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Foreword

IF a colleague were to say to you, “Spouse of me this night today manufactures the
unusual meal in a home. You will join?” three things would likely cross your mind:
third, that you had been invited to dinner; second, that English was not your col-
league’s first language; and first, a good deal of puzzlement.

If you have ever studied a second language yourself and then tried to use it
outside the classroom, you know that there are three things you must master: how
the language is structured (grammar), how to name things you want to talk about
(vocabulary), and the customary and effective ways to say everyday things
(usage). Too often only the first two are covered in the classroom, and you find
native speakers constantly suppressing their laughter as you try to make yourself
understood.

It is much the same with a programming language. You need to understand the
core language: is it algorithmic, functional, object-oriented? You need to know the
vocabulary: what data structures, operations, and facilities are provided by the
standard libraries? And you need to be familiar with the customary and effective
ways to structure your code. Books about programming languages often cover
only the first two, or discuss usage only spottily. Maybe that’s because the first
two are in some ways easier to write about. Grammar and vocabulary are proper-
ties of the language alone, but usage is characteristic of a community that uses it.

The Java programming language, for example, is object-oriented with single
inheritance and supports an imperative (statement-oriented) coding style within
each method. The libraries address graphic display support, networking, distrib-
uted computing, and security. But how is the language best put to use in practice?

There is another point. Programs, unlike spoken sentences and unlike most
books and magazines, are likely to be changed over time. It’s typically not enough
to produce code that operates effectively and is readily understood by other per-
sons; one must also organize the code so that it is easy to modify. There may be
ten ways to write code for some task T. Of those ten ways, seven will be awkward,
inefficient, or puzzling. Of the other three, which is most likely to be similar to the
code needed for the task T' in next year’s software release?
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There are numerous books from which you can learn the grammar of the Java
programming language, including The Java™ Programming Language by Arnold,
Gosling, and Holmes, or The Java™ Language Specification by Gosling, Joy, yours
truly, and Bracha. Likewise, there are dozens of books on the libraries and APIs
associated with the Java programming language.

This book addresses your third need: customary and effective usage. Joshua
Bloch has spent years extending, implementing, and using the Java programming
language at Sun Microsystems; he has also read a lot of other people’s code,
including mine. Here he offers good advice, systematically organized, on how to
structure your code so that it works well, so that other people can understand it, so
that future modifications and improvements are less likely to cause headaches—
perhaps, even, so that your programs will be pleasant, elegant, and graceful.

Guy L. Steele Jr.
Burlington, Massachusetts
April 2001
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Preface

Preface to the Third Edition

IN 1997, when Java was new, James Gosling (the father of Java), described it as a
“blue collar language” that was “pretty simple” [Gosling97]. At about the same time,
Bjarne Stroustrup (the father of C++) described C++ as a “multi-paradigm language”
that “deliberately differs from languages designed to support a single way of writing
programs” [Stroustrup95]. Stroustrup warned:

Much of the relative simplicity of Java is—like for most new languages—
partly an illusion and partly a function of its incompleteness. As time passes,
Java will grow significantly in size and complexity. It will double or triple in
size and grow implementation-dependent extensions or libraries. [Stroustrup]

Now, twenty years later, it’s fair to say that Gosling and Stroustrup were both right.
Java is now large and complex, with multiple abstractions for many things, from
parallel execution, to iteration, to the representation of dates and times. 

I still like Java, though my ardor has cooled a bit as the platform has grown.
Given its increased size and complexity, the need for an up-to-date best-practices
guide is all the more critical. With this third edition of Effective Java, I did my
best to provide you with one. I hope this edition continues to satisfy the need,
while staying true to the spirit of the first two editions.

Small is beautiful, but simple ain’t easy.

San Jose, California
November 2017

P.S. I would be remiss if I failed to mention an industry-wide best practice that has
occupied a fair amount of my time lately. Since the birth of our field in the 1950’s,
we have freely reimplemented each others’ APIs. This practice was critical to the
meteoric success of computer technology. I am active in the effort to preserve this
freedom [CompSci17], and I encourage you to join me. It is crucial to the continued
health of our profession that we retain the right to reimplement each others’ APIs.
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Preface to the Second Edition

A lot has happened to the Java platform since I wrote the first edition of this book in
2001, and it’s high time for a second edition. The most significant set of changes
was the addition of generics, enum types, annotations, autoboxing, and the for-each
loop in Java 5. A close second was the addition of the new concurrency library,
java.util.concurrent, also released in Java 5. With Gilad Bracha, I had the good
fortune to lead the teams that designed the new language features. I also had the
good fortune to serve on the team that designed and developed the concurrency
library, which was led by Doug Lea.

The other big change in the platform is the widespread adoption of modern
Integrated Development Environments (IDEs), such as Eclipse, IntelliJ IDEA, and
NetBeans, and of static analysis tools, such as FindBugs. While I have not been
involved in these efforts, I’ve benefited from them immensely and learned how
they affect the Java development experience. 

In 2004, I moved from Sun to Google, but I’ve continued my involvement in
the development of the Java platform over the past four years, contributing to the
concurrency and collections APIs through the good offices of Google and the Java
Community Process. I’ve also had the pleasure of using the Java platform to
develop libraries for use within Google. Now I know what it feels like to be a user.

As was the case in 2001 when I wrote the first edition, my primary goal is to
share my experience with you so that you can imitate my successes while avoiding
my failures. The new material continues to make liberal use of real-world exam-
ples from the Java platform libraries.

The first edition succeeded beyond my wildest expectations, and I’ve done my
best to stay true to its spirit while covering all of the new material that was
required to bring the book up to date. It was inevitable that the book would grow,
and grow it did, from fifty-seven items to seventy-eight. Not only did I add
twenty-three items, but I thoroughly revised all the original material and retired a
few items whose better days had passed. In the Appendix, you can see how the
material in this edition relates to the material in the first edition.

In the Preface to the First Edition, I wrote that the Java programming language
and its libraries were immensely conducive to quality and productivity, and a joy
to work with. The changes in releases 5 and 6 have taken a good thing and made it
better. The platform is much bigger now than it was in 2001 and more complex,
but once you learn the patterns and idioms for using the new features, they make
your programs better and your life easier. I hope this edition captures my contin-
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ued enthusiasm for the platform and helps make your use of the platform and its
new features more effective and enjoyable.

San Jose, California
April 2008

Preface to the First Edition

In 1996 I pulled up stakes and headed west to work for JavaSoft, as it was then
known, because it was clear that that was where the action was. In the intervening
five years I’ve served as Java platform libraries architect. I’ve designed, imple-
mented, and maintained many of the libraries and served as a consultant for many
others. Presiding over these libraries as the Java platform matured was a once-in-a-
lifetime opportunity. It is no exaggeration to say that I had the privilege to work with
some of the great software engineers of our generation. In the process, I learned a lot
about the Java programming language—what works, what doesn’t, and how to use
the language and its libraries to best effect.

This book is my attempt to share my experience with you so that you can imi-
tate my successes while avoiding my failures. I borrowed the format from Scott
Meyers’s Effective C++, which consists of fifty items, each conveying one spe-
cific rule for improving your programs and designs. I found the format to be sin-
gularly effective, and I hope you do too.

In many cases, I took the liberty of illustrating the items with real-world
examples from the Java platform libraries. When describing something that could
have been done better, I tried to pick on code that I wrote myself, but occasionally
I pick on something written by a colleague. I sincerely apologize if, despite my
best efforts, I’ve offended anyone. Negative examples are cited not to cast blame
but in the spirit of cooperation, so that all of us can benefit from the experience of
those who’ve gone before.

While this book is not targeted solely at developers of reusable components, it
is inevitably colored by my experience writing such components over the past two
decades. I naturally think in terms of exported APIs (Application Programming
Interfaces), and I encourage you to do likewise. Even if you aren’t developing
reusable components, thinking in these terms tends to improve the quality of the
software you write. Furthermore, it’s not uncommon to write a reusable compo-
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nent without knowing it: You write something useful, share it with your buddy
across the hall, and before long you have half a dozen users. At this point, you no
longer have the flexibility to change the API at will and are thankful for all the
effort that you put into designing the API when you first wrote the software.

My focus on API design may seem a bit unnatural to devotees of the new
lightweight software development methodologies, such as Extreme Programming.
These methodologies emphasize writing the simplest program that could possibly
work. If you’re using one of these methodologies, you’ll find that a focus on API
design serves you well in the refactoring process. The fundamental goals of refac-
toring are the improvement of system structure and the avoidance of code duplica-
tion. These goals are impossible to achieve in the absence of well-designed APIs
for the components of the system.

No language is perfect, but some are excellent. I have found the Java
programming language and its libraries to be immensely conducive to quality and
productivity, and a joy to work with. I hope this book captures my enthusiasm and
helps make your use of the language more effective and enjoyable.

Cupertino, California
April 2001
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C H A P T E R 5
Generics

SINCE Java 5, generics have been a part of the language. Before generics, you had
to cast every object you read from a collection. If someone accidentally inserted an
object of the wrong type, casts could fail at runtime. With generics, you tell the
compiler what types of objects are permitted in each collection. The compiler
inserts casts for you automatically and tells you at compile time if you try to insert
an object of the wrong type. This results in programs that are both safer and clearer,
but these benefits, which are not limited to collections, come at a price. This chap-
ter tells you how to maximize the benefits and minimize the complications.

Item 26: Don’t use raw types

First, a few terms. A class or interface whose declaration has one or more type
parameters is a generic class or interface [JLS, 8.1.2, 9.1.2]. For example, the
List interface has a single type parameter, E, representing its element type. The
full name of the interface is List<E> (read “list of E”), but people often call it List
for short. Generic classes and interfaces are collectively known as generic types.

Each generic type defines a set of parameterized types, which consist of the
class or interface name followed by an angle-bracketed list of actual type
parameters corresponding to the generic type’s formal type parameters [JLS, 4.4,
4.5]. For example, List<String> (read “list of string”) is a parameterized type
representing a list whose elements are of type String. (String is the actual type
parameter corresponding to the formal type parameter E.)

Finally, each generic type defines a raw type, which is the name of the generic
type used without any accompanying type parameters [JLS, 4.8]. For example, the
raw type corresponding to List<E> is List. Raw types behave as if all of the
generic type information were erased from the type declaration. They exist pri-
marily for compatibility with pre-generics code.
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Before generics were added to Java, this would have been an exemplary col-
lection declaration. As of Java 9, it is still legal, but far from exemplary:

// Raw collection type - don't do this!

// My stamp collection. Contains only Stamp instances.
private final Collection stamps = ... ;

If you use this declaration today and then accidentally put a coin into your stamp
collection, the erroneous insertion compiles and runs without error (though the
compiler does emit a vague warning):

// Erroneous insertion of coin into stamp collection
stamps.add(new Coin( ... )); // Emits "unchecked call" warning

You don’t get an error until you try to retrieve the coin from the stamp collection:

// Raw iterator type - don't do this!
for (Iterator i = stamps.iterator(); i.hasNext(); )

Stamp stamp = (Stamp) i.next(); // Throws ClassCastException
stamp.cancel();

As mentioned throughout this book, it pays to discover errors as soon as pos-
sible after they are made, ideally at compile time. In this case, you don’t discover
the error until runtime, long after it has happened, and in code that may be distant
from the code containing the error. Once you see the ClassCastException, you
have to search through the codebase looking for the method invocation that put the
coin into the stamp collection. The compiler can’t help you, because it can’t
understand the comment that says, “Contains only Stamp instances.”

With generics, the type declaration contains the information, not the comment:

// Parameterized collection type - typesafe
private final Collection<Stamp> stamps = ... ;

From this declaration, the compiler knows that stamps should contain only Stamp
instances and guarantees it to be true, assuming your entire codebase compiles
without emitting (or suppressing; see Item 27) any warnings. When stamps is
declared with a parameterized type declaration, the erroneous insertion generates
a compile-time error message that tells you exactly what is wrong:

Test.java:9: error: incompatible types: Coin cannot be converted 
to Stamp

c.add(new Coin());
^
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The compiler inserts invisible casts for you when retrieving elements from
collections and guarantees that they won’t fail (assuming, again, that all of your
code did not generate or suppress any compiler warnings). While the prospect of
accidentally inserting a coin into a stamp collection may appear far-fetched, the
problem is real. For example, it is easy to imagine putting a BigInteger into a
collection that is supposed to contain only BigDecimal instances.

