exists, I can format it with a file system and mount it like
any other drive:

$ sudo mkfs -t ext4 /dev/mapper/crypt1
$ sudo mount /dev/mapper/crypt1 /mnt

You will likely want to set this up so that the device shows up in the same way after every
boot. Like with the /etc/fstab file you use to map devices to mount point at boot, there
is an /etc/crypttab file you can use to map a particular device to the label you want to
assign to it. Like with modern /etc/fstab files, it’s recommended that you reference the
UUID assigned to the device. Use the blkid utility to retrieve the UUID:

$ sudo blkid /dev/sdb
/dev/sdb: UUID="0456899f-429f-43c7-a6e3-bb577458f92e" TYPE="crypto_LUKS"

Then update /etc/cryptab by specifying the label you want to assign the volume (crypt1
in our example), the full path to the disk, then “none” for the key file field, and then
“luks” as the final option. The result in our case would look like this:

$ cat /etc/crypttab
<target name> <source device> <key file> <options>
crypt1 /dev/disk/by-uuid/0456899f-429f-43c7-a6e3-bb577458f92e none luks

If you do set up /etc/crypttab, you will be prompted at boot for a passphrase. Note in
our example we did not set up a key file. This was intentional because a key file on the
unencrypted root file system would probably be available to an attacker who had access
to the powered-off server, and then she would be able to decrypt the disk.

 Secure NTP Alternatives
Accurate time is important on servers, not just as a way to synchronize log output between
hosts, but because most clustering software relies on cluster members having an accurate
clock. Most hosts use a service called Network Time Protocol (NTP) to query a remote
NTP server for accurate time. You need root permissions to set the time on a server, so
typically the NTP daemon (ntpd) ends up running in the background on your system as root.

I would imagine most administrators don’t think about NTP when they think about
security. It is one of those protocols you take for granted; however, most administrators
ultimately rely on an external accurate time source (like nist.gov) for NTP. Because

http://www.nist.gov

71Section 3: Advanced Server-Hardening Techniques

NTP uses the UDP protocol, it might be possible for an attacker to send a malicious,
spoofed NTP reply before the legitimate server. This reply could simply send the server
an incorrect time, which could cause instability, or given that ntpd runs as root, if it
didn’t validate the NTP reply in a secure way, there is potential for a man-in-the-middle
attacker to send a malicious reply that could execute code as root.

One alternative to NTP is tlsdate, an open-source project that takes advantage of the
fact that the TLS handshake contains time information. With tlsdate, you can start a TLS
connection over TCP with a remote server that you trust and pull down its time.
While the timestamps in TLS are not as precise as with NTP, they should be accurate
enough for normal use. Since tlsdate uses TCP and uses TLS to validate the remote
server, it is much more difficult for an attacker to send malicious replies back.

The tlsdate project is hosted at https://github.com/ioerror/tlsdate, and the general-
purpose installation instructions can be found at https://github.com/ioerror/tlsdate/
blob/master/INSTALL. That said, tlsdate is already packaged for a number of popular
Linux distributions, so first use your standard package tool to search for the tlsdate package.
If it doesn’t exist, you can always download the source code from the aforementioned
site and perform the standard compilation process:

./autogen.sh

./configure
make
make install

The tlsdate project includes a systemd or init script (depending on your distribution)
that you can start with service tlsdated start. Once running, the script will notice network
changes and will periodically keep the clock in sync in the background. If you want to
test tlsdate manually, you can set the clock with the following command:

$ sudo tlsdate -V
Sat Jul 11 10:45:37 PDT 2015

By default, tlsdate uses google.com as a trusted server. On the command line, you
can use the -H option to specify a different host:

$ sudo tlsdate -V -H myserver.com

If you want to change the default, edit /etc/tlsdate/tlsdated.conf and locate the source
section:

Host configuration.
source
 host google.com
 port 443
 proxy none
end

Change the host to whichever host you would like to use. For instance, you may
want to pick a couple of hosts in your network that poll an external source for time and
have the rest of your servers use those internal trusted hosts for time. Those internal
trusted servers simply need to serve some kind of TLS service (such as HTTPS).

https://www.github.com/ioerror/tlsdate
https://www.github.com/ioerror/tlsdate/blob/master/INSTALL
https://github.com/ioerror/tlsdate/blob/master/INSTALL
http://www.google.com

72 Chapter 3 Server Security

 Two-Factor Authentication with SSH
Disabling password authentication on SSH and relying strictly on keys is a great first step
to hardening SSH, but it still is not without its risks. First, while you may follow my
advice and protect your SSH keys with a password, you can’t guarantee that every user on
the system does the same. This means if an attacker were able to access a computer for a
short time, he could copy and use the keys to log in to your system. If you want to protect
against this kind of attack, one approach is to require two-factor authentication for SSH.

With two-factor authentication, a user must provide both an SSH key and a separate
token to log into the server. Time-based tokens are the most common, and in the past
they required you to carry around an expensive device on your keychain that would
update itself with a new token every 30 seconds. These days, there are a number of two-
factor authentication solutions that work in software and can use your cell phone instead
of a hardware token.

There are several different phone-based two-factor authentication libraries out there
for ssh. Some work by the SSH client ForceCommand config option, some with a system-
wide pluggable authentication modules (PAM) module. Some approaches are time-
based, so they work even if your device is disconnected from a network, while others
use SMS or phone calls to transfer the code. For this section, I’ve chosen the Google
Authenticator library for a couple of reasons:

 It’s been around for a number of years and is already packaged for a number of
Linux distributions.

 The Google Authenticator client is available for multiple phone platforms.
 It uses PAM, so you can easily enable it system-wide without having to edit ssh

config files for each user.
 It provides the user with backup codes she can write down in case her phone is

ever stolen.

