
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137355464
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137355464
https://plusone.google.com/share?url=http://www.informit.com/title/9780137355464
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137355464
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780137355464/Free-Sample-Chapter

Praise for Strategic Monoliths and Microservices

“Most books address either the business of software or the technical details of building soft-
ware. Strategic Monoliths and Microservices provides a comprehensive approach to blend-
ing the needs of business and technology in an approachable way. It also dispels many of
today’s myths while offering practical guidance that any team or organization can apply
immediately and with confidence.”

—James Higginbotham, Executive API Consultant, Founder of LaunchAny,
and author of Principles of Web API Design

“Digital Transformation cannot succeed as a ‘grass roots’ effort. Vaughn and Tomasz offer
C-level execs a roadmap to software excellence that includes establishing the culture nec-
essary to foster and sustain software innovation. Written with real-world understanding,
Vaughn and Tomasz help the reader to appreciate that moving software development from
a cost center to a profit center involves tradeoffs that need not sacrifice innovation. A must-
read for decision makers.”

—Tom Stockton, Principal Architect, MAXIMUS

“In this book, Vaughn Vernon and Tomasz Jaskuła use their extensive experience with DDD
to present a comprehensive guide to using the many different aspects of DDD for modern
systems development and modernization. It will be a valuable guide for many technical lead-
ers who need to understand how to use DDD to its full potential.”

—Eoin Woods, software architect and author

“There are common misconceptions and roots of failure around software engineering.
One notable example is neglecting the rugged trek towards digital transformation. Such an
endeavor comprises breakthrough innovations, failure culture, emphasis on the role of soft-
ware architecture, as well as on the importance of efficient and effective inter-human com-
munication. Fortunately, the authors offer the necessary help for mastering all hurdles and
challenges. What I like most about this book is the holistic view it provides to all stakehold-
ers involved in digital transformation and innovation. Vaughn Vernon and Tomasz Jaskuła
introduce a clear path to successful innovation projects. They provide insights, tools, proven
best practices, and architecture styles both from the business and engineering viewpoint.
Their book sheds light on the implications of digital transformation and how to deal with
them successfully. This book deserves to become a must-read for practicing software engi-
neers, executives, as well as senior managers. It will always serve me as a precious source of
guidance and as a navigator whenever I am entering unchartered territories.”

—Michael Stal, Certified Senior Software Architect, Siemens Technology

“Digital transformation is a much used but little understood concept. This book provides
valuable insight into this topic and how to leverage your existing assets on the journey. Mod-
ern technical and social techniques are combined in the context of a single case study. Com-
pelling reading for both business and technology practitioners.”

—Murat Erder, co-author ofǙContinuous Architecture in PracticeǙ(2021)
andǙContinuous ArchitectureǙ(2015)

“Packed with insightful recommendations for every executive leader seeking clarity on the
distinction between when to strategically apply a monolith vs. microservice architectural
approach for success. Highly encourage every CEO, CIO, CTO, and (S)VP of Software
Development to start here with immersing themselves in Vaughn and Tomasz’s succinct
distillation of the advantages, disadvantages, and allowance for a hybrid combination, and
then go become a visionary thought leader in their respective business domain.”

—Scott P. Murphy, Principal Architect, Maximus, Inc.

“A ‘must-read’ for Enterprise leaders and architects who are planning for or executing a
digital transformation! The book is a true guide for ensuring your enterprise software inno-
vation program is successful.”

—Chris Verlaine, DHL Express Global Aviation IT DevOps Director, Head of
DHL Express Global Aviation IT Software Modernization Program

“Strategic Monoliths and Microservices is a great resource to connect business value to an
evolvable enterprise architecture. I am impressed with how the authors use their deep under-
standing and experience to guide informed decisions on the modularization journey. Along
the way every valuable tool and concept is explained and properly brought into context.
Definitely a must-read for IT decision makers and architects. For me this book will be an
inspiring reference and a constant reminder to seek the purpose in architecture. The Micro-
services discussion has reached a completely new maturity level.”

—Christian Deger, Head of Architecture and Platform at RIO | The Logistics Flow,
organizer of over 60 Microservices Meetups

“The choice of microservices or monoliths architecture goes far beyond technology. The cul-
ture, organization, and communication that exist within a company are all important factors
that a CTO must consider carefully in order to successfully build digital systems. The authors
explain this extremely well from various perspectives and based on very interesting examples.”

—Olivier Ulmer, CTO, Groupe La Française

“Building a technology engine to move quickly, experiment, and learn is a competitive
advantage in today’s digital world. Will ‘de-jour architecture’ help with this endeavor? This
amazing book by Vaughn and Tomasz fills a void in the market and re-focuses on the core
objectives of software architecture: move fast, experiment, focus on the outcomes that bring
value. A reader will come away better suited to decide whether microservices architecture
and all the complexity with it is right for them.”

—Christian Posta, Global Field CTO, Solo.io

Strategic Monoliths and Microservices

The Pearson Addison-Wesley Signature Series provides readers with
practical and authoritative information on the latest trends in modern
technology for computer professionals. The series is based on one
simple premise: great books come from great authors.

Vaughn Vernon is a champion of simplifying software architecture and
development, with an emphasis on reactive methods. He has a unique
ability to teach and lead with Domain-Driven Design using lightweight
tools to unveil unimagined value. He helps organizations achieve
competitive advantages using enduring tools such as architectures,
patterns, and approaches, and through partnerships between business
stakeholders and software developers.

Vaughn’s Signature Series guides readers toward advances in software
development maturity and greater success with business-centric
practices. The series emphasizes organic refinement with a variety
of approaches—reactive, object, and functional architecture and
programming; domain modeling; right-sized services; patterns; and
APIs—and covers best uses of the associated underlying technologies.

Visit informit.com/awss/vernon for a complete list of available publications.

Pearson Addison-Wesley
Signature Series

Make sure to connect with us!
informit.com/socialconnect

http://informit.com/awss/vernon
http://informit.com/socialconnect

Strategic Monoliths
and Microservices

Driving Innovation Using Purposeful
Architecture

Vaughn Vernon
Tomasz Jaskuła

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2021943427

Copyright © 2022 Pearson Education, Inc.

Cover image: John I Catlett/Shutterstock

Figures 1.5, 1.6, 1.7: illustration by grop/Shutterstock

Pages 109 and 152: Dictionary definitions from Merriam-Webster. Used with Permission.

All rights reserved. This publication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, request forms and the appropriate contacts within the Pearson
Education Global Rights & Permissions Department, please visit www.pearson.com/permissions/.

ISBN-13: 978-0-13-735546-4
ISBN-10: 0-13-735546-7

ScoutAutomatedPrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions/

vii

Contents

Foreword . xiii
Preface . xvii
Acknowledgments . xxv
About the Authors . xxxi

Part I: Transformational Strategic Learning through
Experimentation . 1

Executive Summary . 3

Chapter 1: Business Goals and Digital Transformation 7

Digital Transformation: What Is the Goal? . 8
Software Architecture Quick Glance . 10

Why Software Goes Wrong . 11
Debt Metaphor . 12
Software Entropy . 13
Big Ball of Mud . 14
Running Example . 15

Your Enterprise and Conway’s Law . 18
Communication Is about Knowledge . 19
The Telephone Game . 21
Reaching Agreement Is Hard . 22
But Not Impossible . 23

(Re)Thinking Software Strategy . 24
Thinking . 24
Rethinking . 26

Are Monoliths Bad? . 30
Are Microservices Good? . 31
Don’t Blame Agile . 34

Cviii

Getting Unstuck . 36
Summary . 37
References . 38

Chapter 2: Essential Strategic Learning Tools . 39

Making Decisions Early and Late, Right and Wrong 40
Culture and Teams . 43

Failure Is Not Fatal . 45
Failure Culture Is Not Blame Culture . 46
Getting Conway’s Law Right . 47
Enabling Safe Experimentations . 51

Modules First . 51
Deployment Last . 55
Everything in Between . 57

Business Capabilities, Business Processes, and
Strategic Goals . 57

Strategic Delivery on Purpose . 62
Using Cynefin to Make Decisions . 66

Where Is Your Spaghetti and How Fast Does It Cook? 70
Strategic Architecture . 70
Applying the Tools . 72
Summary . 75
References . 75