As noted earlier, it is legal to use raw types (generic types without their type
parameters), but you should never do it. If you use raw types, you lose all the
safety and expressiveness benefits of generics. Given that you shouldn’t use
them, why did the language designers permit raw types in the first place? For
compatibility. Java was about to enter its second decade when generics were
added, and there was an enormous amount of code in existence that did not use
generics. It was deemed critical that all of this code remain legal and interoperate
with newer code that does use generics. It had to be legal to pass instances of
parameterized types to methods that were designed for use with raw types, and
vice versa. This requirement, known as migration compatibility, drove the deci-
sions to support raw types and to implement generics using erasure (Item 28).

While you shouldn’t use raw types such as List, it is fine to use types that are
parameterized to allow insertion of arbitrary objects, such as List<Object>. Just
what is the difference between the raw type List and the parameterized type
List<Object>? Loosely speaking, the former has opted out of the generic type
system, while the latter has explicitly told the compiler that it is capable of hold-
ing objects of any type. While you can pass a List<String> to a parameter of
type List, you can’t pass it to a parameter of type List<Object>. There are sub-
typing rules for generics, and List<String> is a subtype of the raw type List, but
not of the parameterized type List<Object> (Item 28). As a consequence, you
lose type safety if you use a raw type such as List, but not if you use a param-
eterized type such as List<Object>.

To make this concrete, consider the following program:

// Fails at runtime - unsafeAdd method uses a raw type (List)!
public static void main(String[] args) {

List<String> strings = new ArrayList<>();
unsafeAdd(strings, Integer.valueOf(42));
String s = strings.get(0); // Has compiler-generated cast

}

private static void unsafeAdd(List list, Object o) {
list.add(o);

}
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This program compiles, but because it uses the raw type List, you get a warning:

Test.java:10: warning: [unchecked] unchecked call to add(E) as a 
member of the raw type List

list.add(o);
^

And indeed, if you run the program, you get a ClassCastException when the
program tries to cast the result of the invocation strings.get(0), which is an
Integer, to a String. This is a compiler-generated cast, so it’s normally guaran-
teed to succeed, but in this case we ignored a compiler warning and paid the price.

If you replace the raw type List with the parameterized type List<Object>
in the unsafeAdd declaration and try to recompile the program, you’ll find that it
no longer compiles but emits the error message:

Test.java:5: error: incompatible types: List<String> cannot be 
converted to List<Object>

unsafeAdd(strings, Integer.valueOf(42));
^

You might be tempted to use a raw type for a collection whose element type is
unknown and doesn’t matter. For example, suppose you want to write a method
that takes two sets and returns the number of elements they have in common.
Here’s how you might write such a method if you were new to generics:

// Use of raw type for unknown element type - don't do this!
static int numElementsInCommon(Set s1, Set s2) {

int result = 0;
for (Object o1 : s1)

if (s2.contains(o1))
result++;

return result;
}

This method works but it uses raw types, which are dangerous. The safe alter-
native is to use unbounded wildcard types. If you want to use a generic type but
you don’t know or care what the actual type parameter is, you can use a question
mark instead. For example, the unbounded wildcard type for the generic type
Set<E> is Set<?> (read “set of some type”). It is the most general parameterized
Set type, capable of holding any set. Here is how the numElementsInCommon
declaration looks with unbounded wildcard types:

// Uses unbounded wildcard type - typesafe and flexible
static int numElementsInCommon(Set<?> s1, Set<?> s2) { ... }
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What is the difference between the unbounded wildcard type Set<?> and the
raw type Set? Does the question mark really buy you anything? Not to belabor the
point, but the wildcard type is safe and the raw type isn’t. You can put any element
into a collection with a raw type, easily corrupting the collection’s type invariant
(as demonstrated by the unsafeAdd method on page 119); you can’t put any ele-
ment (other than null) into a Collection<?>. Attempting to do so will generate
a compile-time error message like this:

WildCard.java:13: error: incompatible types: String cannot be 
converted to CAP#1

c.add("verboten");
^

  where CAP#1 is a fresh type-variable:
    CAP#1 extends Object from capture of ?

Admittedly this error message leaves something to be desired, but the com-
piler has done its job, preventing you from corrupting the collection’s type invari-
ant, whatever its element type may be. Not only can’t you put any element (other
than null) into a Collection<?>, but you can’t assume anything about the type
of the objects that you get out. If these restrictions are unacceptable, you can use
generic methods (Item 30) or bounded wildcard types (Item 31).

There are a few minor exceptions to the rule that you should not use raw
types. You must use raw types in class literals. The specification does not permit
the use of parameterized types (though it does permit array types and primitive
types) [JLS, 15.8.2]. In other words, List.class, String[].class, and
int.class are all legal, but List<String>.class and List<?>.class are not.

A second exception to the rule concerns the instanceof operator. Because
generic type information is erased at runtime, it is illegal to use the instanceof
operator on parameterized types other than unbounded wildcard types. The use of
unbounded wildcard types in place of raw types does not affect the behavior of the
instanceof operator in any way. In this case, the angle brackets and question
marks are just noise. This is the preferred way to use the instanceof operator
with generic types:

// Legitimate use of raw type - instanceof operator
if (o instanceof Set) { // Raw type

Set<?> s = (Set<?>) o; // Wildcard type
...

}
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Note that once you’ve determined that o is a Set, you must cast it to the wildcard
type Set<?>, not the raw type Set. This is a checked cast, so it will not cause a
compiler warning.

In summary, using raw types can lead to exceptions at runtime, so don’t use
them. They are provided only for compatibility and interoperability with legacy
code that predates the introduction of generics. As a quick review, Set<Object> is
a parameterized type representing a set that can contain objects of any type,
Set<?> is a wildcard type representing a set that can contain only objects of some
unknown type, and Set is a raw type, which opts out of the generic type system.
The first two are safe, and the last is not.

For quick reference, the terms introduced in this item (and a few introduced
later in this chapter) are summarized in the following table:

Term Example Item

Parameterized type List<String> Item 26

Actual type parameter String Item 26

Generic type List<E> Items 26, 29

Formal type parameter E Item 26

Unbounded wildcard type List<?> Item 26

Raw type List Item 26

Bounded type parameter <E extends Number> Item 29

Recursive type bound <T extends Comparable<T>> Item 30

Bounded wildcard type List<? extends Number> Item 31

Generic method static <E> List<E> asList(E[] a) Item 30

Type token String.class Item 33
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Item 27: Eliminate unchecked warnings

When you program with generics, you will see many compiler warnings:
unchecked cast warnings, unchecked method invocation warnings, unchecked
parameterized vararg type warnings, and unchecked conversion warnings. The
more experience you acquire with generics, the fewer warnings you’ll get, but
don’t expect newly written code to compile cleanly.

Many unchecked warnings are easy to eliminate. For example, suppose you
accidentally write this declaration:

Set<Lark> exaltation = new HashSet();

The compiler will gently remind you what you did wrong:

Venery.java:4: warning: [unchecked] unchecked conversion
        Set<Lark> exaltation = new HashSet();
                               ^
required: Set<Lark>
found:    HashSet

You can then make the indicated correction, causing the warning to disappear.
Note that you don’t actually have to specify the type parameter, merely to indicate
that it’s present with the diamond operator (<>), introduced in Java 7. The com-
piler will then infer the correct actual type parameter (in this case, Lark):

Set<Lark> exaltation = new HashSet<>();

Some warnings will be much more difficult to eliminate. This chapter is filled
with examples of such warnings. When you get warnings that require some
thought, persevere! Eliminate every unchecked warning that you can. If you
eliminate all warnings, you are assured that your code is typesafe, which is a very
good thing. It means that you won’t get a ClassCastException at runtime, and it
increases your confidence that your program will behave as you intended.

If you can’t eliminate a warning, but you can prove that the code that
provoked the warning is typesafe, then (and only then) suppress the warning
with an @SuppressWarnings("unchecked") annotation. If you suppress warn-
ings without first proving that the code is typesafe, you are giving yourself a false
sense of security. The code may compile without emitting any warnings, but it can
still throw a ClassCastException at runtime. If, however, you ignore unchecked
warnings that you know to be safe (instead of suppressing them), you won’t notice
when a new warning crops up that represents a real problem. The new warning
will get lost amidst all the false alarms that you didn’t silence.
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The SuppressWarnings annotation can be used on any declaration, from an
individual local variable declaration to an entire class. Always use the
SuppressWarnings annotation on the smallest scope possible. Typically this
will be a variable declaration or a very short method or constructor. Never use
SuppressWarnings on an entire class. Doing so could mask critical warnings.

If you find yourself using the SuppressWarnings annotation on a method or
constructor that’s more than one line long, you may be able to move it onto a local
variable declaration. You may have to declare a new local variable, but it’s worth
it. For example, consider this toArray method, which comes from ArrayList:

public <T> T[] toArray(T[] a) {
if (a.length < size)

return (T[]) Arrays.copyOf(elements, size, a.getClass());
System.arraycopy(elements, 0, a, 0, size);
if (a.length > size)

a[size] = null;
return a;

}

If you compile ArrayList, the method generates this warning:

ArrayList.java:305: warning: [unchecked] unchecked cast
return (T[]) Arrays.copyOf(elements, size, a.getClass());

^
  required: T[]
  found:    Object[]

It is illegal to put a SuppressWarnings annotation on the return statement,
because it isn’t a declaration [JLS, 9.7]. You might be tempted to put the annota-
tion on the entire method, but don’t. Instead, declare a local variable to hold the
return value and annotate its declaration, like so:

// Adding local variable to reduce scope of @SuppressWarnings
public <T> T[] toArray(T[] a) {

if (a.length < size) {
// This cast is correct because the array we're creating
// is of the same type as the one passed in, which is T[].
@SuppressWarnings("unchecked") T[] result =

(T[]) Arrays.copyOf(elements, size, a.getClass());
return result;

}
System.arraycopy(elements, 0, a, 0, size);
if (a.length > size)

a[size] = null;
return a;

}
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The resulting method compiles cleanly and minimizes the scope in which
unchecked warnings are suppressed.

Every time you use a @SuppressWarnings("unchecked") annotation, add
a comment saying why it is safe to do so. This will help others understand the
code, and more importantly, it will decrease the odds that someone will modify
the code so as to make the computation unsafe. If you find it hard to write such a
comment, keep thinking. You may end up figuring out that the unchecked opera-
tion isn’t safe after all.

In summary, unchecked warnings are important. Don’t ignore them. Every
unchecked warning represents the potential for a ClassCastException at run-
time. Do your best to eliminate these warnings. If you can’t eliminate an
unchecked warning and you can prove that the code that provoked it is typesafe,
suppress the warning with a @SuppressWarnings("unchecked") annotation in
the narrowest possible scope. Record the rationale for your decision to suppress
the warning in a comment.
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Item 28: Prefer lists to arrays

Arrays differ from generic types in two important ways. First, arrays are covari-
ant. This scary-sounding word means simply that if Sub is a subtype of Super,
then the array type Sub[] is a subtype of the array type Super[]. Generics, by
contrast, are invariant: for any two distinct types Type1 and Type2, List<Type1>
is neither a subtype nor a supertype of List<Type2> [JLS, 4.10; Naftalin07, 2.5].
You might think this means that generics are deficient, but arguably it is arrays
that are deficient. This code fragment is legal:

// Fails at runtime!
Object[] objectArray = new Long[1];
objectArray[0] = "I don't fit in"; // Throws ArrayStoreException

but this one is not:

// Won't compile!
List<Object> ol = new ArrayList<Long>(); // Incompatible types
ol.add("I don't fit in");

Either way you can’t put a String into a Long container, but with an array you
find out that you’ve made a mistake at runtime; with a list, you find out at compile
time. Of course, you’d rather find out at compile time.

The second major difference between arrays and generics is that arrays are
reified [JLS, 4.7]. This means that arrays know and enforce their element type at
runtime. As noted earlier, if you try to put a String into an array of Long, you’ll
get an ArrayStoreException. Generics, by contrast, are implemented by erasure
[JLS, 4.6]. This means that they enforce their type constraints only at compile
time and discard (or erase) their element type information at runtime. Erasure is
what allowed generic types to interoperate freely with legacy code that didn’t use
generics (Item 26), ensuring a smooth transition to generics in Java 5.

Because of these fundamental differences, arrays and generics do not mix
well. For example, it is illegal to create an array of a generic type, a parameterized
type, or a type parameter. Therefore, none of these array creation expressions are
legal: new List<E>[], new List<String>[], new E[]. All will result in generic
array creation errors at compile time.