 Install Google Authenticator

The Google Authenticator library is packaged for different platforms so, for instance,
on Debian-based systems you can install it with

$ sudo apt-get install libpam-google-authenticator

If it isn’t already packaged for your distribution, go to https://github.com/google/google-
authenticator/ and follow the directions to download the software, build, and install it.

 Configure User Accounts

Before we make PAM or SSH changes that might lock you out, you will want to at
least configure Google Authenticator for your administrators. First, install the Google
Authenticator application on your smartphone. It should be available via the same methods
you use to install other applications.

Once the application is installed, the next step is to create a new Google Authenticator
account on your phone from your server. To do this, log in to your account as your user

https://www.github.com/google/google-authenticator/
https://www.github.com/google/google-authenticator/

73Section 3: Advanced Server-Hardening Techniques

and then run google-authenticator. It will walk you through a series of questions, and it’s
safe to answer yes to every question, although since you should have already set up tlsdate
on your server so its time is accurate, I recommend sticking with the default 90-second
window instead of increasing it to 4 minutes. The output looks something like this:

kyle@debian:~$ google-authenticator

Do you want authentication tokens to be time-based (y/n) y
[URL for TOTP goes here]
[QR code goes here]
Your new secret key is: NONIJIZMPDJJC9VM
Your verification code is 781502
Your emergency scratch codes are:
 60140990
 16195496
 49259747
 24264864
 37385449

Do you want me to update your "/home/kyle/.google_authenticator" file (y/n) y

Do you want to disallow multiple uses of the same authentication
token? This restricts you to one login about every 30s, but it increases
your chances to notice or even prevent man-in-the-middle attacks (y/n) y

By default, tokens are good for 30 seconds and in order to compensate for
possible time-skew between the client and the server, we allow an extra
token before and after the current time. If you experience problems with poor
time synchronization, you can increase the window from its default
size of 1:30min to about 4min. Do you want to do so (y/n) n

If the computer that you are logging into isn't hardened against brute-force
login attempts, you can enable rate-limiting for the authentication module.
By default, this limits attackers to no more than 3 login attempts every 30s.
Do you want to enable rate-limiting (y/n) y

If you have libqrencode installed, this application will not only output a URL you
can visit to add this account to your phone, it will also display a QR code on the con-
sole (I removed it from the preceding output). You can either scan that QR code with
your phone, or enter the secret key that follows “Your new secret key is:” in the output.

The emergency scratch codes are one-time use codes that you can use if you ever lose
or wipe your phone. Write them down and store them in a secure location apart from
your phone.

 Configure PAM and SSH

Once you have configured one or more administrators on the server, the next step is to
configure PAM and SSH to use Google Authenticator. Open your SSH PAM configu-
ration file (often at /etc/pam.d/sshd) and at the top of the file add

auth required pam_google_authenticator.so

On my systems, I noticed that once I enabled Google Authenticator and
ChallengeResponseAuthentication in my SSH configuration file, logins would also

74 Chapter 3 Server Security

prompt me for a password after I entered my two-factor authentication code. I was able
to disable this by commenting out

@include common-auth

in /etc/pam.d/sshd, although if you aren’t on a Debian-based system, your PAM con-
figuration may be a bit different.

Once the PAM file was updated, the final step was to update my SSH settings. Open
/etc/ssh/sshd_config and locate the ChallengeResponseAuthentication setting. Make
sure it’s set to yes, or if it’s not, in your sshd_config file add it:

ChallengeResponseAuthentication yes

Also, since we have disabled password authentication before, and are using key-based
authentication, we will need to add an additional setting to the file, otherwise SSH will
accept our key and never prompt us for our two-factor authentication code. Add the
following line to the config file, as well:

AuthenticationMethods publickey,keyboard-interactive

Now you can restart ssh with one of the following commands:

$ sudo service ssh restart
$ sudo service sshd restart

Once SSH is restarted, the next time you log in you should get an additional prompt
to enter the two-factor authentication code from your Google Authenticator app:

$ ssh kyle@web1.example.com
Authenticated with partial success.
Verification code:

From this point on, you will need to provide your two-factor token each time you log in.

Summary
No matter what service your server runs, there are certain basic hardening techniques
you should apply. In this chapter, we focused specifically on hardening steps that apply
to any server. In particular, we discussed hardening superuser access with sudo and the
importance of remote logging. Also, given that almost every server these days uses SSH
for remote administration, we covered a number of techniques to harden that service,
from general hardening of SSH server configurations like disabling root logins to the use
of SSH keys instead of password authentication. Finally, we discussed some advanced
server-hardening techniques including adding two-factor authentication to SSH logins,
server disk encryption, and alternatives to NTP.

Numbers
1Password, cloud-based password manager, 10
2FA. See Two-factor authentication (2FA)

A
A record, SPF rules, 143
Access control

advantages of sudo over su, 56
in MySQL, 186–187
in Postgres, 187–188
sudo examples and best practices, 56–58

Accounts
deleting anonymous accounts in MySQL,

181
enabling superuser accounts, 34
security practices for shared accounts, 12

ACLs (access control lists)
restricting recursive queries, 161
value of, 3

Adblock Plus, 28
Address Resolution Protocol (ARP)

poisoning, 78
Administration

local database administration using
MySQL, 179–181

local database administration using
Postgres, 181–182

AES, 223–224
Algorithms. See also Ciphers

deciphering cipher names, 223–224
password hashing, 13

all, SPF rules, 142
Allowed networks, email, 135–136
The Amnesic Incognito Live System. See Tails

(The Amnesic Incognito Live System)
Anonymity

Tor protecting, 215–216
VPNs (virtual private networks) for, 216

Anonymous networks
configuring bridge Tor relays, 103–104
configuring exit Tor relays, 104
configuring personal Tor relays, 102
configuring public Tor relays, 102–103
overview of, 100–101
restricting Tor traffic, 104–106
setting up hidden Tor services, 106–107
Tor configuration, 101–102