Chapter 3: Events-First Experimentation and Discovery 77

Commands and Events . 78
Using Software Models . 81

Rapid Learning with EventStorming . 81
When Remote Sessions Are Demanded 84
Facilitating Sessions . 85
Big-Picture Modeling . 89

Applying the Tools . 92
Summary . 99
References . 100

C ix

Part II: Driving Business Innovation 101

Executive Summary . 103

Chapter 4: Reaching Domain-Driven Results . 109

Domains and Subdomains . 111
Summary . 115
References . 116

Chapter 5: Contextual Expertise . 117

Bounded Context and Ubiquitous Language 117
Core Domain . 121
Supporting Subdomains, Generic Subdomains, and Technical

Mechanisms . 123
Supporting Subdomains . 124
Generic Subdomains . 124
Technical Mechanisms . 125

Business Capabilities and Contexts . 125
Not Too Big, Not Too Small . 128
Summary . 129
References . 130

Chapter 6: Mapping, Failing, and Succeeding—Choose Two 131

Context Mapping . 131
Partnership . 133
Shared Kernel . 135
Customer–Supplier Development . 137
Conformist . 139
Anticorruption Layer . 141
Open-Host Service . 143
Published Language . 148
Separate Ways . 151

Topography Modeling . 151
Ways to Fail and Succeed . 154
Applying the Tools . 158
Summary . 163
References . 164

Cx

Chapter 7: Modeling Domain Concepts . 165

Entities . 166
Value Objects . 167
Aggregates . 168
Domain Services . 169
Functional Behavior . 170
Applying the Tools . 173
Summary . 173
References . 174

Part III: Events-First Architecture . 175

Executive Summary . 177

Chapter 8: Foundation Architecture . 181

Architectural Styles, Patterns, and Decision Drivers 183
Ports and Adapters (Hexagonal) . 183
Modularization . 190
REST Request–Response . 193

Quality Attributes . 196
Security . 196
Privacy . 199
Performance . 201
Scalability . 203
Resilience: Reliability and Fault Tolerance 204
Complexity . 205

Applying the Tools . 206
Summary . 207
References . 208

Chapter 9: Message- and Event-Driven Architectures 211

Message- and Event-Based REST . 216
Event Logs . 216
Subscriber Polling . 218
Server-Sent Events . 219

Event-Driven and Process Management . 220
Event Sourcing . 223

C xi

CQRS . 227
Serverless and Function as a Service . 229
Applying the Tools . 231
Summary . 231
References . 232

Part IV: The Two Paths for Purposeful Architecture 233

Executive Summary . 235

Chapter 10: Building Monoliths Like You Mean It 239

Historical Perspective . 241
Right from the Start . 244

Business Capabilities . 245
Architecture Decisions . 248

Right from Wrong . 253
Change within Change . 256
Break the Coupling . 259

Keeping It Right . 264
Summary . 265
References . 266

Chapter 11: Monolith to Microservices Like a Boss 267

Mental Preparation with Resolve . 267
Modular Monolith to Microservices . 271
Big Ball of Mud Monolith to Microservices . 275

User Interactions . 276
Harmonizing Data Changes . 278
Deciding What to Strangle . 284

Unplugging the Legacy Monolith . 286
Summary . 287
References . 288

Chapter 12: Require Balance, Demand Strategy 289

Balance and Quality Attributes . 289
Strategy and Purpose . 291

Business Goals Inform Digital Transformation 291
Use Strategic Learning Tools . 292

Cxii

Event-Driven Lightweight Modeling . 292
Driving Business Innovation . 293
Events-First Architecture . 294
Monoliths as a First-Order Concern . 295
Purposeful Microservices from a Monolith 295
Balance Is Unbiased, Innovation Is Essential 296

Conclusion . 297
References . 298

Index . 299

xiii

Foreword

We met the founders of Iterate in April 2007. Three of them had attended our first
workshop in Oslo and invited us out to dinner. There, we learned they had just
quit their jobs at a consulting firm and founded their own, so they could work in a
place they loved using techniques they believed in. I thought to myself, “Good luck
with that.” After all, they were just a few years out of college and had no experience
running a business. But I kept my skepticism to myself as we talked about how to
find good customers and negotiate agile contracts.

We visited Iterate many times over the next decade and watched it grow into a
successful consulting firm that was routinely listed as one of Norway’s best places
to work. They had a few dozen consultants and evolved from writing software to
coaching companies in Test-Driven Development to helping companies innovate
with design sprints. So I should have seen it coming, but when they decided to trans-
form the company in 2016, I was surprised.

We decided to change course, they told us. We want to be a great place to work,
where people can reach their full potential, but our best people are limited as con-
sultants. They are always pursuing someone else’s dream. We want to create a com-
pany where people can follow their own passion and create new companies. We
want to nurture startups and fund this with our consulting revenue.

Once again I thought to myself, “Good luck with that.” This time I did not keep
my skepticism to myself. We talked about the base failure rate of new ventures and
the mantra from my 3M days: “Try lots of stuff and keep what works.” That’s a
great motto if you have a lot of time and money, but they had neither. One of the
founders was not comfortable with the new approach and left the company. The
others did what they had always done—move forward step-by-step and iterate
toward their goal.

It was not easy and there were no models to follow. Wary of outside funding,
they decided to merge the diametrically opposed business models of consulting and
venture funding by limiting to 3% the amount of profit they could make from con-
sulting, pouring the rest back into funding ventures. They had to make sure that
consultants did not feel like second-class citizens and those working on new ven-
tures were committed to the success of the consulting business. And they had to
learn how to successfully start up new businesses when all they’d ever started was a
consulting business.

Fxiv

It’s been five years. Every year we visited to brainstorm ideas as the company
struggled to make their unique approach work. When the pandemic hit, not only
did their consulting business grind to a halt, but the farm-to-restaurant business
they had nurtured for three years had no restaurants left to buy local farm goods.
But think about it: Iterate had top talent with nothing to do and a venture that was
poised to collect and deliver perishable goods. It took two weeks to pivot—they
offered the food to consumers for curbside pickup—and the venture took off.
While most Oslo consulting firms suffered in 2020, Iterate saw one venture (last-
mile delivery) exit through a successful acquisition and three others spin off as
separate entities, including a ship-locating system and a three-sided platform for
knitters, yarn suppliers, and consumers. As a bonus, Iterate was number 50 on Fast
Company’s 2020 list of Best Workplaces for Innovators, ahead of Slack and Square
and Shopify.

So how did Iterate succeed against all odds? They started by realizing that a con-
sulting approach to software development did not give them the freedom to take a
lead role. With software becoming a strategic innovation lever, they felt it was time
to claim a seat at the decision-making table. This was scary, because it involved tak-
ing responsibility for results—something consultants generally avoid. But they were
confident that their experimental approach to solving challenging problems would
work for business problems as well as technical problems, so they forged ahead.

You might wonder what Iterate’s transformation has to do with the enterprise
transformations that are the subject of this book. There is nothing in Iterate’s story
about Monoliths or Microservices or agile practices—but these are not the essence
of a transformation. As this book points out, a transformation begins with the
articulation of a new and innovative business strategy, one that provides real, dif-
ferentiated value to a market. The pursuit of that strategy will be a long and chal-
lenging journey, requiring excellent people, deep thinking, and plenty of learning
along the way. For those who are starting out on such a transformation, this book
provides a lot of thinking tools for your journey.

For example, as you head in a new direction, you probably do not want to blow
up the structures that brought your current success, however outmoded they might
be. You need that old Big Ball of Mud Monolith (or consulting services) to fund
your transition.

Another example: The first thing you want to consider is the right architecture
for your new business model, and it probably won’t be the same as the old one. Just
as Iterate moved from having a pool of consultants to having clearly distinct venture
teams, you will probably want to structure your new architecture to fit the domain
it operates in. This usually means clarifying the business capabilities that fit the new
strategy and structuring complete teams around these capabilities. So instead of

F xv

having a layered architecture, you are likely to want one based on the natural compo-
nents and subcomponents of your product (also known as Bounded Contexts).