Why is it illegal to create a generic array? Because it isn’t typesafe. If it were
legal, casts generated by the compiler in an otherwise correct program could fail at
runtime with a ClassCastException. This would violate the fundamental guaran-
tee provided by the generic type system.
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To make this more concrete, consider the following code fragment:

// Why generic array creation is illegal - won't compile!
List<String>[] stringLists = new List<String>[1]; // (1)
List<Integer> intList = List.of(42); // (2)
Object[] objects = stringLists; // (3)
objects[0] = intList; // (4)
String s = stringLists[0].get(0); // (5)

Let’s pretend that line 1, which creates a generic array, is legal. Line 2 creates and
initializes a List<Integer> containing a single element. Line 3 stores the
List<String> array into an Object array variable, which is legal because arrays
are covariant. Line 4 stores the List<Integer> into the sole element of the
Object array, which succeeds because generics are implemented by erasure: the
runtime type of a List<Integer> instance is simply List, and the runtime type of
a List<String>[] instance is List[], so this assignment doesn’t generate an
ArrayStoreException. Now we’re in trouble. We’ve stored a List<Integer>
instance into an array that is declared to hold only List<String> instances. In
line 5, we retrieve the sole element from the sole list in this array. The compiler
automatically casts the retrieved element to String, but it’s an Integer, so we get
a ClassCastException at runtime. In order to prevent this from happening, line 1
(which creates a generic array) must generate a compile-time error.

Types such as E, List<E>, and List<String> are technically known as non-
reifiable types [JLS, 4.7]. Intuitively speaking, a non-reifiable type is one whose
runtime representation contains less information than its compile-time representa-
tion. Because of erasure, the only parameterized types that are reifiable are
unbounded wildcard types such as List<?> and Map<?,?> (Item 26). It is legal,
though rarely useful, to create arrays of unbounded wildcard types.

The prohibition on generic array creation can be annoying. It means, for exam-
ple, that it’s not generally possible for a generic collection to return an array of its
element type (but see Item 33 for a partial solution). It also means that you get
confusing warnings when using varargs methods (Item 53) in combination with
generic types. This is because every time you invoke a varargs method, an array is
created to hold the varargs parameters. If the element type of this array is not reifi-
able, you get a warning. The SafeVarargs annotation can be used to address this
issue (Item 32).

When you get a generic array creation error or an unchecked cast warning on a
cast to an array type, the best solution is often to use the collection type List<E> in
preference to the array type E[]. You might sacrifice some conciseness or perfor-
mance, but in exchange you get better type safety and interoperability.
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For example, suppose you want to write a Chooser class with a constructor
that takes a collection, and a single method that returns an element of the collec-
tion chosen at random. Depending on what collection you pass to the constructor,
you could use a chooser as a game die, a magic 8-ball, or a data source for a
Monte Carlo simulation. Here’s a simplistic implementation without generics:

// Chooser - a class badly in need of generics!
public class Chooser {

private final Object[] choiceArray;

public Chooser(Collection choices) {
choiceArray = choices.toArray();

}

public Object choose() {
Random rnd = ThreadLocalRandom.current();
return choiceArray[rnd.nextInt(choiceArray.length)];

}
}

To use this class, you have to cast the choose method’s return value from
Object to the desired type every time you use invoke the method, and the cast will
fail at runtime if you get the type wrong. Taking the advice of Item 29 to heart, we
attempt to modify Chooser to make it generic. Changes are shown in boldface:

// A first cut at making Chooser generic - won't compile
public class Chooser<T> {

private final T[] choiceArray;

public Chooser(Collection<T> choices) {
choiceArray = choices.toArray();

}

// choose method unchanged
}

If you try to compile this class, you’ll get this error message:

Chooser.java:9: error: incompatible types: Object[] cannot be 
converted to T[]
        choiceArray = choices.toArray();
                                     ^
  where T is a type-variable:
    T extends Object declared in class Chooser
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No big deal, you say, I’ll cast the Object array to a T array:

choiceArray = (T[]) choices.toArray();

This gets rid of the error, but instead you get a warning:

Chooser.java:9: warning: [unchecked] unchecked cast
choiceArray = (T[]) choices.toArray();

                                           ^
  required: T[], found: Object[]
  where T is a type-variable:
T extends Object declared in class Chooser

The compiler is telling you that it can’t vouch for the safety of the cast at runtime
because the program won’t know what type T represents—remember, element
type information is erased from generics at runtime. Will the program work? Yes,
but the compiler can’t prove it. You could prove it to yourself, put the proof in a
comment and suppress the warning with an annotation, but you’re better off
eliminating the cause of warning (Item 27).

To eliminate the unchecked cast warning, use a list instead of an array. Here is
a version of the Chooser class that compiles without error or warning:

// List-based Chooser - typesafe
public class Chooser<T> {

private final List<T> choiceList;

public Chooser(Collection<T> choices) {
choiceList = new ArrayList<>(choices);

}

public T choose() {
Random rnd = ThreadLocalRandom.current();
return choiceList.get(rnd.nextInt(choiceList.size()));

}
}

This version is a tad more verbose, and perhaps a tad slower, but it’s worth it for
the peace of mind that you won’t get a ClassCastException at runtime. 

In summary, arrays and generics have very different type rules. Arrays are
covariant and reified; generics are invariant and erased. As a consequence, arrays
provide runtime type safety but not compile-time type safety, and vice versa for
generics. As a rule, arrays and generics don’t mix well. If you find yourself
mixing them and getting compile-time errors or warnings, your first impulse
should be to replace the arrays with lists.
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Item 29: Favor generic types

It is generally not too difficult to parameterize your declarations and make use of
the generic types and methods provided by the JDK. Writing your own generic
types is a bit more difficult, but it’s worth the effort to learn how.

Consider the simple (toy) stack implementation from Item 7:

// Object-based collection - a prime candidate for generics
public class Stack {

private Object[] elements;
private int size = 0;
private static final int DEFAULT_INITIAL_CAPACITY = 16;

public Stack() {
elements = new Object[DEFAULT_INITIAL_CAPACITY];

}

public void push(Object e) {
ensureCapacity();
elements[size++] = e;

}

public Object pop() {
if (size == 0)

throw new EmptyStackException();
Object result = elements[--size];
elements[size] = null; // Eliminate obsolete reference
return result;

}

public boolean isEmpty() {
return size == 0;

}

private void ensureCapacity() {
if (elements.length == size)

elements = Arrays.copyOf(elements, 2 * size + 1);
}

}

This class should have been parameterized to begin with, but since it wasn’t, we
can generify it after the fact. In other words, we can parameterize it without harm-
ing clients of the original non-parameterized version. As it stands, the client has to
cast objects that are popped off the stack, and those casts might fail at runtime.
The first step in generifying a class is to add one or more type parameters to its
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declaration. In this case there is one type parameter, representing the element type
of the stack, and the conventional name for this type parameter is E (Item 68).

The next step is to replace all the uses of the type Object with the appropriate
type parameter and then try to compile the resulting program:

// Initial attempt to generify Stack - won't compile!
public class Stack<E> {

private E[] elements;
private int size = 0;
private static final int DEFAULT_INITIAL_CAPACITY = 16;

public Stack() {
elements = new E[DEFAULT_INITIAL_CAPACITY];

}

public void push(E e) {
ensureCapacity();
elements[size++] = e;

}

public E pop() {
if (size == 0)

throw new EmptyStackException();
E result = elements[--size];
elements[size] = null; // Eliminate obsolete reference
return result;

}
... // no changes in isEmpty or ensureCapacity

}

You’ll generally get at least one error or warning, and this class is no exception.
Luckily, this class generates only one error:

Stack.java:8: generic array creation
elements = new E[DEFAULT_INITIAL_CAPACITY];

^

As explained in Item 28, you can’t create an array of a non-reifiable type, such
as E. This problem arises every time you write a generic type that is backed by an
array. There are two reasonable ways to solve it. The first solution directly circum-
vents the prohibition on generic array creation: create an array of Object and cast
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it to the generic array type. Now in place of an error, the compiler will emit a
warning. This usage is legal, but it’s not (in general) typesafe:

Stack.java:8: warning: [unchecked] unchecked cast
found: Object[], required: E[]

elements = (E[]) new Object[DEFAULT_INITIAL_CAPACITY];
^

The compiler may not be able to prove that your program is typesafe, but you
can. You must convince yourself that the unchecked cast will not compromise the
type safety of the program. The array in question (elements) is stored in a private
field and never returned to the client or passed to any other method. The only
elements stored in the array are those passed to the push method, which are of
type E, so the unchecked cast can do no harm.

Once you’ve proved that an unchecked cast is safe, suppress the warning in as
narrow a scope as possible (Item 27). In this case, the constructor contains only the
unchecked array creation, so it’s appropriate to suppress the warning in the entire
constructor. With the addition of an annotation to do this, Stack compiles cleanly,
and you can use it without explicit casts or fear of a ClassCastException:

// The elements array will contain only E instances from push(E).
// This is sufficient to ensure type safety, but the runtime
// type of the array won't be E[]; it will always be Object[]!
@SuppressWarnings("unchecked") 
public Stack() {

elements = (E[]) new Object[DEFAULT_INITIAL_CAPACITY];
}

The second way to eliminate the generic array creation error in Stack is to
change the type of the field elements from E[] to Object[]. If you do this, you’ll
get a different error:

Stack.java:19: incompatible types
found: Object, required: E

E result = elements[--size];
                           ^

You can change this error into a warning by casting the element retrieved from the
array to E, but you will get a warning:

Stack.java:19: warning: [unchecked] unchecked cast
found: Object, required: E

E result = (E) elements[--size];
                               ^
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Because E is a non-reifiable type, there’s no way the compiler can check the
cast at runtime. Again, you can easily prove to yourself that the unchecked cast is
safe, so it’s appropriate to suppress the warning. In line with the advice of Item 27,
we suppress the warning only on the assignment that contains the unchecked cast,
not on the entire pop method:

// Appropriate suppression of unchecked warning
public E pop() {

if (size == 0)
throw new EmptyStackException();

// push requires elements to be of type E, so cast is correct
@SuppressWarnings("unchecked") E result = 

(E) elements[--size];

elements[size] = null; // Eliminate obsolete reference
return result;

}

Both techniques for eliminating the generic array creation have their
adherents. The first is more readable: the array is declared to be of type E[],
clearly indicating that it contains only E instances. It is also more concise: in a
typical generic class, you read from the array at many points in the code; the first
technique requires only a single cast (where the array is created), while the second
requires a separate cast each time an array element is read. Thus, the first
technique is preferable and more commonly used in practice. It does, however,
cause heap pollution (Item 32): the runtime type of the array does not match its
compile-time type (unless E happens to be Object). This makes some
programmers sufficiently queasy that they opt for the second technique, though
the heap pollution is harmless in this situation.

The following program demonstrates the use of our generic Stack class. The
program prints its command line arguments in reverse order and converted to
uppercase. No explicit cast is necessary to invoke String’s toUpperCase method
on the elements popped from the stack, and the automatically generated cast is
guaranteed to succeed:

// Little program to exercise our generic Stack
public static void main(String[] args) {

Stack<String> stack = new Stack<>();
for (String arg : args)

stack.push(arg);
while (!stack.isEmpty())

System.out.println(stack.pop().toUpperCase());
}
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The foregoing example may appear to contradict Item 28, which encourages
the use of lists in preference to arrays. It is not always possible or desirable to use
lists inside your generic types. Java doesn’t support lists natively, so some generic
types, such as ArrayList, must be implemented atop arrays. Other generic types,
such as HashMap, are implemented atop arrays for performance.

The great majority of generic types are like our Stack example in that their
type parameters have no restrictions: you can create a Stack<Object>,
Stack<int[]>, Stack<List<String>>, or Stack of any other object reference
type. Note that you can’t create a Stack of a primitive type: trying to create a
Stack<int> or Stack<double> will result in a compile-time error. This is a fun-
damental limitation of Java’s generic type system. You can work around this
restriction by using boxed primitive types (Item 61).

There are some generic types that restrict the permissible values of their type
parameters. For example, consider java.util.concurrent.DelayQueue, whose
declaration looks like this:

class DelayQueue<E extends Delayed> implements BlockingQueue<E>

The type parameter list (<E extends Delayed>) requires that the actual type
parameter E be a subtype of java.util.concurrent.Delayed. This allows the
DelayQueue implementation and its clients to take advantage of Delayed methods
on the elements of a DelayQueue, without the need for explicit casting or the risk
of a ClassCastException. The type parameter E is known as a bounded type
parameter. Note that the subtype relation is defined so that every type is a subtype
of itself [JLS, 4.10], so it is legal to create a DelayQueue<Delayed>.