Apache web server
adding HTTPS to Apache virtual host, 114
adding ModSecurity firewall to, 121–124
configuring basic HTTP authentication,

111–112
htpasswd utility, 110–111
HTTPS client authentication, 117
HTTPS forward secrecy, 119–120
HTTPS reverse proxy, 116
preventing downgrade attacks, 118
redirecting HTTP to HTTPS, 115–116
restarting, 115

AppArmor
allowing dynamic DNS updates, 164–165
enforce and complain modes, 65
overview of, 63
profiles, 64–65
Ubuntu conventions, 65–66

Application-side encryption, 192–194
Applications, principle of least privilege, 60–61
AppVMs

compartmentalization example, 46–49
how Qubes works, 38–39
sharing information between, 39–40

ARP (Address Resolution Protocol)
poisoning, 78

ATM cards, types of authentication, 18
Attackers, deciding when to prosecute,

197–198

Index

230 Index

Attacks
response to. See Incident response
types of. See by individual types

Auditing, advantages of sudo over su, 56
Authentication. See also Two-factor

authentication (2FA)
advanced multifactor, 23–24
basic authentication of web server, 110–113
configuring Dovecoat authentication, 139
of database client to server, 188
disabling password authentication in SSH,

60–61
dynamic DNS authentication, 163–166
HTTPS client authentication, 117–118
of OpenVPN clients, 89
SMTP, 138
SSH keys, 58–59
in TLS, 221
types of, 17–18
using passwords, 4–5
of websites, 28

Authoritative DNS server
hardening, 159–160
overview of, 158

Autopsy
imaging disks in the cloud, 214
starting investigation of incident, 204–206
tools for forensic investigation, 202–204
using File Activity Timeline to determine

time of attack, 207–209

B
Bcrypt

password cracking countermeasures, 16–17
password-hashing algorithms, 13

BIND
adding DNSSEC to zones, 172–173
configuring recursive name servers, 161
configuring zone for authenticated

updates, 164–165
creating host key, 163–164
defining master name servers, 160
enabling DNSSEC support, 174
hiding DNS server version, 159
Response Rate Limiting feature preventing

amplification attacks, 162
Biometrics, types of authentication, 18

BIOS passwords, in workstation security,
33–34

Blowfish, password-hashing algorithm, 13
Bluetooth, proximity locking/unlocking

screen, 26–27
Bridge relay, Tor configuration, 101,

103–104
Brute force attacks

password cracking techniques, 14–15
password database dumps and, 21
password length and, 5
protecting against SSH brute force attacks,

59
sample investigation, 209–213

C
CA (certificate authority)

acquiring TLS certificate from, 113
authentication of OpenVPN clients, 89
how DNSSEC works, 169
TLS and, 222–223

Certificates, viewing contents of, 224
Certificate signing request (CSR)

TLS and, 222–223
viewing contents of, 224

Chains, of firewall rules, 80
Chats, Pidgin chat client, 32
chkrootkit, use in forensics, 200
Ciphers. See also Algorithms

deciphering cipher names, 223–224
forward secrecy, 226–227

Clients
authenticating database client to server, 188
client-side encryption of database, 195
configuring for dynamic DNS, 165–166
HTTPS client authentication, 117–118
OpenVPN configuration, 92–93
requiring database client to use TLS,

190–191
Cloud incident response

managing ephemeral servers and temporary
servers, 214

overview of, 213
stopping cloud servers, 213
taking snapshots or images of server,

213–214
Cloud, password manager, 9–10

231Index

Compartmentalization
appVM example, 46–49
of database, 178–179
security by, 37
security principles, 4

The Coroner’s Toolkit, 198
Countermeasures

advanced password cracking, 22–24
password cracking, 20–22

Cracking passwords
advanced countermeasures, 22–24
advanced techniques, 20–22
countermeasures, 16–20
techniques, 13–16

crypt, password-hashing algorithms, 13
CSR (certificate signing request)

TLS and, 222–223
viewing contents of, 224

D
“Dark Web,” 106
Dashlane, cloud-based password manager, 10
Database dumps

overview of, 21
password peppers, 22–23

Databases
access control in MySQL, 186–187
access control in Postgres, 187–188
application-side encryption, 192–194
client-side encryption, 195
compartmentalization, 178–179
configuring MySQL for use with TLS,

189–190
configuring Postgres for use with TLS,

190–191
enabling SSL/TLS, 188–189
encrypting, 191–192
encrypting using MySQL, 194
encrypting using Postgres, 194–195
full disk encryption, 192
hardening, 185–186
local administration using MySQL,

179–181
local administration using Postgres,

181–182
location in network, 178
overview of, 177

security fundamentals, 177–178
summary, 195
user permissions in MySQL, 182–184
user permissions in Postgres, 184–185

DDoS attacks, 160
Defense in depth

security principles, 3
two-factor authentication as, 17

Delegation signer (DS), DNSSEC record
types, 172

“Deny by default” approach
egress filtering, 77
principle of least privilege applied to

network security, 76–77
Desktop, Qubes, 43–45
DHCP (Dynamic Host Configuration

Protocol)
assigning IP addresses, 163
OpenVPN server acting like DHCP

server, 89
Diceware passphrases, password-cracking

countermeasure, 22
Dictionary attacks

dictionary password filters, 23
Internet-based dictionaries, 22
password cracking techniques, 14–15
password length and, 5

Dictionary password filters, 23
Directories, deciding where to search for

evidence of attack, 206–207
Disk drives

creating persistent volumes, 35–36
server disk encryption, 68–70
workstation disk encryption, 33–34