Think of SpaceX: The architecture of a launch vehicle is determined by its
 components—first stage (which contains nine Merlin engines, a long fuselage, and
some landing legs), interstage, second stage, and payload. Teams are not formed
around engineering disciplines (e.g., materials engineering, structural engineering,
software engineering), but rather around components and subcomponents. This
gives each team a clear responsibility and set of constraints: Teams are expected
to understand and accomplish the job their component must do to ensure the next
launch is successful.

As you clarify the product architecture in your new strategy, you will proba-
bly want to create an organization that matches this architecture because, as the
authors point out, you can’t violate Conway’s Law any more than you can violate
the law of gravity. The heart of this book is a large set of thinking tools that will
help you design a new architecture (quite possibly a modular Monolith to begin
with) and the organization needed to support that architecture. The book then
offers ways to gradually move from your existing architecture toward the new one,
as well as presents ideas about when and how you might want to spin off appropri-
ate services.

Over time, Iterate learned that successful ventures have three things in common:

• Good market timing

• Team cohesion

• Technical excellence

Market timing requires patience; organizations that think transformations are
about new processes or data structures tend to be impatient and generally get this
wrong. Transformations are about creating an environment in which innovation
can flourish to create new, differentiated offerings and bring them to market at the
right time.

The second element of success, team cohesion, comes from allowing the capa-
bilities being developed (the Bounded Contexts) and the relevant team members to
evolve over time, until the right combination of people and offering emerges.

The third element, technical excellence, is rooted in a deep respect for the technical
complexity of software. This book will help you appreciate the complexity of your
existing system and future versions of that system, as well as the challenge of evolv-
ing from one to the other.

The Iterate story contains a final caution: Your transition will not be easy. Iterate
had to figure out how to meld a consulting pool with venture teams in such a way

Fxvi

that everyone felt valuable and was committed to the organization’s overall success.
This is something that every organization will struggle with as it goes through a
transition. There is no formula for success other than the one offered in this book:
highly skilled people, deep thinking, and constant experimentation.

There is no silver bullet.
—Mary Poppendieck, co-author of Lean Software Development

xvii

Preface

 Chances are good that your organization doesn’t make money by selling software
in the “traditional sense,” and perhaps it never will. That doesn’t mean that soft-
ware can’t play a significant role in making money for your organization. Software
is at the heart of the wealthiest companies.

Take, for example, the companies represented by the acronym FAANG: Face-
book, Apple, Amazon, Netflix, and Google (now held by Alphabet). Few of those
companies sell any software at all, or at least they do not count on software sales to
generate the greater part of their revenues.

Approximately 98% of Facebook’s money is made by selling ads to companies
that want access to the members of its social networking site. The ad space has
such high value because Facebook’s platform provides for enormous engagement
between members. Certain members care about what is happening with other mem-
bers and overall trends, and that keeps them engaged with people, situations, and
the social platform. Capturing the attention of Facebook members is worth a lot of
money to advertisers.

Apple is for the most part a hardware company, selling smartphones, tablets,
wearables, and computers. Software brings out the value of said smartphones and
other devices.

Amazon uses a multipronged approach to revenue generation, selling goods as
an online retailer; selling subscriptions to unlimited e-books, audio, music, and
other services; and selling cloud computing infrastructure as a service.

Netflix earns its revenues by selling multilevel subscriptions to movie and other
video streaming services. The company still earns money through DVD subscrip-
tions, but this part of the business has—as expected—fallen off sharply with the ris-
ing popularity of on-demand streaming. The video streaming is enhanced for, and
controlled by, the experience with user-facing software that runs on TVs and mobile
devices. Yet, the real heavy lifting is done by the cloud-based system that serves the
videos from Amazon’s AWS. These services provide video encoding in more than 50
different formats, serving up content through content delivery networks (CDN) and
dealing with chaotic failures in the face of cloud and network outages.

Google also makes its money through ad sales; these ads are served along with
query results from its search engine software. In 2020, Google earned approxi-
mately $4 billion from direct software usage, such as via Google Workspace. But

Pxviii

the Google Workspace software does not have to be installed on user computers,
because it is provided in the cloud using the Software as a Service (SaaS) model.
According to recent reports, Google owns nearly 60% of the online office suite mar-
ket, surpassing even the share claimed by Microsoft.

As you can see from these industry leaders’ experiences, your organization
doesn’t need to sell software to earn market-leading revenues. It will, however, need
to use software to excel in business both now and over the years to follow.

What is more, to innovate using software, an organization must recognize that a
contingent of software architects and engineers—the best—matter. They matter so
much that the demand for the best makes them ridiculously difficult to hire. Think
of the significance of landing any one of the top 20 picks in the WNBA or NFL draft.
Of course, this description does not apply to every software developer. Many or even
most are content to “punch a clock,” pay their mortgage, and watch as much of the
WNBA and NFL on TV as they possibly can. If those are the prospects you want to
recruit, we strongly suggest that you stop reading this book right now. Conversely, if
that’s where you’ve been but now you want to make a meaningful change, read on.

For those organizations seeking to excel and accelerate their pace of innovation,
it’s important to realize that software development achievers are more than just
“valuable.” If a business is to innovate by means of software to the extent of ruling
its industry, it must recognize that software architects and engineers of that ilk are
“The New Kingmakers,” a term coined by Stephen O’Grady in his 2013 book The
New Kingmakers: How Developers Conquered the World [New-Kingmakers]. To
truly succeed with software, all businesses with audacious goals must understand
what drives this ilk of developer to transcend common software creation. The kinds
of software that they yearn to create are in no way ordinary or obvious. The most
valuable software developers want to make the kind of software that determines
the future of the industry, and that’s the recruiting message your organization must
sound to attract (1) the best and (2)Ǚthose who care enough to become the best.

This book is meant for C-level and other business executives, as well as every
role and level involved in leading software development roles. Everyone responsi-
ble for delivering software that either directly results in strategic differentiation, or
supports it, must understand how to drive innovation with software.

The authors have found that today’s C-level and other executives are a different
breed than their predecessors from decades past. Many are tech savvy and might
even be considered experts in their business domain. They have a vision for making
things better in a specific place, and they attract other executives and deeply techni-
cal professionals who grok what the founder or founders are driving to accomplish:

• CEOs who are close to the technology vision, such as startup CEOs, and
those who want to be informed about the role of software in their future

P xix

• CIOs who are responsible for facilitating and enabling software development
as a differentiator

• CTOs who are leading software vision through innovation

• Senior vice presidents, vice presidents, directors, project managers, and others
who are charged with carrying the vision to realization

• Chief architects, who will find this book inspiring and a forceful guide to
motivate teams of software architects and senior developers to drive change
with a business mindset and purposeful architecture

• Software architects and developers of all levels, who are trying to firmly fix a
business mentality in themselves—that is, a recognition that software devel-
opment is not merely a means to a good paycheck, but to prospering beyond
the ordinary and obvious through software innovation

This is a vital message that all software professionals must learn from by con-
suming, ruminating on, and practicing the expert techniques explored in this book.

Strategic Monoliths and Microservices: Driving Innovation Using Purpose-
ful Architecture is not a book on implementation details. We’ll provide that kind
of information in our next book, Implementing Strategic Monoliths and Micro-
services (Vernon & Jaskuła, Addison-Wesley, forthcoming). This volume is very
much a book on software as part of business strategy.

This book is definitely of interest to leaders who lack deep knowledge or experi-
ence in the software industry. It informs by showing how every software initiative
must discover big ideas, architect with purpose, design strategically, and implement
to defeat complexity. At the same time, we vigorously warn readers to resist drag-
ging accidental or intentional complexity into the software. The point of driving
change is to deliver software that works even better than users/customers expect.
Thus, this book is meant to shake up the thinking of those stuck in a rut of the sta-
tus quo, defending their jobs rather than pushing forward relentlessly as champions
of the next generation of ideas, methods, and devices—and perhaps becoming the
creators of the future of industry as a result.