In summary, generic types are safer and easier to use than types that require
casts in client code. When you design new types, make sure that they can be used
without such casts. This will often mean making the types generic. If you have any
existing types that should be generic but aren’t, generify them. This will make life
easier for new users of these types without breaking existing clients (Item 26).
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Item 30: Favor generic methods

Just as classes can be generic, so can methods. Static utility methods that operate
on parameterized types are usually generic. All of the “algorithm” methods in
Collections (such as binarySearch and sort) are generic.

Writing generic methods is similar to writing generic types. Consider this
deficient method, which returns the union of two sets:

// Uses raw types - unacceptable! (Item 26)
public static Set union(Set s1, Set s2) {

Set result = new HashSet(s1);
result.addAll(s2);
return result;

}

This method compiles but with two warnings:

Union.java:5: warning: [unchecked] unchecked call to
HashSet(Collection<? extends E>) as a member of raw type HashSet

Set result = new HashSet(s1);
^

Union.java:6: warning: [unchecked] unchecked call to
addAll(Collection<? extends E>) as a member of raw type Set

result.addAll(s2);
^

To fix these warnings and make the method typesafe, modify its declaration to
declare a type parameter representing the element type for the three sets (the two
arguments and the return value) and use this type parameter throughout the
method. The type parameter list, which declares the type parameters, goes
between a method’s modifiers and its return type. In this example, the type
parameter list is <E>, and the return type is Set<E>. The naming conventions for
type parameters are the same for generic methods and generic types (Items 29, 68):

// Generic method
public static <E> Set<E> union(Set<E> s1, Set<E> s2) {

Set<E> result = new HashSet<>(s1);
result.addAll(s2);
return result;

}

At least for simple generic methods, that’s all there is to it. This method com-
piles without generating any warnings and provides type safety as well as ease of
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use. Here’s a simple program to exercise the method. This program contains no
casts and compiles without errors or warnings:

// Simple program to exercise generic method
public static void main(String[] args) {

Set<String> guys = Set.of("Tom", "Dick", "Harry");
Set<String> stooges = Set.of("Larry", "Moe", "Curly");
Set<String> aflCio = union(guys, stooges);
System.out.println(aflCio);

}

When you run the program, it prints [Moe, Tom, Harry, Larry, Curly, Dick].
(The order of the elements in the output is implementation-dependent.)

A limitation of the union method is that the types of all three sets (both input
parameters and the return value) have to be exactly the same. You can make the
method more flexible by using bounded wildcard types (Item 31).

On occasion, you will need to create an object that is immutable but
applicable to many different types. Because generics are implemented by erasure
(Item 28), you can use a single object for all required type parameterizations, but
you need to write a static factory method to repeatedly dole out the object for each
requested type parameterization. This pattern, called the generic singleton factory,
is used for function objects (Item 42) such as Collections.reverseOrder, and
occasionally for collections such as Collections.emptySet.

Suppose that you want to write an identity function dispenser. The libraries
provide Function.identity, so there’s no reason to write your own (Item 59),
but it is instructive. It would be wasteful to create a new identity function object
time one is requested, because it’s stateless. If Java’s generics were reified, you
would need one identity function per type, but since they’re erased a generic
singleton will suffice. Here’s how it looks:

// Generic singleton factory pattern
private static UnaryOperator<Object> IDENTITY_FN = (t) -> t;
    
@SuppressWarnings("unchecked")
public static <T> UnaryOperator<T> identityFunction() {

return (UnaryOperator<T>) IDENTITY_FN;
}

The cast of IDENTITY_FN to (UnaryFunction<T>) generates an unchecked
cast warning, as UnaryOperator<Object> is not a UnaryOperator<T> for every
T. But the identity function is special: it returns its argument unmodified, so we
know that it is typesafe to use it as a UnaryFunction<T>, whatever the value of T.
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Therefore, we can confidently suppress the unchecked cast warning generated by
this cast. Once we’ve done this, the code compiles without error or warning.

Here is a sample program that uses our generic singleton as a UnaryOpera-
tor<String> and a UnaryOperator<Number>. As usual, it contains no casts and
compiles without errors or warnings:

// Sample program to exercise generic singleton
public static void main(String[] args) {

String[] strings = { "jute", "hemp", "nylon" };
UnaryOperator<String> sameString = identityFunction();
for (String s : strings)

System.out.println(sameString.apply(s));

Number[] numbers = { 1, 2.0, 3L };
UnaryOperator<Number> sameNumber = identityFunction();
for (Number n : numbers)

System.out.println(sameNumber.apply(n));
}

It is permissible, though relatively rare, for a type parameter to be bounded by
some expression involving that type parameter itself. This is what’s known as a
recursive type bound. A common use of recursive type bounds is in connection
with the Comparable interface, which defines a type’s natural ordering (Item 14).
This interface is shown here:

public interface Comparable<T> {
int compareTo(T o);

}

The type parameter T defines the type to which elements of the type implementing
Comparable<T> can be compared. In practice, nearly all types can be compared
only to elements of their own type. So, for example, String implements Compa-
rable<String>, Integer implements Comparable<Integer>, and so on.

Many methods take a collection of elements implementing Comparable to
sort it, search within it, calculate its minimum or maximum, and the like. To do
these things, it is required that every element in the collection be comparable to
every other element in it, in other words, that the elements of the list be mutually
comparable. Here is how to express that constraint:

// Using a recursive type bound to express mutual comparability
public static <E extends Comparable<E>> E max(Collection<E> c);
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The type bound <E extends Comparable<E>> may be read as “any type E that can
be compared to itself,” which corresponds more or less precisely to the notion of
mutual comparability. 

Here is a method to go with the previous declaration. It calculates the maxi-
mum value in a collection according to its elements’ natural order, and it compiles
without errors or warnings:

// Returns max value in a collection - uses recursive type bound
public static <E extends Comparable<E>> E max(Collection<E> c) {

if (c.isEmpty())
throw new IllegalArgumentException("Empty collection");

E result = null;
for (E e : c)

if (result == null || e.compareTo(result) > 0)
result = Objects.requireNonNull(e);

return result;
}

Note that this method throws IllegalArgumentException if the list is empty. A
better alternative would be to return an Optional<E> (Item 55).

Recursive type bounds can get much more complex, but luckily they rarely
do. If you understand this idiom, its wildcard variant (Item 31), and the simulated
self-type idiom (Item 2), you’ll be able to deal with most of the recursive type
bounds you encounter in practice.

In summary, generic methods, like generic types, are safer and easier to use
than methods requiring their clients to put explicit casts on input parameters and
return values. Like types, you should make sure that your methods can be used
without casts, which often means making them generic. And like types, you
should generify existing methods whose use requires casts. This makes life easier
for new users without breaking existing clients (Item 26).



ITEM 31: USE BOUNDED WILDCARDS TO INCREASE API FLEXIBILITY 139

Item 31: Use bounded wildcards to increase API flexibility

As noted in Item 28, parameterized types are invariant. In other words, for any
two distinct types Type1 and Type2, List<Type1> is neither a subtype nor a
supertype of List<Type2>. Although it is counterintuitive that List<String> is
not a subtype of List<Object>, it really does make sense. You can put any object
into a List<Object>, but you can put only strings into a List<String>. Since a
List<String> can’t do everything a List<Object> can, it isn’t a subtype (by the
Liskov substitution principal, Item 10).

Sometimes you need more flexibility than invariant typing can provide. Con-
sider the Stack class from Item 29. To refresh your memory, here is its public API:

public class Stack<E> {
public Stack();
public void push(E e);
public E pop();
public boolean isEmpty();

}

Suppose we want to add a method that takes a sequence of elements and
pushes them all onto the stack. Here’s a first attempt:

// pushAll method without wildcard type - deficient!
public void pushAll(Iterable<E> src) {

for (E e : src)
push(e);

}

This method compiles cleanly, but it isn’t entirely satisfactory. If the element type
of the Iterable src exactly matches that of the stack, it works fine. But suppose
you have a Stack<Number> and you invoke push(intVal), where intVal is of
type Integer. This works because Integer is a subtype of Number. So logically, it
seems that this should work, too:

Stack<Number> numberStack = new Stack<>();
Iterable<Integer> integers = ... ;
numberStack.pushAll(integers);

If you try it, however, you’ll get this error message because parameterized types
are invariant:

StackTest.java:7: error: incompatible types: Iterable<Integer> 
cannot be converted to Iterable<Number>

numberStack.pushAll(integers);
^
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Luckily, there’s a way out. The language provides a special kind of parameter-
ized type call a bounded wildcard type to deal with situations like this. The type of
the input parameter to pushAll should not be “Iterable of E” but “Iterable of
some subtype of E,” and there is a wildcard type that means precisely that: Iter-
able<? extends E>. (The use of the keyword extends is slightly misleading:
recall from Item 29 that subtype is defined so that every type is a subtype of itself,
even though it does not extend itself.) Let’s modify pushAll to use this type:

// Wildcard type for a parameter that serves as an E producer
public void pushAll(Iterable<? extends E> src) {

for (E e : src)
push(e);

}

With this change, not only does Stack compile cleanly, but so does the client code
that wouldn’t compile with the original pushAll declaration. Because Stack and
its client compile cleanly, you know that everything is typesafe.

Now suppose you want to write a popAll method to go with pushAll. The
popAll method pops each element off the stack and adds the elements to the given
collection. Here’s how a first attempt at writing the popAll method might look:

// popAll method without wildcard type - deficient!
public void popAll(Collection<E> dst) {

while (!isEmpty())
dst.add(pop());

}

Again, this compiles cleanly and works fine if the element type of the destination
collection exactly matches that of the stack. But again, it isn’t entirely satisfactory.
Suppose you have a Stack<Number> and variable of type Object. If you pop an
element from the stack and store it in the variable, it compiles and runs without
error. So shouldn’t you be able to do this, too?

Stack<Number> numberStack = new Stack<Number>();
Collection<Object> objects = ... ;
numberStack.popAll(objects);

If you try to compile this client code against the version of popAll shown earlier,
you’ll get an error very similar to the one that we got with our first version of
pushAll: Collection<Object> is not a subtype of Collection<Number>. Once
again, wildcard types provide a way out. The type of the input parameter to
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popAll should not be “collection of E” but “collection of some supertype of E”
(where supertype is defined such that E is a supertype of itself [JLS, 4.10]). Again,
there is a wildcard type that means precisely that: Collection<? super E>. Let’s
modify popAll to use it:

// Wildcard type for parameter that serves as an E consumer
public void popAll(Collection<? super E> dst) {

while (!isEmpty())
dst.add(pop());

}

With this change, both Stack and the client code compile cleanly.
The lesson is clear. For maximum flexibility, use wildcard types on input

parameters that represent producers or consumers. If an input parameter is
both a producer and a consumer, then wildcard types will do you no good: you
need an exact type match, which is what you get without any wildcards. 

Here is a mnemonic to help you remember which wildcard type to use: 

PECS stands for producer-extends, consumer-super.

In other words, if a parameterized type represents a T producer, use <? extends T>;
if it represents a T consumer, use <? super T>. In our Stack example, pushAll’s
src parameter produces E instances for use by the Stack, so the appropriate type
for src is Iterable<? extends E>; popAll’s dst parameter consumes E instances
from the Stack, so the appropriate type for dst is Collection<? super E>. The
PECS mnemonic captures the fundamental principle that guides the use of wild-
card types. Naftalin and Wadler call it the Get and Put Principle [Naftalin07, 2.4].

With this mnemonic in mind, let’s take a look at some method and constructor
declarations from previous items in this chapter. The Chooser constructor in
Item 28 has this declaration:

public Chooser(Collection<T> choices)

This constructor uses the collection choices only to produce values of type T
(and stores them for later use), so its declaration should use a wildcard type that
extends T. Here’s the resulting constructor declaration:

// Wildcard type for parameter that serves as an T producer
public Chooser(Collection<? extends T> choices)

And would this change make any difference in practice? Yes, it would.
Suppose you have a List<Integer>, and you want to pass it in to the constructor
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for a Chooser<Number>. This would not compile with the original declaration, but
it does once you add the bounded wildcard type to the declaration.