Disk images
choosing imaging system, 201
of cloud servers, 213–214
creating, 201–202
pulling the plug vs. image capture in

incident response, 198
starting investigation of incident, 204–206
taking snapshots or images of server in

incident response, 199
techniques, 200–201

Displays (monitors), workstation security,
26–27

Disposable VMs, Qubes desktop, 44

232 Index

DKIM (DomainKeys Identified Mail)
configuring DNS, 148–149
configuring OpenDKIM, 146–147
configuring Postfix to use, 150–151
creating key table, 148
creating keys, 148–149
creating signing table, 147
creating trusted hosts file, 147
overview, 146
rotating keys, 151–152
testing OpenDKIM, 149–150

DLV (DNSSEC look-aside validation),
DNSSEC record types, 172

DMARC (Domain-based Message
Authentication, Reporting, and
Conformance)

enabling for incoming messages, 154–156
enabling for outbound messages, 152–153
measured deployment of, 153
overview, 152

DNS amplification attacks, 161–162
DNS cache poisoning, 161, 168
DNS (Domain Name System)

configuring, 148–149
DNS amplification attacks, 161–162
DNS cache poisoning, 161, 168
DNS spoofing, 168
dynamic authentication, 163–166
hardening authoritative name servers,

159–160
hardening recursive name servers,

160–161
how it works, 166–168
logging DNS queries, 162–163
OpenVPN client configuration, 92
OpenVPN managing DNS settings, 89
overview of, 157–158
security fundamentals, 158–159
security issues, 168
summary, 175–176

DNS servers
authoritative DNS server, 159–160
building firewall rules for, 85
DNS security issues, 168
recursive DNS server, 160–161
types of, 158

DNS spoofing, 168
DNSKEY, DNSSEC record types, 171
DNSSEC (Domain Name System Security

Extensions)
adding to zones, 172–174
addressing DNS security issues, 168
how it works, 168–171
look-aside validation, 172
overview of, 166
record types, 171–172
terminology, 171
testing, 174–175

dnssec-kegen utility
adding DNSSEC to zones, 173
creating host key, 163–164

Domain-based Message Authentication,
Reporting, and Conformance. See
DMARC (Domain-based Message
Authentication, Reporting, and
Conformance)

Domain Name System Security Extensions.
See DNSSEC (Domain Name System
Security Extensions)

Domain VMs, Qubes desktop, 44
DomainKeys Identified Mail. See DKIM

(DomainKeys Identified Mail)
Domains, DNS security issues, 168
Dovecot, configuring authentication,

138–139
Downgrade attacks

defeating HTTPS protection, 118
security risks in TLS, 79, 225–226

DS (delegation signer), DNSSEC record
types, 172

DVD disks, using Tails, 30
Dynamic DNS

configuring client for, 165–166
configuring zone for authenticated

updates, 164–165
creating BIND host key, 163–164
overview of, 163

Dynamic Host Configuration Protocol
(DHCP)

assigning IP addresses, 163
OpenVPN server acting like DHCP

server, 89

233Index

E
Egress traffic

building firewall rules for servers, 85–86
filtering, 77
iptables rules, 80

Elliptic Curve Diffie-Hellman key, 223–224
Email

advanced hardening, 141
allowed networks, 135–136
compartmentalization in securing, 47
configuring OpenDKIM, 146–149
configuring Postfix to use DKIM, 150–151
DKIM overview, 146
DMARC overview, 152
Dovecot configuration, 138–139
enabling DMARC for incoming messages,

154–156
enabling DMARC for outbound messages,

152–153
open relays, 135
overview of, 133–134
Postfix configuration, 139
restricted relays, 136
rotating DKIM keys, 151–152
security fundamentals, 134–135
SMTP authentication, 138
SMTP restrictions, 137
SMTPS, 139–141
SPF limitations, 145
SPF overview, 141–142
SPF rules, 142–144
summary, 156
testing OpenDKIM, 149–150
validating SPF records using Postfix, 144–145

Encryption
application-side encryption, 192–194
of database generally, 191–192
of database in MySQL, 194
of database in Postgres, 194–195
deciphering cipher names, 223–224
full disk encryption, 192
how Tor works, 216–218
of network traffic, 87
OpenVPN client configuration, 92–93
OpenVPN server configuration, 88–92
security practices, 12–13
Tails, 34–37

in TLS, 221
workstation disk encryption, 33–34

Exit relay, Tor configuration, 101, 104–106

F
File Activity Timeline, Autopsy, 207–209
File system

deciding where to search for evidence of
attack, 206–207

file analysis, 205–206
Firewalls

for appVM, 41
building firewall rules for servers, 83–86
“deny by default” approach, 76–77
egress filtering, 77
email allowed networks restrictions, 135–136
iptables rules, 80–83
server firewall settings, 79
web application firewalls, 120–121

Forensics, incident response, 199–200
Forgery, DNSSEC preventing forgery of

DNS records, 166
Forward secrecy

HTTPS and, 119–120
security risks in TLS, 226

Forwarded traffic, iptables rules, 80
FTP

TLS security in, 221
troubleshooting with TLS, 224

Full disk encryption, 192

G
Google Authenticator library, two-factor

authentication with SSH, 72–74
GPG

creating persistent volumes, 35–36
Split GPG in Qubes, 49–50
Tails encryption tools, 35
Tails using GPG signatures, 30
verifying Qubes ISO, 42

Groups, access control using sudo, 57

H
HAProxy (High-Availability Proxy)

back-end configuration, 99–100
front-end configuration, 98–99
global settings, 96–98