The authors of this book have worked with many different clients and have seen
firsthand the negative side of software development, where holding on to job secu-
rity and defending turf is the aim rather than making the business thrive by driving
prosperity. Many of the wealthiest companies are so large, and are engaged in so
many initiatives under many layers of management and reporting structure, that
their vision-to-implementation-to-acceptance pathway is far from a demonstration
of continuity. With that in mind, we’re attempting to wake the masses up to the fact
that the adage “software is eating the world” is true. Our lessons are served up with

Pxx

a dollop of realism, demonstrating that innovation can be achieved by means of
progressive practical steps rather than requiring instantaneous gigantic leaps.

There is always risk in attempting innovation. That said, not taking any risk at
all will likely be even more risky and damaging in the long run. The following sim-
ple graph makes this point very clear.

Figure P.1 There is a risk in taking a risk, but likely even a greater risk in playing it safe.

As Natalie Fratto [Natalie-Fratto-Risk] suggests, it is generally the case that the
risk of taking risks diminishes over time, but the risk of playing it safe increases over
time. The venture investor side of Natalie can be seen in her TED Talk [Natalie-
Fratto-TED], which explains the kinds of founders in whose businesses she invests.
As she explains, many investors seek business founders with a high intelligence
quotient (IQ), whereas others look for entrepreneurs with a high emotional quo-
tient (EQ). She looks primarily for those with a high adaptability quotient (AQ). In
fact, innovation calls for a great amount of adaptability. You’ll find that message
repeated in this book in several forms. Everything from experimentation to discov-
ery to architecture, design, and implementation requires adaptability. Risk takers
are unlikely to succeed unless they are very adaptable.

As we discuss our primary topic of innovation with software, it’s impossible
to entirely avoid the highly controversial topic of iterative and incremental devel-
opment. Indeed, some form of the “A-word”—yes, agile/Agile—cannot be side-
stepped. This book stays far away from promoting a specific and ceremonial way
to use Agile or to be a lean business. Sadly, the authors have found that most com-
panies and teams creating software claim to use Agile, yet don’t understand how
to be agile. The desire is to emphasize the latter rather than reinforce the former.
The original message of agile is quite simple: It’s focused on collaborative delivery.
If kept simple, this approach can be highly useful. That said, this is nowhere near
our primary message. We attempt only to draw attention to where “un-simple” use

P xxi

causes damage and how being agile helps. For our brief discussion on how we think
being agile can help, see the section “Don’t Blame Agile,” in Chapter 1, “Business
Goals and Digital Transformation.”

Given our background, it might surprise some readers to learn that we do not
view Strategic Monoliths and Microservices as a Domain-Driven Design (DDD)
book. To be sure, we introduce and explain the domain-driven approach and
why and how it is helpful—but we haven’t limited our range. We also offer ideas
above and beyond DDD. This is a “software is eating the world, so be smart and get
on board, innovate, and make smart architectural decisions based on real purpose,
before you are left behind” book. We are addressing the real needs of the kinds of
companies with which we have been engaged for decades, and especially based on
our observations over the past five to ten years.

We have been slightly concerned that our drumbeat might sound too loud. Still,
when considering the other drums beating all around technology-driven industries,
we think a different kind of drumming is in order. When many others are on high
mountains, constantly beating the “next over-hyped products as silver bullets”
drum, there must be at least an equalizing attempt at promoting our brains as the
best tooling. Our goal is to show that thinking and rethinking is the way to inno-
vate, and that generic product acquisition and throwing more technology at hard
problems is not a strategic plan. So, think of us as the people on an adjacent moun-
tain beating the other drum to “be scientists and engineers” by advancing beyond
the ordinary and obvious, by being innovative and just plain different. And, yes,
we definitely broke a sweat doing that. If our intense drumbeat leaves readers with
a lasting impression that our drums made that specific brain-stimulating rhythm,
then we think we’ve achieved our goal. That’s especially so if the stimulation leads
to greater success for our readers.

Legend/Key for Diagrams
Figure P.2 (on page xxii) shows the modeling elements used in most of the archi-
tecture diagrams in this book. The elements used range from large- to small-scale,
and those in between, depending on the topic of the diagram. Some are taken from
EventStorming described on page 87.

In Figure P.2, the top half, from the upper left, are strategic and architectural
 elements: Business/Bounded Context is a software subsystem and model boundary
of a business capability and a sphere of knowledge; Big Ball of Mud is the “unarchi-
tecture” in which most enterprises languish; Ports and Adapters Architecture is
both a foundational and versatile style; and Modules are named packages that con-
tain software components.

Pxxii

Figure P.2 Modeling elements used in architecture diagrams throughout this book.

The bottom half of Figure P.2 depicts eight tactical component types, occurring
within a subsystem and that sometimes flow to other subsystems: Commands cause
state transitions; Events capture and carry record of state transitions across subsys-
tem boundaries; Policy describes business rules; Aggregate/Entity holds state and
offers software behavior; User Role interacts with the system and often represents
a persona; View/Query collects and retrieves data that can be rendered on user
interfaces; Process manages a multi-step operation through to an eventual comple-
tion; and Domain Service provides cross-cutting software behavior.

Refer to Figure P.2 for the legend/key of element types, especially when reading
the black-and-white print book, which uses patterns in lieu of colors.

P xxiii

References

[Natalie-Fratto-Risk] https://twitter.com/NatalieFratto/status/
1413123064896921602

[Natalie-Fratto-TED] https://www.ted.com/talks/
natalie_fratto_3_ways_to_measure_your_adaptability_and_how_to_improve_it

[New-Kingmakers] https://www.amazon.com/
New-Kingmakers-Developers-Conquered-World-ebook/dp/B0097E4MEU

Register your copy of Strategic Monoliths and Microservices on the InformIT
site for convenient access to updates and/or corrections as they become avail-
able. To start the registration process, go to informit.com/register and log in or
create an account. Enter the product ISBN (9780137355464) and click Submit.
Look on the Registered Products tab for an Access Bonus Content link next to
this product, and follow that link to access any available bonus materials. If
you would like to be notified of exclusive offers on new editions and updates,
please check the box to receive email from us.

https://twitter.com/NatalieFratto/status/1413123064896921602
https://twitter.com/NatalieFratto/status/1413123064896921602
https://www.ted.com/talks/natalie_fratto_3_ways_to_measure_your_adaptability_and_how_to_improve_it
https://www.ted.com/talks/natalie_fratto_3_ways_to_measure_your_adaptability_and_how_to_improve_it
https://www.amazon.com/New-Kingmakers-Developers-Conquered-World-ebook/dp/B0097E4MEU
https://www.amazon.com/New-Kingmakers-Developers-Conquered-World-ebook/dp/B0097E4MEU
http://informit.com/register

This page intentionally left blank

xxv

Acknowledgments

Writing a book is hard work. Readers might think that the more books written, the
better the process is for the author. Multi-book authors would probably agree that
the writing flows better as experience grows. Yet, most multi-book authors proba-
bly aim higher each time than they knew how to do previously. Knowing what lies
ahead before the writing begins can be unnerving. The experienced author knows
that each book has a life of its own and requires more mental energy and writing
precision than even their own expectations could predict.

It happens every time, at least to one author involved in this effort. In the case of
this book, one author knows what to fear and still did it anyway. The second author
had translated a book from English to French, but his willingness to sign up for pure
writing was based on the experienced author telling him not to worry.

That might be what a shark cage guide says just before the steel around the rank
amateur plunges them into the breathtakingly cold waters off of Cape Town, South
Africa. Truth is, the spectators who gaze upon great whites in action are fairly safe,
at least by statistical accounts, because no one has ever died from that extreme view-
ing melee. Still, it’s a good thing that sharks aren’t as attracted to yellow and even
brown in water as they are to blood. (We’ll leave the close-call research to you.) So,
trying to write a book probably won’t kill you. Even so, have you ever wondered
about the ratio between the people who have said they are going to write a book,
but don’t, and those who actually do write a book? It’s probably similar to those
who say they will one day dive with great white sharks and those who actually do.