Now let’s look at the union method from Item 30. Here is the declaration:

public static <E> Set<E> union(Set<E> s1, Set<E> s2)

Both parameters, s1 and s2, are E producers, so the PECS mnemonic tells us that
the declaration should be as follows:

public static <E> Set<E> union(Set<? extends E> s1,
Set<? extends E> s2)

Note that the return type is still Set<E>. Do not use bounded wildcard types as
return types. Rather than providing additional flexibility for your users, it would
force them to use wildcard types in client code. With the revised declaration, this
code will compile cleanly:

Set<Integer> integers = Set.of(1, 3, 5);
Set<Double> doubles = Set.of(2.0, 4.0, 6.0);
Set<Number> numbers = union(integers, doubles);

Properly used, wildcard types are nearly invisible to the users of a class. They
cause methods to accept the parameters they should accept and reject those they
should reject. If the user of a class has to think about wildcard types, there is
probably something wrong with its API.

Prior to Java 8, the type inference rules were not clever enough to handle the
previous code fragment, which requires the compiler to use the contextually spec-
ified return type (or target type) to infer the type of E. The target type of the union
invocation shown earlier is Set<Number>. If you try to compile the fragment in an
earlier version of Java (with an appropriate replacement for the Set.of factory),
you’ll get a long, convoluted error message like this:

Union.java:14: error: incompatible types
        Set<Number> numbers = union(integers, doubles);
                                   ^
  required: Set<Number>
  found:    Set<INT#1>
  where INT#1,INT#2 are intersection types:
    INT#1 extends Number,Comparable<? extends INT#2>
    INT#2 extends Number,Comparable<?>

Luckily there is a way to deal with this sort of error. If the compiler doesn’t
infer the correct type, you can always tell it what type to use with an explicit type
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argument [JLS, 15.12]. Even prior to the introduction of target typing in Java 8,
this isn’t something that you had to do often, which is good because explicit type
arguments aren’t very pretty. With the addition of an explicit type argument, as
shown here, the code fragment compiles cleanly in versions prior to Java 8:

// Explicit type parameter - required prior to Java 8
Set<Number> numbers = Union.<Number>union(integers, doubles);

Next let’s turn our attention to the max method in Item 30. Here is the original
declaration:

public static <T extends Comparable<T>> T max(List<T> list)

Here is a revised declaration that uses wildcard types:

public static <T extends Comparable<? super T>> T max(
List<? extends T> list)

To get the revised declaration from the original, we applied the PECS heuris-
tic twice. The straightforward application is to the parameter list. It produces T
instances, so we change the type from List<T> to List<? extends T>. The tricky
application is to the type parameter T. This is the first time we’ve seen a wildcard
applied to a type parameter. Originally, T was specified to extend Comparable<T>,
but a comparable of T consumes T instances (and produces integers indicating
order relations). Therefore, the parameterized type Comparable<T> is replaced by
the bounded wildcard type Comparable<? super T>. Comparables are always
consumers, so you should generally use Comparable<? super T> in preference to
Comparable<T>. The same is true of comparators; therefore, you should generally
use Comparator<? super T> in preference to Comparator<T>.

The revised max declaration is probably the most complex method declaration
in this book. Does the added complexity really buy you anything? Again, it does.
Here is a simple example of a list that would be excluded by the original declara-
tion but is permitted by the revised one:

List<ScheduledFuture<?>> scheduledFutures = ... ;

The reason that you can’t apply the original method declaration to this list is
that ScheduledFuture does not implement Comparable<ScheduledFuture>.
Instead, it is a subinterface of Delayed, which extends Comparable<Delayed>. In
other words, a ScheduledFuture instance isn’t merely comparable to other
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ScheduledFuture instances; it is comparable to any Delayed instance, and that’s
enough to cause the original declaration to reject it. More generally, the wildcard
is required to support types that do not implement Comparable (or Comparator)
directly but extend a type that does.

There is one more wildcard-related topic that bears discussing. There is a
duality between type parameters and wildcards, and many methods can be
declared using one or the other. For example, here are two possible declarations
for a static method to swap two indexed items in a list. The first uses an
unbounded type parameter (Item 30) and the second an unbounded wildcard:

// Two possible declarations for the swap method
public static <E> void swap(List<E> list, int i, int j);
public static void swap(List<?> list, int i, int j);

Which of these two declarations is preferable, and why? In a public API, the
second is better because it’s simpler. You pass in a list—any list—and the method
swaps the indexed elements. There is no type parameter to worry about. As a rule,
if a type parameter appears only once in a method declaration, replace it with
a wildcard. If it’s an unbounded type parameter, replace it with an unbounded
wildcard; if it’s a bounded type parameter, replace it with a bounded wildcard.

There’s one problem with the second declaration for swap. The straightfor-
ward implementation won’t compile:

public static void swap(List<?> list, int i, int j) {
list.set(i, list.set(j, list.get(i)));

}

Trying to compile it produces this less-than-helpful error message:

Swap.java:5: error: incompatible types: Object cannot be 
converted to CAP#1
        list.set(i, list.set(j, list.get(i)));
                                        ^
  where CAP#1 is a fresh type-variable:
    CAP#1 extends Object from capture of ?

It doesn’t seem right that we can’t put an element back into the list that we just
took it out of. The problem is that the type of list is List<?>, and you can’t put
any value except null into a List<?>. Fortunately, there is a way to implement
this method without resorting to an unsafe cast or a raw type. The idea is to write a



ITEM 31: USE BOUNDED WILDCARDS TO INCREASE API FLEXIBILITY 145

private helper method to capture the wildcard type. The helper method must be a
generic method in order to capture the type. Here’s how it looks:

public static void swap(List<?> list, int i, int j) {
swapHelper(list, i, j);

}

// Private helper method for wildcard capture
private static <E> void swapHelper(List<E> list, int i, int j) {

list.set(i, list.set(j, list.get(i)));
}

The swapHelper method knows that list is a List<E>. Therefore, it knows
that any value it gets out of this list is of type E and that it’s safe to put any value of
type E into the list. This slightly convoluted implementation of swap compiles
cleanly. It allows us to export the nice wildcard-based declaration, while taking
advantage of the more complex generic method internally. Clients of the swap
method don’t have to confront the more complex swapHelper declaration, but
they do benefit from it. It is worth noting that the helper method has precisely the
signature that we dismissed as too complex for the public method.

In summary, using wildcard types in your APIs, while tricky, makes the APIs
far more flexible. If you write a library that will be widely used, the proper use of
wildcard types should be considered mandatory. Remember the basic rule:
producer-extends, consumer-super (PECS). Also remember that all comparables
and comparators are consumers.
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Item 32: Combine generics and varargs judiciously

Varargs methods (Item 53) and generics were both added to the platform in Java 5,
so you might expect them to interact gracefully; sadly, they do not. The purpose of
varargs is to allow clients to pass a variable number of arguments to a method, but
it is a leaky abstraction: when you invoke a varargs method, an array is created to
hold the varargs parameters; that array, which should be an implementation detail,
is visible. As a consequence, you get confusing compiler warnings when varargs
parameters have generic or parameterized types. 

Recall from Item 28 that a non-reifiable type is one whose runtime representa-
tion has less information than its compile-time representation, and that nearly all
generic and parameterized types are non-reifiable. If a method declares its varargs
parameter to be of a non-reifiable type, the compiler generates a warning on the
declaration. If the method is invoked on varargs parameters whose inferred type is
non-reifiable, the compiler generates a warning on the invocation too. The warn-
ings look something like this:

warning: [unchecked] Possible heap pollution from
parameterized vararg type List<String>

Heap pollution occurs when a variable of a parameterized type refers to an object
that is not of that type [JLS, 4.12.2]. It can cause the compiler’s automatically gen-
erated casts to fail, violating the fundamental guarantee of the generic type system.

For example, consider this method, which is a thinly disguised variant of the
code fragment on page 127:

// Mixing generics and varargs can violate type safety!
static void dangerous(List<String>... stringLists) {
    List<Integer> intList = List.of(42);
    Object[] objects = stringLists;
    objects[0] = intList; // Heap pollution
    String s = stringLists[0].get(0); // ClassCastException
}

This method has no visible casts yet throws a ClassCastException when invoked
with one or more arguments. Its last line has an invisible cast that is generated by
the compiler. This cast fails, demonstrating that type safety has been compromised,
and it is unsafe to store a value in a generic varargs array parameter.

This example raises an interesting question: Why is it even legal to declare a
method with a generic varargs parameter, when it is illegal to create a generic
array explicitly? In other words, why does the method shown previously generate
only a warning, while the code fragment on page 127 generates an error? The
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answer is that methods with varargs parameters of generic or parameterized types
can be very useful in practice, so the language designers opted to live with this
inconsistency. In fact, the Java libraries export several such methods, including
Arrays.asList(T... a), Collections.addAll(Collection<? super T> c,
T... elements), and EnumSet.of(E first, E... rest). Unlike the dangerous
method shown earlier, these library methods are typesafe.

Prior to Java 7, there was nothing the author of a method with a generic
varargs parameter could do about the warnings at the call sites. This made these
APIs unpleasant to use. Users had to put up with the warnings or, preferably, to
eliminate them with @SuppressWarnings("unchecked") annotations at every
call site (Item 27). This was tedious, harmed readability, and hid warnings that
flagged real issues.

In Java 7, the SafeVarargs annotation was added to the platform, to allow the
author of a method with a generic varargs parameter to suppress client warnings
automatically. In essence, the SafeVarargs annotation constitutes a promise by
the author of a method that it is typesafe. In exchange for this promise, the com-
piler agrees not to warn the users of the method that calls may be unsafe.

It is critical that you do not annotate a method with @SafeVarargs unless it
actually is safe. So what does it take to ensure this? Recall that a generic array is
created when the method is invoked, to hold the varargs parameters. If the method
doesn’t store anything into the array (which would overwrite the parameters) and
doesn’t allow a reference to the array to escape (which would enable untrusted
code to access the array), then it’s safe. In other words, if the varargs parameter
array is used only to transmit a variable number of arguments from the caller to
the method—which is, after all, the purpose of varargs—then the method is safe.

It is worth noting that you can violate type safety without ever storing any-
thing in the varargs parameter array. Consider the following generic varargs
method, which returns an array containing its parameters. At first glance, it may
look like a handy little utility:

// UNSAFE - Exposes a reference to its generic parameter array!
static <T> T[] toArray(T... args) {
    return args;
}

This method simply returns its varargs parameter array. The method may not look
dangerous, but it is! The type of this array is determined by the compile-time types
of the arguments passed in to the method, and the compiler may not have enough
information to make an accurate determination. Because this method returns its
varargs parameter array, it can propagate heap pollution up the call stack.
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To make this concrete, consider the following generic method, which takes
three arguments of type T and returns an array containing two of the arguments,
chosen at random:

static <T> T[] pickTwo(T a, T b, T c) {
    switch(ThreadLocalRandom.current().nextInt(3)) {
      case 0: return toArray(a, b);
      case 1: return toArray(a, c);
      case 2: return toArray(b, c);
    }
    throw new AssertionError(); // Can't get here
}

This method is not, in and of itself, dangerous and would not generate a warning
except that it invokes the toArray method, which has a generic varargs parameter. 

When compiling this method, the compiler generates code to create a varargs
parameter array in which to pass two T instances to toArray. This code allocates
an array of type Object[], which is the most specific type that is guaranteed to
hold these instances, no matter what types of objects are passed to pickTwo at the
call site. The toArray method simply returns this array to pickTwo, which in turn
returns it to its caller, so pickTwo will always return an array of type Object[].

Now consider this main method, which exercises pickTwo:

public static void main(String[] args) {
    String[] attributes = pickTwo("Good", "Fast", "Cheap");
}

There is nothing at all wrong with this method, so it compiles without generating
any warnings. But when you run it, it throws a ClassCastException, though it
contains no visible casts. What you don’t see is that the compiler has generated a
hidden cast to String[] on the value returned by pickTwo so that it can be stored
in attributes. The cast fails, because Object[] is not a subtype of String[].
This failure is quite disconcerting because it is two levels removed from the
method that actually causes the heap pollution (toArray), and the varargs parame-
ter array is not modified after the actual parameters are stored in it.