234 Index

Hardware compatibility lists (HCLs),
installing Qubes and, 42

Hashcat
brute force attacks and, 15
password cracking tools, 13–14

Hashes
password cracking countermeasures,16–17
password cracking techniques, 13

HCLs (hardware compatibility lists),
installing Qubes and, 42

Hibernate, RAM, 27
High-Availability Proxy (HAProxy). See

HAProxy (High-Availability Proxy)
HSTS (HTTP Strict Transport Security)

mitigating MitM attacks, 79
preventing downgrade attacks, 118–119

htpasswd utility, basic authentication of web
server, 110–111

HTTP
basic authentication of web server, 110–113
HAProxy load balancer, 96–100
redirecting to HTTPS, 115–116
troubleshooting with TLS, 224
web security and, 27–28

HTTP Strict Transport Security (HSTS)
mitigating MitM attacks, 79
preventing downgrade attacks, 118–119

HTTPS
advanced configuration, 118
client authentication, 117–118
enabling, 114–115
forward secrecy, 119–120
HSTS (HTTP Strict Transport Security),

118–119
mitigating MitM attacks, 79
overview of, 113
redirecting HTTP to, 115–116
reverse proxy, 116–117
supported by Tails, 32
TLS security in, 221
troubleshooting with TLS, 224
web security, 27–28

I
Identity, protecting against identity leaks, 219
IMAP

Dovecot configuration, 138
TLS security in, 221

Incident response
choosing imaging system, 201
cloud incidents, 213–214
creating disk images, 201–202
deciding where to search for evidence of

attack, 206–207
disk imaging techniques, 200–201
forensics, 199–200
overview of, 197
pulling the plug, 198–199
redeploying server, 199
sample investigation, 209–213
starting investigation, 204–206
summary, 214
taking snapshots or images of server, 199
tools for, 202–204
using File Activity Timeline to determine

time of attack, 207–209
when to prosecute, 197–198
who performs, 197

Include mechanism, SPF, 144
Ingress traffic

building firewall rules for servers, 83–84
iptables rules, 80

Intermediate
configuring HTTPS forward secrecy,

119–120
TLS profiles, 114

Investigation, of security incidents
deciding where to search for evidence of

attack, 206–207
example, 209–213
overview of, 204–206
using File Activity Timeline to determine

time of attack, 207–209
IP addresses

converting server name to, 157
email allowed networks restrictions,

135–136
how DNS works, 167
iptables rules, 81
OpenVPN managing dynamic IP

addresses, 89
iptables

fundamentals of, 80–81
IPv6 support, 83
persistence, 82
protecting against being locked out, 82–83

235Index

specifying IP addresses, 81
specifying network interfaces, 82
specifying network ports, 81

IPv4
iptables rules, 83
SPF rules, 143–144

IPv6
iptables rules, 83
SPF rules, 143–144

ISO, downloading and verifying Qubes ISO, 42

J
JavaScript, protecting against malicious script,

29, 32
John the Ripper, password cracking tools, 13–14

K
KDE, Qubes desktop, 43–45
“Keep it simple,” security principle, 3, 54
KeePassX

password managers, 9
security tools included with Tails, 37

Keyboard shortcut, for locking desktop, 26
Keyboards, proxy USB keyboards, 51–52
Keys, storing encryption keys, 193
KSK (key-signing key)

adding DNSSEC to zones, 172–173
DNSSEC terminology, 171

L
LastPass, cloud-based password managers, 10
Let’s Encrypt service, 113
Linux Unified Key Setup (LUKS)

full disk encryption, 192
server disk encryption, 69–70

Load balancing
HAProxy load balancer, 96–100
overview of, 95
SSL/TLS, 95–96

Local administration of database
using MySQL, 179–181
using Postgres, 181–182

Location, of database in network, 178
Lock screen, workstation security, 26
Login

disabling root login in SSH configuration,
54–55

passphrases for, 33

Logs
logging DNS queries, 162–163
remote logging, 66–68
Ubuntu AppArmor conventions,

65–66
Look-aside validation, DNSSEC, 172
LUKS (Linux Unified Key Setup)

full disk encryption, 192
server disk encryption, 69–70

M
Man-in-the-middle attacks. See MitM

(man-in-the-middle) attacks
Master name servers, types of authoritative

DNS servers, 159–160
MD5, password-hashing algorithm, 13
MitM (man-in-the-middle) attacks

DNS security issues, 168
encrypting network traffic as protection

against, 87
network hardening, 78
securing HTTP communication, 113
security risks in TLS, 225
wrapping database traffic in TLS to

prevent, 189
Modern

configuring HTTPS forward secrecy,
120

TLS profiles, 114
ModSecurity firewall

adding to Apache web server, 121–124
adding to Nginx web server, 124–129
enabling OWASP core rule set,

122–124
testing install, 130

Monitors (displays), workstation security,
26–27

Multifactor authentication. See also Two-
factor authentication (2FA), 23–24

MX records, SPF rules, 143
MySQL

access control in, 186–187
configuring for use with TLS, 189–190
deleting anonymous accounts, 181
encrypting database in, 194
local administration of database,

179–181
user permissions, 182–184

236 Index

N
NetVMs, for network security, 40–41
Network interfaces, iptables rules, 82
Network Time Protocol (NTP), 70–71
Networks

anonymous, 100–101
building firewall rules for servers, 83–86
configuring bridge Tor relays, 103–104
configuring exit Tor relays, 104
configuring personal Tor relays, 102
configuring public Tor relays, 102–103
egress filtering, 77
email allowed networks restrictions,

135–136
encrypting traffic, 87
HAProxy load balancer, 96–100
iptables rules, 80–83
man-in-the-middle attacks, 78
OpenVPN client configuration, 92–93
OpenVPN server configuration, 88–92
overview of, 75
restricting Tor traffic, 104–106
securing with NetVM, 40–41
security fundamentals, 76–77
server firewall settings, 79
setting up hidden Tor services, 106–107
SSH tunnels, 93–95
SSL/TLS load balancing, 95–96
summary, 107–108
TLS downgrade attacks, 79
Tor configuration, 101–102