It might take one, two, or a few people to author a book. But it takes an army
to review, edit, edit, edit—add more edits—produce, and publish that book. The
first draft manuscript of this book was considered “very clean,” but there were
still hundreds of additions, deletions, and general corrections made in every single
chapter. And don’t bring up the illustrations. Please. Even the very best of writers—
which these authors would never claim to be—are subject to a daunting battery of
“live rounds” before their book is ready for the public. Actually, we’ll clarify that.
That’s the case if you are an author under the prestigious Addison-Wesley brand.
(We won’t go into the number of obvious errors you can find in the first few pages
of books produced by other tech publishers.) The analogy of “live rounds” seems
appropriate, because Pearson supports a small army of the best editors with the best
aim that can be hired.

Axxvi

We are grateful to Pearson Addison-Wesley for giving us the opportunity to pub-
lish under their highly respected label. They have guided us through the process of
writing this book until the publication was in sight. Special thanks go to our exec-
utive editor, Haze Humbert, for driving the process of acquisition, review, develop-
ment, and full editorial production so smoothly, and coddling the process when an
overly optimistic author didn’t deliver all chapters as early as he anticipated. Haze’s
assistant editor, Menka Mehta, kept correspondence and calendars in sync and
flowing. Our development editors Sheri Replin and Chris Cleveland offered high-
level edits and prepared our chapters for page layout. Thanks to Rachel Paul for
keeping the publication process clipping along. Thanks also to Jill Hobbs for being
so kind as she made our “very clean” manuscript read superbly; it’s amazing what
a fine copy editor can do for a book, and especially a book written by tech authors.
When you see things happening steadily but don’t know how, it’s probably due to a
very competent director of product management, and in our case that is Julie Phifer.

In case it is not abundantly clear, the vast majority of editorial professionals with
whom we work are women, and we think it is fair to include this team as “women in
tech.” If you are a woman in tech and want to be a book author, you can’t hope for
a better team to work with. These authors are not only proud to collaborate with
this team, but highly honored that they have trusted us enough to be their extended
members. So, future women authors, or future multi-book women authors, please
allow me to introduce Haze Humbert, as your gateway to the best experience that
book authoring can offer.

This book would not have been the same without the valuable feedback from
our reviewers. In particular, we would like to thank Mary Poppendieck, who pro-
vided an extensive review of our book and offered rich feedback, and wrote a great
foreword. Mary gave us her in-depth perspective on the difference between a soft-
ware developer and a software engineer. Of course, any company can hire for the
position of software engineer, but Mary describes a role that goes far beyond a title.
Readers will find many of her viewpoints highlighted by sidebars and boxes, but
her gifts to our project are in no way “side anything”—her input is nothing less than
pure gold. Pay attention to what she has to say.

Other reviewers who offered particularly valuable reviews have served in such
roles as CTO, chief architect, principal architect, and similar, and in a range of
companies from very large to nimble startups. They are listed here in order by given
(first) name: Benjamin Nitu, Eoin Woods, Frank Grimm, Olaf Zimmermann, Tom
Stockton, and Vladik Khononov. There were several others who offered helpful
feedback, including C-level executives, vice presidents, and other executives, who
shall remain unnamed. We are honored to have gathered a group of highly expe-
rienced tech executives who were early readers, and we are thrilled that they were
very impressed with our book. We would be remiss if we did not mention the many

A xxvii

people who offered to read and review our manuscript early on. We would have
taken pleasure in that, but for various reasons it was not possible to include them.
For every bit of help you provided and the confidence that you showed in us, thank
you one and all.

Vaughn Vernon

This book would truly not have been possible without Haze Humbert. When
Haze took over from my previous executive editor at Addison-Wesley, she actively
suggested and discussed ideas for future books that I might write. Haze was very
patient with me. After having three books published in roughly five years, I didn’t
look forward to authoring another one anytime soon. I wasn’t burned out, just
keenly aware of the commitment necessary to bring a new book to the world. And
I was enjoying designing and creating software more than writing books. Being a
creative person, during my discussions with Haze I pitched a number of ideas about
which she could have laughed out loud. Yet, her kind demeanor and patience cov-
ered my audacious and/or ludicrous project pitches.

In early 2020, Haze offered an opportunity that was much more realistic, but
completely unexpected and quite difficult to believe and digest, and whose accep-
tance seemed daunting. Her offer was to become the editor of my own Vaughn Ver-
non Signature Series. Knowing that my previous books had been successful—even
best sellers—and appreciating that I could possibly achieve that feat again with
another book, was far less earthshaking than fathoming the inception and deliv-
ery of a signature series. It was mind-blowing stuff. After a few weeks and sev-
eral discussions with my trusted advisor, Nicole, the idea sank in. One thought that
solidified the possibility of succeeding was this: If Pearson Addison-Wesley, with its
unmatched experience as an elite publisher, thought enough of my work to make
that offer, it meant that the company was confident that I would succeed. There’s
no way that such a publisher would pitch, invest in, and back this effort if it thought
anything otherwise.

Based on that alone, not on my own abilities, I accepted. So here I am today,
deeply thankful to Haze and the others with whom she works and represents.
Thank you all so much.

I am grateful to Tomasz Jaskuła for accepting my offer to co-author this book
with me. I hope the sharks didn’t get too close for comfort. Tomasz is smart and
tenacious, and has also been a worthy business partner in our training and consult-
ing efforts. He’s also done nearly all of the heavy lifting for the .NET implementa-
tion of our open source reactive platform, VLINGO XOOM.

Axxviii

Both of my parents have been a stabilizing force for me, and have taught me and
supported my efforts for as long as I can remember. When I wrote my first pub-
lished book, Implementing Domain-Driven Design, my parents were still full of life
and mobile. More than eight years since, and after many months of lockdown have
accumulated due to the pandemic, they now face additional challenges. It’s a relief
that in-person visits with them are once again permitted, and our time together is so
enjoyable. Mom still has her witty sense of humor, and her stamina has not entirely
abandoned her. I am happy that Dad still yearns for handheld computers, books,
and other tools that enable him to remain in touch with engineering. I look forward
to seeing his eyes light up when I drop by with a new gadget or book. Mom and
Dad, I can’t thank you enough.

I can’t say enough about the ongoing support from my wife and our son. As crazy
as the past 18 months or so have been, we’ve managed to grow together under con-
tinually changing circumstances. Nicole has been incredibly resilient through what
seemed like unavoidable damage to our businesses. Despite the challenges, she has
led us to new highs in the growth of both our training and consulting company,
Kalele, and our software product startup VLINGO. VLINGO XOOM, our open
source reactive platform and our initial product, is healthy and its adoption is grow-
ing. VLINGO is also building two new SaaS products. Not only have our teams
been effective, but Nicole’s business savvy has only expanded under greater chal-
lenges. It is inconceivable that I could have succeeded with anything at all, let alone
a signature series and new book authoring, without her.

Tomasz Jaskuła

Back in 2013, Vaughn Vernon authored an outstanding book, Implementing
Domain-Driven Design. He followed that with a world tour of workshops under the
same name. His was the first book in which Domain-Driven Design was described
from a practical point of view, shedding light on many theoretical concepts that
were previously misunderstood or unclear for years in the Domain-Driven Design
community. When I first learned about Vaughn’s IDDD Workshop, I didn’t hesitate
to attend as soon as possible. It was a time when I was applying Domain-Driven
Design on different projects, and I couldn’t miss the opportunity to meet one of the
most prominent members of the community. So, in 2013 I met Vaughn in Leuven,
Belgium, where one of the workshops took place. This was also where I met most of
the Domain-Driven Design community influencers, who were there to learn from
Vaughn! A few years later, I’m proud to have coauthored this book with Vaughn,
who has become a friend. He has been supportive of me through the years and
I’m really grateful for the confidence he has in me. Writing this book was a great

A xxix

learning experience. Thank you, Vaughn, for all your help, your confidence in me,
and your support.

I would also like to thank Nicole Andrade, who, with all the kindness in the
world, has supported us through the effort of writing this book. She has played an
important role in strengthening the friendship between Vaughn and me through the
years, and I know she will continue to do so for years to come.

Writing the book without the support from my friend and business partner
François Morin of our company, Luteceo, would have been much more difficult. His
encouragement of my writing, and his willingness to take care of running the com-
pany while I was not available, gave me the space I needed to take on this project.