This example is meant to drive home the point that it is unsafe to give
another method access to a generic varargs parameter array, with two excep-
tions: it is safe to pass the array to another varargs method that is correctly anno-
tated with @SafeVarargs, and it is safe to pass the array to a non-varargs method
that merely computes some function of the contents of the array.
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Here is a typical example of a safe use of a generic varargs parameter. This
method takes an arbitrary number of lists as arguments and returns a single list
containing the elements of all of the input lists in sequence. Because the method is
annotated with @SafeVarargs, it doesn’t generate any warnings, on the declara-
tion or at its call sites:

// Safe method with a generic varargs parameter
@SafeVarargs
static <T> List<T> flatten(List<? extends T>... lists) {
    List<T> result = new ArrayList<>();
    for (List<? extends T> list : lists)
        result.addAll(list);
    return result;
}

The rule for deciding when to use the SafeVarargs annotation is simple: Use
@SafeVarargs on every method with a varargs parameter of a generic or
parameterized type, so its users won’t be burdened by needless and confusing
compiler warnings. This implies that you should never write unsafe varargs meth-
ods like dangerous or toArray. Every time the compiler warns you of possible
heap pollution from a generic varargs parameter in a method you control, check
that the method is safe. As a reminder, a generic varargs methods is safe if:

1. it doesn’t store anything in the varargs parameter array, and 
2. it doesn’t make the array (or a clone) visible to untrusted code. 

If either of these prohibitions is violated, fix it.
Note that the SafeVarargs annotation is legal only on methods that can’t be

overridden, because it is impossible to guarantee that every possible overriding
method will be safe. In Java 8, the annotation was legal only on static methods and
final instance methods; in Java 9, it became legal on private instance methods as
well.

An alternative to using the SafeVarargs annotation is to take the advice of
Item 28 and replace the varargs parameter (which is an array in disguise) with a
List parameter. Here’s how this approach looks when applied to our flatten
method. Note that only the parameter declaration has changed:

// List as a typesafe alternative to a generic varargs parameter
static <T> List<T> flatten(List<List<? extends T>> lists) {
    List<T> result = new ArrayList<>();
    for (List<? extends T> list : lists)
        result.addAll(list);
    return result;
}
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This method can then be used in conjunction with the static factory method
List.of to allow for a variable number of arguments. Note that this approach
relies on the fact that the List.of declaration is annotated with @SafeVarargs:

audience = flatten(List.of(friends, romans, countrymen));

The advantage of this approach is that the compiler can prove that the method
is typesafe. You don’t have to vouch for its safety with a SafeVarargs annotation,
and you don’t have worry that you might have erred in determining that it was
safe. The main disadvantage is that the client code is a bit more verbose and may
be a bit slower.

This trick can also be used in situations where it is impossible to write a safe
varargs method, as is the case with the toArray method on page 147. Its List ana-
logue is the List.of method, so we don’t even have to write it; the Java libraries
authors have done the work for us. The pickTwo method then becomes this:

static <T> List<T> pickTwo(T a, T b, T c) {
    switch(rnd.nextInt(3)) {
      case 0: return List.of(a, b);
      case 1: return List.of(a, c);
      case 2: return List.of(b, c);
    }
    throw new AssertionError();
}

and the main method becomes this:

public static void main(String[] args) {
    List<String> attributes = pickTwo("Good", "Fast", "Cheap");
}

The resulting code is typesafe because it uses only generics, and not arrays.
In summary, varargs and generics do not interact well because the varargs

facility is a leaky abstraction built atop arrays, and arrays have different type rules
from generics. Though generic varargs parameters are not typesafe, they are legal.
If you choose to write a method with a generic (or parameterized) varargs parame-
ter, first ensure that the method is typesafe, and then annotate it with @Safe-
Varargs so it is not unpleasant to use.
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Item 33: Consider typesafe heterogeneous containers

Common uses of generics include collections, such as Set<E> and Map<K,V>, and
single-element containers, such as ThreadLocal<T> and AtomicReference<T>.
In all of these uses, it is the container that is parameterized. This limits you to a
fixed number of type parameters per container. Normally that is exactly what you
want. A Set has a single type parameter, representing its element type; a Map has
two, representing its key and value types; and so forth.

Sometimes, however, you need more flexibility. For example, a database row
can have arbitrarily many columns, and it would be nice to be able to access all of
them in a typesafe manner. Luckily, there is an easy way to achieve this effect. The
idea is to parameterize the key instead of the container. Then present the parame-
terized key to the container to insert or retrieve a value. The generic type system is
used to guarantee that the type of the value agrees with its key.

As a simple example of this approach, consider a Favorites class that allows
its clients to store and retrieve a favorite instance of arbitrarily many types. The
Class object for the type will play the part of the parameterized key. The reason
this works is that class Class is generic. The type of a class literal is not simply
Class, but Class<T>. For example, String.class is of type Class<String>, and
Integer.class is of type Class<Integer>. When a class literal is passed among
methods to communicate both compile-time and runtime type information, it is
called a type token [Bracha04].

The API for the Favorites class is simple. It looks just like a simple map,
except that the key is parameterized instead of the map. The client presents a
Class object when setting and getting favorites. Here is the API:

// Typesafe heterogeneous container pattern - API
public class Favorites {

public <T> void putFavorite(Class<T> type, T instance);
public <T> T getFavorite(Class<T> type);

}

Here is a sample program that exercises the Favorites class, storing, retriev-
ing, and printing a favorite String, Integer, and Class instance:

// Typesafe heterogeneous container pattern - client
public static void main(String[] args) {

Favorites f = new Favorites();
f.putFavorite(String.class, "Java");
f.putFavorite(Integer.class, 0xcafebabe);
f.putFavorite(Class.class, Favorites.class);
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String favoriteString = f.getFavorite(String.class);
int favoriteInteger = f.getFavorite(Integer.class);
Class<?> favoriteClass = f.getFavorite(Class.class);
System.out.printf("%s %x %s%n", favoriteString,

favoriteInteger, favoriteClass.getName());
}

As you would expect, this program prints Java cafebabe Favorites. Note, inci-
dentally, that Java’s printf method differs from C’s in that you should use %n
where you’d use \n in C. The %n generates the applicable platform-specific line
separator, which is \n on many but not all platforms.

A Favorites instance is typesafe: it will never return an Integer when you
ask it for a String. It is also heterogeneous: unlike an ordinary map, all the keys
are of different types. Therefore, we call Favorites a typesafe heterogeneous
container.

The implementation of Favorites is surprisingly tiny. Here it is, in its entirety:

// Typesafe heterogeneous container pattern - implementation
public class Favorites {

private Map<Class<?>, Object> favorites = new HashMap<>();

public <T> void putFavorite(Class<T> type, T instance) {
favorites.put(Objects.requireNonNull(type), instance);

}

public <T> T getFavorite(Class<T> type) {
return type.cast(favorites.get(type));

}
}

There are a few subtle things going on here. Each Favorites instance is
backed by a private Map<Class<?>, Object> called favorites. You might think
that you couldn’t put anything into this Map because of the unbounded wildcard
type, but the truth is quite the opposite. The thing to notice is that the wildcard
type is nested: it’s not the type of the map that’s a wildcard type but the type of its
key. This means that every key can have a different parameterized type: one can be
Class<String>, the next Class<Integer>, and so on. That’s where the heteroge-
neity comes from.

The next thing to notice is that the value type of the favorites Map is simply
Object. In other words, the Map does not guarantee the type relationship between
keys and values, which is that every value is of the type represented by its key. In
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fact, Java’s type system is not powerful enough to express this. But we know that
it’s true, and we take advantage of it when the time comes to retrieve a favorite.

The putFavorite implementation is trivial: it simply puts into favorites a
mapping from the given Class object to the given favorite instance. As noted, this
discards the “type linkage” between the key and the value; it loses the knowledge
that the value is an instance of the key. But that’s OK, because the getFavorites
method can and does reestablish this linkage.

The implementation of getFavorite is trickier than that of putFavorite.
First, it gets from the favorites map the value corresponding to the given Class
object. This is the correct object reference to return, but it has the wrong compile-
time type: it is Object (the value type of the favorites map) and we need to
return a T. So, the getFavorite implementation dynamically casts the object ref-
erence to the type represented by the Class object, using Class’s cast method. 

The cast method is the dynamic analogue of Java’s cast operator. It simply
checks that its argument is an instance of the type represented by the Class object.
If so, it returns the argument; otherwise it throws a ClassCastException. We
know that the cast invocation in getFavorite won’t throw ClassCastException,
assuming the client code compiled cleanly. That is to say, we know that the values
in the favorites map always match the types of their keys.

So what does the cast method do for us, given that it simply returns its argu-
ment? The signature of the cast method takes full advantage of the fact that class
Class is generic. Its return type is the type parameter of the Class object:

public class Class<T> {
T cast(Object obj);

}

This is precisely what’s needed by the getFavorite method. It is what allows us
to make Favorites typesafe without resorting to an unchecked cast to T.

There are two limitations to the Favorites class that are worth noting. First, a
malicious client could easily corrupt the type safety of a Favorites instance, by
using a Class object in its raw form. But the resulting client code would generate
an unchecked warning when it was compiled. This is no different from a normal
collection implementations such as HashSet and HashMap. You can easily put a
String into a HashSet<Integer> by using the raw type HashSet (Item 26). That
said, you can have runtime type safety if you’re willing to pay for it. The way to
ensure that Favorites never violates its type invariant is to have the putFavorite
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method check that instance is actually an instance of the type represented by
type, and we already know how to do this. Just use a dynamic cast:

// Achieving runtime type safety with a dynamic cast
public <T> void putFavorite(Class<T> type, T instance) {

favorites.put(type, type.cast(instance));
}

There are collection wrappers in java.util.Collections that play the same
trick. They are called checkedSet, checkedList, checkedMap, and so forth. Their
static factories take a Class object (or two) in addition to a collection (or map).
The static factories are generic methods, ensuring that the compile-time types of
the Class object and the collection match. The wrappers add reification to the col-
lections they wrap. For example, the wrapper throws a ClassCastException at
runtime if someone tries to put a Coin into your Collection<Stamp>. These
wrappers are useful for tracking down client code that adds an incorrectly typed
element to a collection, in an application that mixes generic and raw types.

The second limitation of the Favorites class is that it cannot be used on a
non-reifiable type (Item 28). In other words, you can store your favorite String or
String[], but not your favorite List<String>. If you try to store your favorite
List<String>, your program won’t compile. The reason is that you can’t get a
Class object for List<String>. The class literal List<String>.class is a syn-
tax error, and it’s a good thing, too. List<String> and List<Integer> share a
single Class object, which is List.class. It would wreak havoc with the inter-
nals of a Favorites object if the “type literals” List<String>.class and
List<Integer>.class were legal and returned the same object reference. There
is no entirely satisfactory workaround for this limitation.

The type tokens used by Favorites are unbounded: getFavorite and put-
Favorite accept any Class object. Sometimes you may need to limit the types
that can be passed to a method. This can be achieved with a bounded type token,
which is simply a type token that places a bound on what type can be represented,
using a bounded type parameter (Item 30) or a bounded wildcard (Item 31).

The annotations API (Item 39) makes extensive use of bounded type tokens.
For example, here is the method to read an annotation at runtime. This method
comes from the AnnotatedElement interface, which is implemented by the reflec-
tive types that represent classes, methods, fields, and other program elements:

public <T extends Annotation>
T getAnnotation(Class<T> annotationType);
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The argument, annotationType, is a bounded type token representing an annota-
tion type. The method returns the element’s annotation of that type, if it has one,
or null, if it doesn’t. In essence, an annotated element is a typesafe heterogeneous
container whose keys are annotation types.

Suppose you have an object of type Class<?> and you want to pass it to a
method that requires a bounded type token, such as getAnnotation. You could
cast the object to Class<? extends Annotation>, but this cast is unchecked, so it
would generate a compile-time warning (Item 27). Luckily, class Class provides
an instance method that performs this sort of cast safely (and dynamically). The
method is called asSubclass, and it casts the Class object on which it is called to
represent a subclass of the class represented by its argument. If the cast succeeds,
the method returns its argument; if it fails, it throws a ClassCastException.