Next secure record (NSEC), DNSSEC record
types, 171–172

Nginx
adding ModSecurity firewall to, 124–129
configuring basic HTTP authentication,

112–113
HTTPS client authentication, 117–118
HTTPS forward secrecy, 120
HTTPS reverse proxy, 117
preventing downgrade attacks, 119
redirecting HTTP to HTTPS, 115–116
restarting, 115

NOPASSWD f lag, sudo, 58
NoScript, blocker plugins, 29, 32
NSEC (next secure record), DNSSEC record

types, 171–172
NTP (Network Time Protocol), 70–71

O
Old, TLS profiles, 114
One-way hashes, password cracking

techniques, 13
Open relays

DNS amplification attacks and, 161
email relay restrictions, 136
preventing email server use as, 135

Open resolvers, DNS security issues, 168
Open Web Application Security Project

(OWASP)
enabling core rule set, 122–124
overview of, 121–122

OpenDKIM. See also DKIM (DomainKeys
Identified Mail)

configuring, 146–149
configuring Postfix to use DKIM, 150–151
rotating DKIM keys, 151–152
testing, 149–150

OpenDMARC. See also DMARC (Domain-
based Message Authentication,
Reporting, and Conformance)

configuring Postfix to use, 154–156
enabling for incoming messages, 154

OpenPGP applet, 34
OpenSSL, 224
OpenVPN

client configuration, 92–93
configuring OpenVPN server, 88–91
encrypting network traffic, 87
starting OpenVPN server, 91–92

OWASP (Open Web Application Security
Project)

enabling core rule set, 122–124
overview of, 121–122

P
Packets, iptables rules, 80
PAM (pluggable authentication modules),

72–74
Passphrases

as alternative to passwords, 8
diceware passphrases, 22
encrypting/decrypting with, 35
for login, 33
password cracking countermeasures, 16

Password peppers, advanced password-
cracking countermeasures, 22–23

237Index

Passwords
advanced cracking countermeasures, 22–24
advanced cracking techniques, 20–22
for authentication, 4–5
basic HTTP authentication of web server,

110–111
BIOS passwords, 33–34
complexity of, 6
cracking countermeasures, 16–20
cracking techniques, 13–16
disabling password authentication in SSH,

60–61
length of, 5
local database administration and, 180–181
password managers, 9–10, 37
reusing, 8
rotating, 7–8
shared accounts and, 12
SSH key authentication, 58–59
suggested policy for, 8–9
time-based one-time passwords (TOTP),

18–19
working with password-protected SSH

keys, 61–62
Patches

keeping servers updated, 54
notifications, 11–12
security practices, 10–11

Permissions
UNIX model, 63
user permissions in MySQL, 182–184
user permissions in Postgres, 184–185
web servers, 109–110

Persistence
iptables rules, 82
Tails, 34–37

Personal identification number (PIN), 18
Personal relay, Tor configuration, 101–102
PGP

DNSSEC compared with, 168–169
signing email with, 134

Pidgin chat client, 32
PIN (personal identification number), 18
Pluggable authentication modules (PAM),

72–74
Plugins, web browsers, 28–29
Policies

incident response, 197

password rotation, 7
suggested password policy, 8–9

POP
Dovecot configuration, 138
TLS security in, 221

Ports, iptables rules, 81
Postfix

configuration, 139
configuring to use DKIM, 150–151
configuring to use OpenDMARC,

154–156
email allowed networks restrictions, 135–136
email relay restrictions, 136
as email server, 133
testing with DKIM, 151
validating SPF records, 144–145

Postgres
access control in, 187–188
configuring for use with TLS, 190–191
encryption of database, 194–195
local administration of database, 181–182
user permissions, 184–185

Principle of least privilege
advantages of sudo over su, 55–56
AppArmor based on, 63
network security, 76–77
security principles, 2–3
server security, 53–54

Principles, security, 2–4
Privacy

Tails preserving, 30
Tor protecting, 215–216

Privacy Badger, blocker plugins, 29
Privileges

advantages of sudo over su, 55–56
enabling superuser accounts, 34
MySQL administrative users, 179
Postgres administrative users, 181–182
principle of least privilege generally, 2–3
principle of least privilege in server

security, 60–61
user permissions in MySQL, 182–184
user permissions in Postgres, 184–185

Profiles, AppArmor, 64–65
Public keys, how DNSSEC works, 168–169
Public relay, Tor configuration, 101–103
Push notifications, types of two-factor

authentication, 18–19

238 Index

Q
Qubes

appVM compartmentalization example,
46–49

desktop, 43–45
download and install, 41–43
features, 37–41
installing applications, 45
Split GPG, 49–50
VM Manager, 45–46

Queries
how DNS works, 166–167
logging DNS queries, 162–163

R
Rainbow tables

password cracking countermeasures, 17
password cracking techniques, 15–16

RAM
caching SSH keys in, 62
key storage and, 193
snapshots capturing state of, 198, 213
suspend/hibernate, 27
Tails files written to, 29
viewing use with Qubes VM manager,

45–46
workstation encryption and, 33

RBL (Realtime Blackhole List), incoming
email restrictions, 137

Records
DNSSEC preventing forgery of, 166
DNSSEC record types, 171–172
how DNS works, 168
managing in master and secondary DNS

servers, 159
Recursive DNS server

hardening, 160–161
how DNS works, 167
overview of, 158

Relays
configuring bridge Tor relays, 103–104
configuring exit Tor relays, 101, 104–106
configuring personal Tor relays, 102
configuring public Tor relays, 102–103
email relay restrictions, 136
preventing email server use as open relay, 135
Tor configuration, 101