I would like to thank my parents Barbara and Stefan, who have always believed
in me and supported me through my personal challenges. They taught me early the
importance of being curious and learning continuously, which is one of the greatest
pieces of advice I could have ever received.

Finally, I would not have been able to write this book without the unconditional
support and love from my wife Teresa and my lovely daughters Lola and Mila.
Their encouragement and support were essential for me to complete this book.
Thank you so much.

This page intentionally left blank

xxxi

About the Authors

Vaughn Vernon is an entrepreneur, software developer, and architect with more
than 35 years of experience in a broad range of business domains. Vaughn is a lead-
ing expert in Domain-Driven Design and reactive architecture and programming,
and champions simplicity. Students of his workshops are consistently impressed by
the breadth and depth of what he teaches and his unique approaches, and as a result
have become ongoing students attending his other well-known workshops. He con-
sults and trains around Domain-Driven Design, reactive software development, as
well as EventStorming and Event-Driven Architecture, helping teams and organiza-
tions realize the potential of business-driven and reactive systems as they transform
their businesses from technology-driven legacy web implementation approaches.
Vaughn is the author of four books, including the one you are now reading. His
books and his Vaughn Vernon Signature Series are all published by Addison-Wesley.

Kalele: https://kalele.io

VLINGO: https://vlingo.io

Twitter: @VaughnVernon

LinkedIn: https://linkedin.com/in/vaughnvernon/

Tomasz Jaskuła is CTO and co-founder of Luteceo, a software consulting com-
pany in Paris. Tomasz has more than 20 years of professional experience as a devel-
oper and software architect, and worked for many companies in the e-commerce,
industry, insurance, and financial fields. He has mainly focused on creating soft-
ware that delivers true business value, aligns with strategic business initiatives, and
provides solutions with clearly identifiable competitive advantages. Tomasz is also
a main contributor to the OSS project XOOM for the .NET platform. In his free
time, Tomasz perfects his guitar playing and spends time with his family.

Twitter: @tjaskula

LinkedIn: https://linkedin.com/in/tomasz-jaskula-16b2823/

https://kalele.io
https://vlingo.io
https://linkedin.com/in/vaughnvernon/
https://linkedin.com/in/tomasz-jaskula-16b2823/

This page intentionally left blank

7

 Chapter 1

Business Goals and Digital
Transformation

The most outstanding business achievement is to create a product that is needed
by a great number of consumers, is completely unique, and is optimally priced.
Historically, and in a general sense, the realization of such an accomplishment
has depended on the ability to identify what is essential or highly desirable for a
key market demographic. This is reflected in a maxim captured by the writings of
Plato: “Our need will be the real creator.” Today, this statement is better known as
“Necessity is the mother of invention.”

Yet, the most profound innovators are those who invent an ingenious product
even before consumers realize it is needed. Such achievements have occurred seren-
dipitously, but have also been born from those daring enough to ask, “Why not?”1
Perhaps mathematician and philosopher Alfred North Whitehead struck on this
notion when he argued that “the basis of invention is science, and science is almost
wholly the outgrowth of pleasurable intellectual curiosity” [ANW].

Of course, the vast majority of businesses face a stark reality: Breakthroughs in
product development that lead to far-reaching market impact aren’t an everyday
happening. Inventing entirely unique products that capture whole markets might
seem as likely as aiming at nothing and hitting the center of a pot of gold.

As a result, the predominant business plan is to create competition. The unique-
ness is seen in pricing the replica rather than in creating the original. Hitting such
a large target is entirely ordinary and lacking in imagination and is not even a sure
means of success. If creating (more) competition seems to be the best play, consider
Steve Jobs’s advice: “You can’t look at the competition and say you’re going to do it
better. You have to look at the competition and say you’re going to do it differently.”

 1. (George) Bernard Shaw: “Some men see things as they are and ask why. Others dream things that
never were and ask why not.”

C 1 B G  D T8

SpaceX Innovation

Between the years 1970 and 2000, the cost to launch a kilogram to space aver-
aged $18,500 US per kilogram. For a SpaceX Falcon 9, the cost is just $2,720
per kilogram. That’s a factor of 7:1 improvement, and so it’s no secret why
SpaceX has almost all of the space launch business these days. How did they
do it? What they did not do was work under contract to the government—that
is, the only funding mechanism up until then. Their goal was to dramatically
reduce the cost to launch stuff into space. Their main sub-goal under that was
to recover and reuse booster rockets. There’s a wonderful YouTube video of
all the boosters they crashed in order to achieve their goal. The strategy of
integrating events (in this case, test booster launches) is how multiple engi-
neering teams rapidly try out their latest version with all the other teams.
Government contracts would never have tolerated the crashes that SpaceX
suffered. Yet, the crashes speeded up the development of a reliable, cheap
booster rocket by perhaps a factor of 5, simply by trying things out to discover
the unknown unknowns, instead of trying to think everything through in
excruciating detail. That is a pretty classic engineering approach, but would
never be allowed in a contracting model. The SpaceX team said it was far
cheaper to have crashes and find the problems than to try to wait forever until
there was no risk. [Mary Poppendieck]

Imitation is not a strategy. Differentiation is.
Differentiation is the strategic business goal that must be constantly sought after.

If pure invention seems nearly impossible, continuous and tenacious improvement
toward innovation should not. In this book, we have undertaken the task of helping
readers achieve strategic business differentiation through relentless improvement in
digital transformation.

 Digital Transformation: What Is the Goal?

Understanding that the making of the unordinary is a major feat should not dis-
suade anyone from taking small, scientific steps with ongoing determination toward
actual innovation. No matter the complexity in reaching Z, performing the science
of experimentation to arrive at B when starting from A is a realistic expectation.
After that, reaching C is doable, which then leads to D. It’s a matter of keeping our
lab coat and pocket protector on, and acknowledging that unique products that can
capture new markets have likely been staring us in the face all along.

D T: W I  G? 9

Whether Microsoft Office was considered a worker-productivity innovation
from the outset, it certainly has been the most successful suite in that market. With
Office 365, Microsoft didn’t have to reinvent the word processor and the spread-
sheet to innovate. It did, however, add a new delivery mechanism and capabilities to
enable full teams to collaborate, among other features. Did Microsoft win yet again
by innovating through digital transformation?

Digital transformation is left to the eye of the business innovator, but commonly
businesses lose sight of the innovation part of transformation. Transformative
innovation requires that the business understands the difference between changing
infrastructural platforms and building new product value. For example, although
taking business digital assets from the on-premises datacenter to the cloud might be
an important IT initiative, it is not in itself a business initiative in innovation.

Does migrating your software to the cloud qualify as a digital transformation?
Possibly, but more so if the move supports future differentiation. It best qualifies
if the cloud delivers new opportunities to innovate or at least to unburden the
extremely high cost of digital asset operations and channel those funds to new prod-
ucts. Think of the cloud as creating opportunities by freeing you from most tradi-
tional datacenter responsibilities. It won’t be transformative, however, if the shift
to the cloud amounts to trading one set of costs for a different set of costs. Amazon
offering its already successful computing infrastructure to the outside world was a
digital transformation for the company that resulted in cloud innovation. Paying
a subscription to Amazon to use its cloud is not a transformative innovation to the
subscriber. The lesson is clear: Innovate or be innovated on.

Just as migrating to the cloud is not an innovation, neither is creating a new distrib-
uted computing architecture. Users don’t care about distributed computing, Micro-
services, or Monoliths, or even features. Users care about outcomes. Improved user
outcomes are needed rapidly and without negatively impacting their workflows. For
software to stand a chance at meaningful transformation, its architecture and design
must support the delivery of better user outcomes as rapidly as possible.

When using the cloud, an improved architecture and design approach (and any
additional well-tuned steps that lead to productivity gains) make reaching inno-
vative transformational goals possible. Using infrastructure as a service frees the
business to work on innovative business software rather than churning on trying
to innovate on its infrastructure. Not only are infrastructure innovations time-
consuming and costly, but they might not benefit the business’s bottom line, and
developing infrastructure in-house might never address infrastructure and opera-
tional needs as well as AWS, Google Cloud Platform, and Azure. Yet, this is not
always the case. For some businesses, it would be much more cost-effective to bring
operations in-house or keep them there [a16z-CloudCostParadox].