Here’s how you use the asSubclass method to read an annotation whose type
is unknown at compile time. This method compiles without error or warning:

// Use of asSubclass to safely cast to a bounded type token
static Annotation getAnnotation(AnnotatedElement element,
                                String annotationTypeName) {

Class<?> annotationType = null; // Unbounded type token
try {

annotationType = Class.forName(annotationTypeName);
} catch (Exception ex) {

throw new IllegalArgumentException(ex);
}
return element.getAnnotation(

annotationType.asSubclass(Annotation.class));
}

In summary, the normal use of generics, exemplified by the collections APIs,
restricts you to a fixed number of type parameters per container. You can get
around this restriction by placing the type parameter on the key rather than the
container. You can use Class objects as keys for such typesafe heterogeneous
containers. A Class object used in this fashion is called a type token. You can also
use a custom key type. For example, you could have a DatabaseRow type repre-
senting a database row (the container), and a generic type Column<T> as its key.
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type safety from, 158
when to use, 167

enumerated types
See enum types

EnumMap vs. ordinals, 171–175
EnumSet vs. bit fields, 169–170
equals method, 37

accidental overloading of, 49, 188
canonical forms and, 47
compareTo and, 68
composition and, 44
general contract for, 38–46
hashCode and, 48, 50–54
how to write, 46
Override annotation and, 188
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equals method (continued)
return values of, and compareTo, 68
subclassing and, 42, 45
unreliable resources and, 45
when to override, 37–38

equivalence classes, 39
equivalence relations, 38
erasure, 119, 126
errors

generic array creation, 126–127, 133
purpose of, 297
runtime, default methods and, 105

exact results, types for obtaining, 270
exception chaining, 302–303
exception translation idiom, 230, 302
exceptions, 293–310

accessor methods for, 297, 307
checked vs. unchecked, 296–297
choosing among, 301
commonly reused, 301
control flow and, 294
detail messages for, 306–307
documenting, 227, 304–305
failure-capture data, 307
for invalid method parameters, 228
ignoring, 310
logging of, 303
multi-catch facility, 320
vs. optionals or special return values, 295
prefer standard existing, 300–301
preventing, 303
vs. state testing methods, 294
suppression of, 36
uncaught, and finalizers, 30
using appropriately, 293–295
See also individual exception names

Executor Framework, 323
executor service, 323–324
explicit type arguments, 142
export declarations, 76
exported APIs

See API design; APIs
extending classes

See inheritance; subclassing
extending interfaces, 4
extensible enums, 176–179

extralinguistic mechanisms
cloning, 58, 65
native methods, 285
reflection, 282
serialization, 344, 363
See also hidden constructors

F
Factory Method pattern, 5, 21
failure atomicity, 230, 308–309
fields

access levels of, 73–77
class invariants and, 75
constant, naming conventions for, 290
derived, 47, 52
exposing, vs. accessor methods, 78–79
final (see final fields)
initialization techniques for, 335
mutable, defensive copies of, 233
naming conventions for, 290, 292
public static final, for singletons, 17
reflection and, 282
summary descriptions of, 257
tags, 109
thread safety and, 75

final fields
for defining constants, 290
incompatible with cloning, 61
incompatible with serialization, 357

finalizer attacks, and prevention, 30–31
finalizers, 29–33

alternative to, 31
float

for binary floating-point arithmetic, 270
when to avoid, 270–272

fluent APIs, 14, 203
Flyweight pattern, 6
footprint

See space consumption
for loops

dual variable idiom, 263
prefer for-each loops to, 264–266
vs. while loops, 262

for-each loops
limitations of, 266
prefer over for loops, 264–266
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fork-join tasks and pools, 324
formal type parameters, 117
forwarding methods, 89, 102
frameworks

callback, 91
class-based, 281
executor, 323
interface-based, 6
nonhierarchical type, 99
service provider, 8

function objects, 114
vs. code blocks, 207

functional interfaces, 193
method overloading and, 243
organization of standard, 200–201
using standard, 199–202

functional programming, 82

G
gadgets, 340
garbage collection, 27, 29–30, 113
general contracts

See contracts
generic array creation errors, 126–127, 133
generic classes and interfaces, 117
generic methods, 135–138

vs. unbounded wildcard types, 121
generic singleton factories, 18, 136
generic type parameters

See type parameters
generic types, 14, 117, 130–134

documenting, 258
immutability and, 136

generic varargs parameter arrays
heap pollution from, 147–148
replacing with lists, 149
unsafe as storage, 146
unsafe to expose, 147–148

generics, 117–155
boxed primitives and, 134
compiler-generated casts and, 117
erasure and, 126
implementing atop arrays, 131–133
incompatibility with primitive types, 134
invariant typing, 126
varargs and, 127, 146–150

generifying existing code, 130
Get and Put Principle, 141

H
hashCode method
equals and, 48, 50–54
general contract for, 50
how to write, 51
immutable objects and, 53

heap pollution, 133, 146–148
heap profilers, 28
helper classes, 112

for shortening parameter lists, 237
hidden constructors, 61, 96, 339, 344, 353

See also extralinguistic mechanisms
hierarchical builder pattern, 16

I
immutable objects

canonical forms and, 47
clone and, 59
dependency injection and, 21
empty arrays and, 248
enum types and, 160
EnumSets and, 170
failure atomicity and, 308
functional approach and, 82
hashCode and, 53
JavaBeans and, 12
mutable companion classes for, 84
object reuse and, 22
rules for, 80
serialization and, 85, 353–358
static factory methods and, 84
subclassing and, 97
thread safety and, 82

imperative programming, 82
implementation details

documenting for inheritance, 94
exposing, 92

implementation inheritance, 87
implementing interfaces, 4

default methods and, 105
inconsistent with equals, 67–68

unreliable resources and, 45
information hiding

See encapsulation
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inheritance, 3
vs. composition, 87–92
constructors and, 95
designing for, 93–98
documenting for, 93–94
encapsulation and, 87
fragility of, 89
hooks to facilitate, 94
implementation vs. interface, 3, 87
of method doc comments, 259
multiple, simulated, 102
self-use of overridable methods and, 98
uses of, 92
See also subclassing

initialization
circularities, 333, 366
defensive copying and, 80
of fields on deserialization, 351
incomplete, 96
lazy (see lazy initialization)
of local variables, 261
normal vs. lazy, 333
at object creation, 86

inner classes, 112
Serializable and, 345
to extend skeletal implementations, 102

instance fields
access levels of, 75
initializing, 333
lazy initialization of, 334
vs. ordinals, 168

instance-controlled classes, 6, 158
singletons, 17–18
static factory methods and, 6
utility classes, 19
See also enum types

instanceof operator, parameter types, 121
int constants vs. enum types, 157–167
int, for monetary calculations, 270
interface-based frameworks, 6, 99–103
interface inheritance, 87
interfaces, 73–114

vs. abstract classes, 99–103
access levels of, 74
accessibility of static members, 7
default methods on, 99, 104–105

for defining types, 107–108, 191–192
design of, 104–106
emulating extensible enums with, 176–179
enabling functionality enhancements, 100
generic, 117
marker (see marker interfaces)
mixin, 58, 99
naming conventions for, 289–291
for nonhierarchical type frameworks, 99
noninstantiable companion classes and, 7
as parameter types, 170, 237
prefer to reflection, 282
purpose of, 58, 107–108
for referring to objects, 280–281
reflective instantiation of, 283–284
serialization and, 344
skeletal implementations and, 100–103
static methods and, 7
summary descriptions of, 257
See also individual interface names

internal field theft attacks, 360–362
invariant types, 126, 139
invariants
clone and, 61
concurrency and, 328
constructors and, 82, 86
corruption of, 92
enum types and, 362
maintaining, 229, 234, 308
of objects and members, 75, 78

J
JavaBeans

immutability and, 12
method-naming conventions, 291
pattern, 11–12

Javadoc, 254
architecture documents and, 260
class-level comments, 228, 331
client-side indexes in, 258
comment inheritance, 259
formatting, 255–256
module- and package-level comments, 259
summary descriptions, 257

K
key extractor functions, 70
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L
lambdas, 70, 193–225

cleaners and, 33
for constant-specific behaviors, 195
prefer method references to, 197–198
prefer to anonymous classes, 193–196
serialization and, 196

lazy initialization, 23, 53, 85, 333–335
lazy initialization holder class idiom, 334–335
lazy initialization with a synchronized 

accessor idiom, 333–334
leaky abstractions, 146
libraries, 267–269
Liskov substitution principle, 43, 75
listeners, avoiding memory leaks from, 28
lists

vs. arrays, 126–129
for generic varargs parameter arrays, 149
mutual comparability in, 138

liveness
ensuring, 317–322, 328
failures of, 224, 313

local classes, 112, 114
local variables

minimizing scope of, 261–263
naming conventions for, 290, 292

locality of reference, 223
locks

fields containing, 332
finalizers or cleaners and, 30
private, 332
reentrant, 320

logical equality, 37–38
long, for monetary calculations, 270
loops

nested, 264–266
See also for loops; for-each loops

M
maps

member classes and, 113
nested, 173–175
vs. streams, behavior of, 173

marker annotations, 181
vs. marker interfaces, 191

marker interfaces, 191–192

member classes, 112–114
See also static member classes

members, 3
minimizing accessibility of, 73–77

memory footprint
See space consumption

memory leaks, 26–27
nonstatic member classes and, 113
self-management of memory, 28

memory model, 80
merge functions, 212
meta-annotations, 181
method chaining, 14
method overloading, 238–244

accidental, of equals, 49
effects of autoboxing and generics, 241–242
functional interfaces and, 202, 243
parameters and, 240
static selection among methods, 238

method overriding, 49, 238–239
access levels and, 75
clone, 58
dynamic selection among methods, 238
equals, 37–49
hashCode, 50–54
self-use and, 98
toString, 55–57
unintentional, 190

method references, 18
kinds of, 198
prefer to lambdas, 197–198

methods, 3, 227–260
access levels of, 74
accessor (see accessor methods)
alien, 317
common to all objects, 37–72
constant-specific, for enum-types, 162
documenting, 254–255

exceptions thrown by, 304–305
overridable, 93
summary descriptions of, 257
thread safety of, 330–332

failure atomicity and, 308–309
forwarding (see forwarding methods)
generic, 121, 135–138
invocation, reflection and, 282
legal for SafeVarargs, 149



386 INDEX

methods (continued)
minimizing accessibility of, 73
naming conventions for, 9, 290–291
native, 31, 285
nonfinal, and clone, 64
overloading (see method overloading)
overriding (see method overriding)
parameter lists for, 236
private, to capture wildcard types, 145
shortening parameter lists of, 236
signatures of, 3, 236–237
size of, 263
state-testing, vs. special return value, 295
static factory (see static factory methods)
SuppressWarnings annotation and, 124
validity checking parameters, 227–230
varargs, 245–246
See also individual method names

mixin interfaces, 58, 99
mixing primitives, boxed primitives, 24, 274
modules, 76–77
monetary calculations, types for, 270–271
Monty Python reference, subtle, 247
multi-catch facility, 320
multiple inheritance, simulated, 102
mutability

JavaBeans pattern and, 11
minimizing, 80–86

mutable companion classes, 84
mutable reductions, 223
mutators, 78
mutual comparability, 138
mutual exclusion, 311

N
named optional parameters, 14
naming conventions, 236, 289–292

of generic type parameters, 131
grammatical, 291–292
of skeletal implementation classes, 101
of static factory methods, 9
streams and, 208
of type parameters, 135

naming patterns vs. annotations, 180–187
native methods, 31, 285
native peers, 31
natural ordering, 66

nested classes, 112
access levels of, 74
decreasing accessibility with, 74
in serialization proxy pattern, 363
types of, 112

nested interfaces, access levels of, 74
nested maps, 173–175
nonhierarchical type frameworks, 99
noninstantiable classes, 19
noninstantiable companion classes, 7
non-nullity of equals, 38, 45
non-reifiable types, 127, 131, 146
nonstatic member classes, 112–114
notify vs. notifyAll, 328–329
null checking, 228
nulling out obsolete object references, 27
NullPointerException, equals contract 

and, 46

O
object pools, 24
object reference fields, equals and, 47
objects, 3

avoiding reflective access, 282–284
base classes and, 281
creating and destroying, 5–33
creation and performance, 6, 22–23
deserialization filtering of, 342
effectively immutable, 316
eliminating obsolete references to, 26–28, 

60, 308
expense of creating, 24
favor refering to by interfaces, 280–281
function, 114
immutable (see immutable objects)
in inconsistent states, 11–12, 96, 309

(see also corrupted objects)
methods common to all, 37–72
nulling out obsolete references to, 27
process, 114
reuse, 22–25
safe publication of, 316
string representations of, 55–57
when to refer to by class, 281

Observer pattern, 317
obsolete object references, 26–28, 60, 308
open calls, 321
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optimizations, 286–288
caching hash codes, 53
lazy initialization, 333–335
notify instead of notifyAll, 329
object reuse, 22–25
order of comparisons in equals, 47
parallelizing streams, 224
static initialization, 23
StringBuffer and, 279
using == in equals, 46

optionals, 249
exceptions and, 295, 298
as return values, 249–253

ordinals
vs. enum maps, 171–175
vs. instance fields, 168

overloading
See method overloading

Override annotations, 49, 188–190
overriding

See method overriding

P
package-private access level, 4, 74, 84
packages, naming conventions for, 289–290
parallelizing streams, 222–225
parameter lists

of builders, 14
shortening, 236–237
varargs and, 245–246

parameterized types, 117–122
reifiable, 127

parameterless constructors, 19
parameters

defensive copies of mutable, 232
type (see type parameters)
validity checking of, 227–230, 353–355