Remote logging
client-side remote syslog configuration,

66–67
overview of, 66
server-side remote syslog configuration,

67–68
Resource record (RR), DNSSEC

terminology, 171
Resource record signature (RRSIG),

DNSSEC record types, 171
Response Rate Limiting, BIND feature

preventing amplification attacks, 162
Restricted relays, email, 136
Reverse proxy, HTTPS, 116–117
RockYou, password database dumps, 21
Root disk, server disk encryption, 69
Root kit, incident response, 199
Root login

access control using sudo, 57
disabling in SSH configuration, 54–55

Root privileges, principle of least privilege
and, 60–61

RR (resource record), DNSSEC
terminology, 171

RRSET, DNSSEC terminology, 171
RRSIG (resource record signature), DNSSEC

record types, 171
RSA

authentication of OpenVPN clients, 89
creating SSH keys, 59
deciphering cipher names, 223–224
version 2, 89–90
version 3, 90–91

rsyslog
client-side remote syslog configuration,

66–67
server-side remote syslog configuration,

67–68

S
Salt, password cracking countermeasures,

16–17
SASL, SMTP authentication, 138
Screensavers, workstation security, 26
Scripts, access control using sudo, 57–58
SCSI drives, choosing imaging system,

201

239Index

Secondary name servers, types of
authoritative DNS servers, 159–160

Secure entry point (SEP), DNSSEC
terminology, 171

Secure Sockets Layer (SSL). See also TLS
(Transport Layer Security), 221

Security fundamentals
database, 177–179
DNS, 158–159
email, 134–135
network, 76–77
overview of, 1–4
server, 53
web security, 27
web server, 109
workstation, 25

Security (generally)
advanced password cracking

countermeasures, 22–24
advanced password cracking techniques,

20–22
authentication using passwords, 4–5
best practices, 10
encryption, 12–13
overview of, 1–2
password complexity, 6
password cracking countermeasures, 16–20
password cracking techniques, 13–16
password length, 5
password managers, 9–10
password reuse, 8
password rotation, 7–8
patch management, 10–12
principles, 2–4
shared accounts and, 12
suggested password policy, 8–9
summary, 24

Security risks
TLS, 224–227
Tor, 219

Sender Policy Framework. See SPF (Sender
Policy Framework)

SEP (secure entry point), DNSSEC
terminology, 171

Servers
AppArmor, 63–66
building firewall rules for, 83–86

copying SSH keys to other hosts, 60
creating SSH keys, 59–60
disabling password authentication when

using SSH keys, 60–61
disk encryption, 68–70
firewall settings, 79
keep it simple, 54
managing ephemeral servers and temporary

servers, 214
OpenVPN configuration, 88–91
overview of, 53
principle of least privilege, 53–54
redeploying after security incident, 199
remote logging, 66–68
secure NTP alternatives, 70–71
SSH configuration, 54–55
SSH key authentication, 58–59
starting OpenVPN server, 91–92
stopping cloud servers in incident response,

213
sudo in administration of, 55–58
summary, 72–74
taking snapshots or images of server in

incident response, 199
two-factor authentication with SSH,

72–74
updates, 54
working with password-protected SSH

keys, 61–62
Service VMs, Qubes desktop, 44
Services, setting up hidden, 106–107
sha256sum

creating unique hash for disk drive,
201–202

preserving checksum of disk to compare
with disk image, 200–201

Shared accounts, security practices, 12
Shortcuts, keyboard shortcut for locking

desktop, 26
Simplicity. See “Keep it simple,” security

principle
Sleuth Kit

imaging disks in the cloud, 214
starting investigation of incident,

204–206
tools for forensic investigation of incident,

202–204

240 Index

SMS/phone, types of two-factor
authentication, 18–19

SMTP
authentication, 138
incoming restrictions, 137
TLS security in, 221
troubleshooting with TLS, 224

SMTPS
overview of, 139–141
TLS used for encryption and

authentication, 134
Snapshots

of cloud servers in incident response,
213–214

of server in incident response, 199
“Something you are,” authentication

categories, 18
“Something you have,” authentication

categories, 18
“Something you know,” authentication

categories, 17
Spam, blacklists, 135
Spamhaus, 161
SPF (Sender Policy Framework)

limitations, 145
overview, 141–142
rules, 142–144
validating SPF records using Postfix, 144–145

Split GPG, 49–50
SSH

brute force attack example, 209–213
configuration, 54–55
copying SSH keys to other hosts, 60
creating SSH keys, 59–60
defense in depth and, 3
disabling password authentication,

60–61
encrypting tunnels between two networks,

94–95
key authentication, 58–59
local tunnels, 93–94
restricting access to SSH port, 76–77
reverse tunnels, 94–95
sudo in administration of, 55–58
two-factor authentication with, 72–74
working with password-protected SSH

keys, 61–62

ssh-keygen, 59
SSL (Secure Sockets Layer), 221
SSL/TLS. See TLS (Transport Layer Security)
su. See also Superusers, 55–56
sudo. See also Superusers

advantages of sudo over su, 55–56
examples and best practices, 56–58
local database administration in MySQL,

179–181
local database administration in Postgres,

181–182
NOPASSWD f lag, 58

Superusers
enabling superuser accounts, 34
local administration using MySQL,

179–181
local administration using Postgres,

181–182
Suspend, RAM, 27
syslog (system logs)

client-side remote syslog configuration,
66–67

server-side remote syslog configuration,
67–68

T
Tails (The Amnesic Incognito Live System)

download, validate, and install, 29–30
overview of, 29
persistence and encryption, 34–37
using, 30–33

Targets, iptables rules, 80
TCP, DNS using, 157
TemplateVMs, 40
The Amnesic Incognito Live System. See

Tails (The Amnesic Incognito Live
System)