Remember, it’s A to B, B to C, C to D. . . . Be willing to iterate on any of these
steps so that you can learn enough to take the next one. Understanding that going

C 1 B G  D T10

back from J to G before reaching K is expected, and that Z need not ever happen,
is liberating. Teams can innovate, but none of these transformational steps can tol-
erate lengthy cycles. Chapter 2, “Essential Strategic Learning Tools,” shows how
experimentation is the friend of innovation and the enemy of indecision.

 Software Architecture Quick Glance

This section introduces the term software architecture—a term that is referred to
often herein. It’s a rather broad topic that is covered in more detail throughout this
book.

For now, think of software architecture as similar to building architecture. A
building has structure, and it reflects the results of communication that has taken
place between the architect and the owner regarding the design features, by pro-
viding the features as specified. A building forms a whole system of various sub-
systems, each of which has its own specific purpose and role. These subsystems are
all loosely or more tightly connected with other parts of the building, working sep-
arately or in conjunction with others to make the building serve its purpose. For
example, a building’s air conditioning requires electrical power, duct work, a ther-
mostat, insulation, and even a closed area of the building to cool, if that subsystem
is to be effective.

Likewise, a software architecture provides structural design—that is, the for-
mulation of many structures, not one. The structural design organizes the system
components, affording them the means to communicate as they work together. The
structure also serves to segregate clusters of components so they can function inde-
pendently. The structures must, therefore, help achieve quality attributes rather
than functional ones, while the components within implement the functionality
specified by teams of system builders.

Figure 1.1 illustrates two subsystems (showing only a fragment of a whole system),
each having components that work together internally but in isolation from the other
subsystem. The two subsystems exchange information through a communication
channel, with the box in between representing the information that is exchanged.
Assume that these two subsystems are physically separated into two deployment
units, and communicate via a network. This forms a portion of a distributed system.

Figure 1.1 A software architecture provides structure within subsystems and supports
communication between them.

W S G W 11

Another important aspect of both building and software architecture is that they
must support inevitable change. If existing components fail to meet new demands
in either architecture, they must be replaceable without extreme cost or effort. The
architecture must also be able to accommodate possible needed expansion, again
without major impact to the overall architecture.

 Why Software Goes Wrong

We don’t want to overstate the seriousness of the poor state of enterprise software
development, and we don’t think it can be overstated.

When discussing enterprise software system conditions with Fortune and Global
companies, we quickly learn about their major pain points. These are always related
to aged software that has undergone decades of maintenance, long after innova-
tion took place. Most discussions identify that software development is considered
a cost center to the business, which makes it that much more difficult to invest in
improvements. Today, however, software should be a profit center. Unfortunately,
the collective corporate mindset is stuck 30-plus years back when software was
meant to make some operations work faster than manual labor.

A specific application (or subsystem) starts with a core business reason to be
built. Over time, its core purpose will be enhanced or even altered considerably.
Continuous additions of features can become so extensive that the application’s
original purpose is lost and it likely means different things to different business
functions, with the full diversity of those understandings not readily known. This
often leads to many hands stirring the pot. Eventually the urgent development tran-
sitions from strategic to keeping the software running by fixing urgent bugs and
patching data directly in the database in an effort to compensate for failures. New
features are generally added slowly and gingerly in an attempt to avoid producing
even more bugs. Even so, injecting new bugs is inevitable: With the ever-increasing
level of system disorder and lost historical perspective, it’s impossible to determine
the full impact a single given change will have on the greater body of software.

Teams admit that there is no clear and intentional expression of software archi-
tecture, either in individual applications (subsystems) or even overall in any large
system. Where some sense of architecture exists, it is generally brittle and obsolete
given advances in hardware design and operational environments such as the cloud.
Software design is also unintentional, and thus appears to be nonexistent. In conse-
quence, most ideas behind an implementation are implicit, committed to the mem-
ories of a few people who worked on it. Both architecture and design are by and
large ad hoc and just plain weird. These unrecognized failures make for some really
sloppy results due to slipshod work.

C 1 B G  D T12

Just as dangerous as producing no well-defined architecture at all is intro-
ducing architecture for merely technical reasons. A fascination often exists among
software architects and developers with regard to a novel development style rela-
tive to what they previously employed, or even a newly named software tool that is
the subject of a lot of hype and industry buzz. This generally introduces accidental
complexity2 because the IT professionals don’t fully understand what impacts their
ill-advised decisions will have on the overall system, including its execution environ-
ment and operations. Yes, Microservices architecture and tools such as Kubernetes,
although duly applicable in the proper context, drive a lot of unqualified adoption.
Unfortunately, such adoption is rarely driven by insights into business needs.

The prolonged buildup of software model inaccuracies within the system from
failure to perform urgent changes is described as the debt metaphor. In contrast, the
accumulation from accepting uncontrolled changes to a system is known as soft-
ware entropy. Both are worth a closer look.

 Debt Metaphor

Decades ago, a very smart software developer, Ward Cunningham, who was
at the time working on financial software, needed to explain to his boss why the
current efforts directed toward software change were necessary [Cunningham].
The changes being made were not in any way ad hoc; in fact, they were quite the
opposite. The kinds of changes being made would make it look as if the software
developers had known all along what they were doing, and serve to make it look
like it was easy to do. The specific technique they used is now known as software
refactoring. In this case, the refactoring was done in the way it was meant to be
implemented—that is, to reflect the acquisition of new business knowledge into the
software model.

To justify this work, Cunningham needed to explain that if the team didn’t make
adjustments to the software to match their increased learning about the problem
domain, they would continue to stumble over the disagreement between the soft-
ware that existed and their current, refined understanding. In turn, the continued
stumbling would slow down the team’s progress on continued development, which
is like paying interest on a loan. Thus, the debt metaphor was born.

Anyone can borrow money to enable them to do things sooner than if they hadn’t
obtained the money. Of course, as long as the loan exists, the borrower will be

 2. Accidental complexity is caused by developers trying to solve problems, and can be fixed. There
is also essential complexity inherent in some software, which is caused by the problems being
solved. Although essential complexity cannot be avoided, it can often be isolated in subsystems
and components specifically designed to tackle them.

W S G W 13

paying interest. The primary idea in taking on debt in the software is to be able to
release sooner, but with the idea that you must pay the debt sooner rather than later.
The debt is paid by refactoring the software to reflect the team’s newly acquired
knowledge of the business needs. In the industry at that time, just as it is today, soft-
ware was rushed out to users knowing that debt existed, but too often teams had the
idea that you never have to pay off the debt.

Of course, we all know what happens next. If debt continues to stack up and the
person borrows more and more, all the borrower’s money goes to paying interest
and they reach a point where they have zero buying power. Matters work the same
way with software debt, because eventually developers deep in debt will be severely
compromised. Adding new features will take longer and longer, to the point where
the team will make almost no progress.

One of the major problems with the contemporary understanding of the debt
metaphor is that many developers think this metaphor supports deliberately deliv-
ering poorly designed and implemented software so as to deliver sooner. Yet, the
metaphor doesn’t support that practice. Attempting that feat is more like borrowing
on subprime loans3 with upward adjustable interest rates, which often results in the
borrower becoming financially overextended to the point of defaulting. Debt is use-
ful only as long as it is controlled; otherwise, it creates instability within the entire
system.

 Software Entropy

Software entropy4 is a different metaphor but closely related to the debt metaphor
in terms of the software system conditions it describes. The word entropy is used
in statistical mechanics in the field of thermodynamics to measure a system’s disor-
der. Without attempting to go too deep into this topic: “The second law of thermo-
dynamics states that the entropy of an isolated system never decreases over time.
Isolated systems spontaneously evolve towards thermodynamic equilibrium, the
state with maximum entropy” [Entropy]. The software entropy metaphor names
the condition of a software system where change is inevitable, and that change will
cause increasing uncontrolled complexity unless a vigorous effort is made to pre-
vent it [Jacobson].