PECS mnemonic, 141
performance, 286–288

autoboxing and, 24, 201, 275
BigDecimal and, 271
builder pattern, 16
cleaners, 29–30
defensive copying and, 234
of enums, 167, 170
of equals, 46–47
of excessive synchronization, 321

finalizers, 29–30
for-each loops and, 264
of hashCode, 50, 53
immutable classes and, 83–85
libraries and, 268
measuring, 287
memory leaks and, 27
native methods and, 285
object creation and, 6, 22–23
of reflection, 282
parallelizing streams and, 222–225
of serialization, 348–350
software architecture and, 286–287
state-testing vs. special return value, 295
static factories and, 6
of string concatenation, 279
toString and, 57
varargs and, 246
wrapper classes and, 91
See also optimizations

performance model, 288
portability

cleaners and, 29
finalizers and, 29
native methods and, 285
thread priorities and, 337
thread scheduler and, 336

predicates, 104
primitive fields
compareTo and, 69
equals and, 47

primitive types, 273
incompatibility with generic types, 134
optionals and, 253
prefer over boxed primitives, 24, 273–275
See also individual primitive types

private access level, 74
private constructors, 84

for noninstantiability, 19
for singletons, 17–18

private lock object idiom, 332
private lock objects, 332
procedural programming, 82
process objects, 114
producer-consumer queues, 326
programming principles, 2
promptness of finalization, 29
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protected access level, 74–75
public access level, 74
public fields vs. accessor methods, 78–79
publicly accessible locks, 331

Q
qualified this construct, 112

R
racy single check idiom, 335
range checking, 229
raw types, 117–122
readObject method, 353–358

defensive copies and, 80
how to write, 358
incompatible with instance-controlled 

objects, 359
overridable methods and, 96, 358

readResolve method
access levels of, 97
choosing access levels of, 362
prefer enum types to, 359–362
using for instance-controlled classes, 359

recipes
adding behaviors to individual enum 

constants, 162
adding data to enum types, 160
builder pattern, 12
checking significant fields in equals, 47
clone, 64
compareTo, 68
eliminating self-use, 98
equals, 46
generifying a class, 130–133
hashCode, 51
implementing generics atop arrays, 131–133
method chaining, 14
noninstantiable classes, 19
readObject, 358
serialization proxies, 363–364
serialized singletons, 18
singletons as single-element enums, 18
singletons with private constructors, 17
skeletal implementations, 102
tagged classes to class hierarchies, 110–111
See also rules

recursive type bounds, 137
recursive type parameters, 14
reduction strategy, 211
reductions, 223
reentrant locks, 320
reference types, 3, 273
reflection, 282–284
AccessibleObject.setAccessible 

attacks, 17
clone and, 58
drawbacks of, 282
reflective interface instantiation, 283
uses for, 282, 284

reflexivity requirements
compareTo, 68
equals, 38–39

reified types, 126
resource factories, 21
resource-ordering deadlocks, 351
resources

locked, and finalizers, 30
releasing, 31

restricted marker interfaces, 191
return classes, varied

serialization proxy pattern and, 365
static factory methods and, 7–8

return statements, SuppressWarnings 
annotation and, 124

return types
bounded wildcard types as, 142
collections vs. streams, 216–221
static factory methods and, 6

reusable forwarding classes, 89–91
rules

accessibility, 74–75
appropriateness of checked exceptions, 298
choosing bounded wildcard types, 141
choosing exception types, 296–297
decreasing serialization dangers, 341–342
for immutable objects, 80
mapping domains to package names, 289
marker interfaces vs. annotations, 192
optimization, 286
for performance of parallel streams, 223
replacing type parameters with wildcards, 

144
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for SafeVarargs annotations, 149
static members accessibility, 112
writing doc comments, 254–260

runtime exceptions
See unchecked exceptions

S
safe array accesses, 76
safe languages, 231
safe publication, 316
safety failures, 315

parallel streams and, 224
wait and, 328

SafeVarargs annotations, 147
legal uses of, 149

scope
local variables, 261–263
SuppressWarnings annotations, 124
of variables, obsolete references and, 27

security, defensive copying for, 25, 231
security issues

accessible nonzero-length arrays, 76
AccessibleObject.setAccessible 

attacks, 17
denial of service attacks, 331
deserialization bombs, 339–340
ElvisStealer attacks, 362
finalizer attacks, 30–31
gadgets, 340
internal field theft attacks, 355–357
ransomware attacks, 339
reflection, 17
remote code execution, 340
rogue object reference attacks, 355–357
serialization, 339, 344, 353, 360
stealer attacks, 362
strings as keys for granting data access, 277
subclassing and, 89
time-of-check/time-of-use (TOCTOU) 

attacks, 233
SELF problem, 91
self-use

documenting, for inheritance, 93
eliminating, for inheritance, 98

serial version UIDs, 343, 351–352

Serializable, 343–345
serialization, 339–366

anonymous classes and, 196
costs of, 343
decreasing the dangers of, 341–342
designing for inheritance and, 96–97
documenting for, 347, 350
effect on exported APIs, 343
flexible return classes for, 365
immutability and, 85, 353
internal field theft attacks and, 360–362
lambdas and, 196
object deserialization filtering, 342
prefer alternatives to, 339–342
singletons and, 18
synchronization for, 351
transient fields for, 348
validity checking in, 357
when to use, 345

serialization proxy pattern, 363–366
serialized forms, as part of exported APIs, 343
serialized instances vs. serialization proxy 

pattern, 363–366
service provider frameworks, 8
short-circuiting operations, 223
signatures of methods, 3, 236–237
signum function, 67
simple implementations, 103
simulated multiple inheritance, 102
simulated self-type idiom, 14
single-check idiom, 335
singletons, 17–18

vs. dependency injection, 20
skeletal implementations, 100–101
source files, 115–116
space consumption

enum types, 175
immutable objects and, 83
memory leaks and, 27
nonstatic member classes and, 113

spliterator, 223
spurious wake-ups, 329
state-dependent modify operations, 325
state-testing methods, 294–295, 299
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static factory methods, 5
advantages of, 5–8
anonymous classes within, 114
in API documentation, 8
vs. cloning, 65
copy and conversion factories, 65
flexibility in returned classes, 7–8
for generic singletons, 18, 136
immutable objects and, 22, 82, 84
instance-controlled classes and, 6
limitations of, 8–9
naming conventions for, 9, 292
replacing constructors with, 5–9, 22, 240
return types of, 6–8
for service provider frameworks, 8
for singletons, 17
subclassing and, 8

static fields
for defining constants, 290
lazy initialization of, 334
synchronization of mutable, 322

static import facility, 108
static imports, 70
static member classes, 112

cleaners and, 33
common uses of, 112–113
for enum types, 161
vs. nonstatic, 112, 114
for representing aggregates, 276
for shortening parameter lists, 237

static members, accessibility in interfaces, 7
storage pools, 28
strategy enum pattern, 166
Strategy pattern, 193
stream pipelines, 203

side-effect free, 210–215
stream unique identifiers

See serial version UIDs
streams, 193, 203–225
char values and, 206
collectors for, 211–215
for functional programming, 210–215
vs. maps, behavior of, 173
parallelizing, 222–225
preserving order from parallel, 224
as return types, vs. collections, 216–221

specifying collectors for, 173, 214
strengths of, 207
vs. threads, 323–324
using, 203–209
See also collectors

String constants vs. enum types, 158
string representations, 55–57, 306
strings

concatenating, 279
as substitutes for other types, 276–278

subclassing, 3, 87
abstract classes, and equals, 45
access levels and, 75
appropriateness of, 92
Cloneable and, 96
compareTo and, 68
equals and, 40, 42
finalizer attacks and, 31
fragility, 89
invariant corruption and, 92
method access levels and, 75
prohibiting, 8, 18–19, 85, 97
serialization and, 344
skeletal implementations, 102
static factory methods and, 8
as test of design for inheritance, 95
See also inheritance

subtype relations, 134, 140
summary descriptions in Javadoc, 257
supertype relations, 141
SuppressWarnings annotation, 123–125
switch statements, and enum types, 164, 167
symmetry requirements
compareTo, 68
equals, 38–39

synchronization
of atomic data, 312–314
excessive, 317–322

and performance, 321
ramifications of, 317

internal, 322
for mutual exclusion, 311
serialization and, 351
for shared mutable data, 311–316
techniques for, 314–316
for thread communication, 312–314
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synchronized regions
alien methods and, 317–321
minimizing work in, 321

synchronizers, 326
synthetic annotations, 186

T
tag fields, 109
tardy finalization, 29
tasks, 324

vs. threads, 323–324
telescoping constructor pattern, 10–11
Template Method pattern, 101, 199
this, in doc comments, 256
this, in lambdas vs. anonymous classes, 196
thread pools, 323

sizing of, 336
thread priorities, 337
thread safety

documenting, 322, 330–332
immutable objects and, 82
levels of, 330–331
mutability and, 75, 322

thread schedulers, 336–337
thread starvation deadlocks, 328
Thread.yield method, avoiding, 337
threads, busy-waiting, 336
throwables, types of, 296
time-of-check/time-of-use attacks, 233
TOCTOU attacks, 233
toString method, 55–57

enum types and, 160
general contract for, 55
when to override, 57

transient fields, 348–351
with readResolve, 360
when to use, 351

transitivity requirements
compareTo, 68
equals, 38, 40–45

try-finally
prefer try-with-resources to, 34

try-with-resources
prefer to try-finally, 34–36

type bounds, recursive, 137
type inference, 70, 123, 142, 194

type parameter lists, 135
type parameters, 117, 135

bounded, 134, 154
naming conventions for, 135, 290
recursively bound, 14, 137
vs. wildcards, 144

type safety
dynamic casts and, 154
from enum types, 158
heap pollution and, 146
parameterized types and, 119
raw types and, 119

type tokens, 151
types

conversion of, 65, 291
generic, 117, 130–134
interfaces for defining, 107–108, 191–192
non-reifiable, 127, 131
parameterized, 117–122
primitive, 273
raw, 117
reference, 273
See also bounded wildcard types; unbounded 

wildcard types
typesafe heterogeneous container pattern, 

151–155
incompatibility with nonreifiable types, 154

U
unbounded type parameters

vs. bounded wildcard types, 144
unbounded wildcard types, 120

vs. bounded wildcard types, 121
nested, 152
vs. raw types, 121
reifiable, 127
vs. unbounded type parameters, 144

unchecked exceptions
vs. checked exceptions, 296–297
compatibility and, 305
excluding from method declarations, 304
purpose of, 296

unchecked warnings, 123–125
of casts, 127, 129, 137

underscores, in numeric literals, 108
unintentional object retentions

See memory leaks
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unintentionally instantiable classes, 19
users of APIs, 4
utility classes, 19

vs. constant interfaces, 108
vs. dependency injection, 20

V
validity checking

builders and, 14
constructor parameters, 229
defensive copying and, 232
of deserialized objects, 355
implicit, 230
parameters, 227–230

failure atomicity and, 308
readObject parameters, 353–355

value classes, 38
toString and, 56

value types vs. strings, 276
varargs, 245–246

builders and, 16
with generics, 146–150
generics, and compiler warnings, 127
performance, 246

variable arity methods, 245
variable return classes

serialization proxy pattern and, 365
static factory methods and, 7–8

variables
atomic operations on, 311
local (see local variables)

naming conventions for, 290
scope of, and obsolete references, 27
to avoid subclassing, 44, 68
to maintain invariants, 234
naming conventions for, 291
object reuse and, 23

volatile modifier, 314–315

W
wait loop idiom, 328–329
warnings, unchecked

See unchecked warnings
weak references, 28
while loops vs. for loops, 262
wildcard types

capturing, 145
vs. type parameters, 144
See also bounded wildcard types; unbounded 

wildcard types
window of vulnerability, 233
work queues, 326
wrapper class idiom, 100
wrapper classes, 89–91

defensive copying and, 235
incompatible with callback frameworks, 91
vs. subclassing, 97

writeReplace method, access levels of, 97

Z
zero-length arrays, immutability of, 248
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