Time-based one-time passwords (TOTP),
types of two-factor authentication,
18–19

Time to live (TTL), DNS cache, 168
TLDs (top-level domains)

DNS security issues, 168
DNSSEC look-aside validation, 172

TLS (Transport Layer Security)
configuring MySQL for use with, 189–190
configuring Postgres for use with, 190–191

241Index

deciphering cipher names, 223–224
defense in depth and, 3
downgrade attacks, 79
enabling HTTPS, 114–115
enabling in database, 188–189
HAProxy load balancer, 96–100
how it works, 222–223
in HTTPS, 28, 113
load balancing, 95–96
mitigating MitM attacks, 78–79
Modern compatibility, 98
reasons for using, 221–222
security risks, 224–227
troubleshooting command, 224
what it is, 221

tlsdate, secure NTP alternatives, 71
Top-level domains (TLDs)

DNS security issues, 168
DNSSEC look-aside validation, 172

Tor
configuring, 101–102
configuring bridge relays, 103–104
configuring exit relays, 104
configuring personal relays, 102
configuring public relays, 102–103
how it works, 216–218
overview of, 215
reasons for using, 215–216
restricting traffic, 104–106
security risks, 219
setting up hidden services, 106–107

Tor Browser Bundle
included with Tails, 32–33
keeping updated, 219

TOTP (time-based one-time passwords),
types of two-factor authentication,
18–19

Traffic, network
building firewall rules for egress traffic,

85–86
building firewall rules for ingress traffic,

83–84
egress filtering, 77
iptables rules, 80

Trojans, incident response, 199
Troubleshooting, TLS commands for, 224

TTL (time to live), DNS cache, 168
Tunnels, SSH

local, 93–94
reverse, 94–95

Two-factor authentication (2FA)
advanced password-cracking

countermeasures, 23–24
overview of, 17
password cracking countermeasures, 16
with SSH, 72–74
types of, 18–20

U
UDP (User Datagram Protocol)

DNS amplification attacks, 161
DNS using, 157
NTP using, 71
udp.pl f lood tool, 211–212

Universal 2nd Factor, advanced password-
cracking countermeasures, 23–24

UNIX permissions model, 63
Updates

allowing dynamic DNS updates, 164–165
server, 54

USB
choosing imaging system, 201
installing Tails to USB key, 30
port security with USB VM, 50–52

USB Rubber Ducky, 50
USB VM

creating, 51
overview of, 50–51
proxy USB keyboards, 51–52

User Datagram Protocol. See UDP (User
Datagram Protocol)

User permissions. See Permissions
Users. See also Accounts

creating MySQL users, 182
creating Postgres users, 184

V
Virtual machines. See VMs (virtual machines)
Virtual private networks. See VPNs (virtual

private networks)
Virtualization. See VMs (virtual machines)
VM Manager, Qubes, 45–46

242 Index

VMs (virtual machines)
appVM compartmentalization example,

46–49
compartmentalization by, 37
netVMs, 40–41
pulling the plug in incident response, 198
Qubes desktop, 43–45
Qubes VM Manager, 45–46
sharing information between appVMs, 39–40
taking snapshots or images of cloud server,

213–214
taking snapshots or images of server in

incident response, 199
templateVMs, 40
USB VM, 50–52

Volumes, creating persistent volumes, 35–36
VPNs (virtual private networks). See also

OpenVPN
for anonymity, 216
securing databases, 178
setting up encrypted networks, 87

Vulnerabilities, zero-day vulnerabilities, 10

W
WAFs (web application firewalls)

adding ModSecurity to Apache web server,
121–124

adding ModSecurity to Nginx web server,
124–129

overview of, 120–121
testing ModSecurity install, 130

Web browsers
compartmentalization in securing, 47
plugins, 28–29
securing with HTTPS, 28

Web security, fundamentals, 27–29
Web servers

adding ModSecurity firewall to Apache
web server, 121–124

adding ModSecurity firewall to Nginx
web server, 124–129

advanced HTTPS configuration, 118
building firewall rules for, 84
enabling HTTPS, 114–115
HSTS (HTTP Strict Transport Security),

118–119

HTTP basic authentication, 110–113
HTTPS, 113
HTTPS client authentication, 117–118
HTTPS forward secrecy, 119–120
HTTPS reverse proxy, 116–117
overview of, 109
permissions, 109–110
redirecting HTTP to HTTPS, 115–116
summary, 130
testing ModSecurity install, 130
web application firewalls, 120–121

Workstations
appVM compartmentalization example,

46–49
BIOS passwords, 33–34
disk encryption, 33–34
download, validate, and install Tails,

29–30
fundamentals of, 25–27
overview of, 25
Qubes desktop, 43–45
Qubes download and installation, 41–43
Qubes features, 37–41
Qubes VM Manager, 45–46
Split GPG in Qubes, 49–50
summary, 50–52
Tails persistence and encryption, 34–37
Tails use by, 30–33
USB VM, 50–52
web security, 27–29

X
Xen, for virtualization in Qubes, 38
XFCE, Qubes desktop, 43–45

Z
Zero-day vulnerabilities, 10
Zones

adding DNSSEC, 172–173
configuring for authenticated updates,

164–165
dynamic DNS authentication, 163
reconfiguring BIND config, 174
signing, 173–174
updating zone file, 173

ZSK (zone-signing key), 171–173

	Cover
	Title Page
	Copyright Page
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	3 Server Security
	Section 1: Server Security Fundamentals
	Fundamental Server Security Practices
	SSH Configuration
	Sudo

	Section 2: Intermediate Server-Hardening Techniques
	SSH Key Authentication
	AppArmor
	Remote Logging

	Section 3: Advanced Server-Hardening Techniques
	Server Disk Encryption
	Secure NTP Alternatives
	Two-Factor Authentication with SSH

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