 3. It’s difficult to comprehend that some are unfamiliar with the 2008 financial crisis that extended
years into the future. This (ultimately global) crisis was triggered by subprime lending to unqual-
ified borrowers for home purchases. Some early readers of the manuscript for this book asked,
“What is a subprime loan?” Learning about that history could save those readers from a lot of
financial grief.

 4. Other analogs besides entropy also paint a vivid picture of the problem, such as software rot,
software erosion, and software decay. The authors mostly use entropy.

C 1 B G  D T14

 Big Ball of Mud

An application or system like the one previously described has become known as a Big
Ball of Mud. In terms of architecture, it has been further described as haphazardly
structured; sprawling; sloppy; duct-taped-and-baling-wired; jungle; unregulated
growth; repeated, expedient repair. “Information is shared promiscuously among
distant elements of the system, often to the point where nearly all the important
information becomes global or duplicated. The overall structure of the system may
never have been well defined. If it was, it may have eroded beyond recognition”
[BBoM].

It seems appropriate to describe the Big Ball of Mud “architecture” as the
unarchitecture.

Throughout the remainder of this chapter, as well as in this book in general, we
will key in on a few of these characteristics: haphazardly structured; unregulated
growth; repeated, expedient repair; information shared promiscuously; all import-
ant information global or duplicated.

An enterprise norm of the Big Ball of Mud results in organizations experiencing
competitive paralysis, which has spread across business industries. It is quite com-
mon for large enterprises, which once enjoyed competitive distinction, to become
hamstrung by systems with deep debt and nearly complete entropy.

You can easily contrast the Big Ball of Mud system in Figure 1.2 to that depicted
in Figure 1.1. Of course, the segment of the system in Figure 1.1 doesn’t represent
the number of features that are supported by the system in Figure 1.2, but clearly the
architecture of the first system brings order, whereas the lack thereof in the second
offers chaos.

Figure 1.2 The Big Ball of Mud might be classified as the unarchitecture.

W S G W 15

These chaotic conditions prevent more than a few software releases per year,
which result in even worse problems than the software releases of previous years.
Individuals and the teams to which they belong tend to become indifferent and com-
placent because they know they can’t produce the change they see as necessary to
turn things around. The next level from there is becoming disillusioned and demor-
alized. Businesses facing this situation cannot innovate in software and continue to
compete under such conditions. Eventually they fall victim to a nimble startup that
can make significant strides forward, to the point where within a few months to a
few years, it can displace previous market leaders.

 Running Example

From this point forward, we present a case study using an existing Big Ball of Mud
and describe a situation where the affected business struggles to innovate as it faces
the realities of the associated deep debt and entropy. Because you might already be
tired of reading bad news, here’s a spoiler: The situation improves over time.

There is no better way to explain the issues every company has to face with soft-
ware development than with examples borrowed from the real world. The example
offered here as a case study in dealing with an existing Big Ball of Mud comes from
the insurance industry.

At some point in life, just about everyone has to deal with an insurance company.
There are various reasons why people seek to obtain diverse insurance policies.
Some are to address legal requirements, and some provide security measures for
the future. These policies include protection for health, personal lines such as life,
automobile, home, mortgage, financial products investments, international travel,
and even the loss of a favorite set of golf clubs. Policy product innovation in the field
of insurance seems endless, where almost any risk imaginable can be covered. If
there is a potential risk, you’re likely to find an insurance company that will provide
coverage for it.

The basic idea behind insurance is that some person or thing is at risk of loss,
and for a fee, the calculated financial value of the insured person or thing may be
recovered when such loss occurs. Insurance is a successful business proposition due
to the law of large numbers. This law says that given a large number of persons and
things being covered for risks, the overall risk of loss among all of those covered
persons and things is quite small, so the fees paid by all will be far greater than
the actual payments made for losses. Also, the greater the probability of loss, the
greater the fee that the insurance company will receive to provide coverage.

Imagine the complexity of the insurance domain. Is coverage for automobiles
and homes the same? Does adjusting a few business rules that apply to automo-
biles make covering homes possible? Even if automobile and home policies might

C 1 B G  D T16

be considered “close enough” to hold a lot in common, think of the different risks
involved in these two policy types.

Consider some example scenarios. There is a much higher possibility of an
automobile striking another automobile than there is of a part of a house striking
another house and causing damage. The likelihood of a fire occurring in a kitchen
due to normal everyday use is greater than the likelihood of the car’s engine catch-
ing fire due to normal everyday use. As we can see, the difference between the two
kinds of insurance isn’t subtle. When considering the variety of possible kinds of
coverage, it requires substantial investment to provide policies that have value to
those facing risk and that won’t be a losing proposition to the insurance company.

Thus, it’s understandable that the complexity among insurance firms in terms
of business strategy, operations, and software development is considerable. That
is why insurance companies tend to specialize in a small subset of insurable prod-
ucts. It’s not that they wouldn’t want to be a larger player in the market, but rather
that costs could easily outweigh the benefits of competing in all possible segments.
It’s not surprising, then, that insurance companies more often attempt to lead in
insurance products in which they have already earned expertise. Even so, adjusting
business strategies, accepting unfamiliar yet measured risks, and developing new
products might be too lucrative an opportunity to pass up.

It is time to introduce NuCoverage Insurance. This fictitious company is based
on real-world scenarios previously experienced by the authors. NuCoverage has
become the leader in low-cost auto insurance in the United States. The company
was founded in 2001 with a business plan to focus on providing lower-cost premi-
ums for safe drivers. It saw a clear opportunity in focusing on this specific market,
and it succeeded. The success came from the company’s ability to assess risks and
premiums very accurately and offer the lowest-cost policies on the market. Almost
20 years later, the company is insuring 23% of the overall US market, but nearly
70% in the specialized lower-cost safe-driver market.

 Current Business Context
Although NuCoverage is a leader in auto insurance, it would like to expand its
 business to other kinds of insurance products. The company has recently added
home insurance and is working on adding personal lines of insurance. However,
adding new insurance products became more complex than was originally perceived.

While the development process of personal lines of insurance was ongoing, man-
agement had an opportunity to sign a partnership with one of the largest US banks,
WellBank. The deal involves enabling WellBank to sell auto insurance under its own
brand. WellBank sees great potential in selling auto insurance along with its famil-
iar auto loans. Behind the WellBank auto insurance policies is NuCoverage.

W S G W 17

Of course, there are differences between NuCoverage auto insurance products
and the ones to be sold by WellBank. The most prominent differences relate to the
following areas:

• Premiums and coverages

• Rules and premium price calculation

• Risk assessment

Although NuCoverage has never before experienced this kind of partnership, the
business leaders immediately saw the potential to expand their reach, and possibly
even introduce a completely new and innovative business strategy. But in what form?

 Business Opportunity
NuCoverage’s board of directors and executives recognized an even larger strategic
opportunity than the WellBank partnership: They could introduce a white-label5
insurance platform that would support any number of fledgling insurers. Many types
of businesses might potentially support selling insurance products under the busi-
ness’s own brand. Each business best knows its customers and grasps what insur-
ance products could be offered. The recently inked partnership with WellBank is
just one example. NuCoverage can certainly identify other forward-thinking part-
ners that would share the vision of selling insurance products under a white label.

For example, NuCoverage could establish partnerships with car makers that
offer their own financing. When a customer purchases a car, the dealer could offer
both financing and manufacturer-branded insurance. The possibilities are endless,
due to the fact that any random company cannot easily become an insurance com-
pany, but can still benefit from the margins gained through insurance sales. In the
long run, NuCoverage considered diversifying with new insurance products such as
motorcycle, yacht, and even pet insurance.

This possibility seems very exciting to the board and executives, but when the
software management team learned about the plans, a few of them had to swallow
hard. The original auto insurance application was built quickly under a lot of pressure
to deliver, which quickly led to a Big Ball of Mud Monolith. As Figure 1.3 illustrates,
with more than 20 years of changes and deep unpaid debt, and the ongoing devel-
opment of the system for the personal lines of insurance, the teams have reached a
point of stifling unplanned complexity. The existing software will absolutely not
support current business goals. All the same, development needs to answer the call.

 5. A white-label product is a product or service produced by one company (the producer) that other
companies (the marketers) rebrand to make it appear as if they had made it.

C 1 B G  D T18

What NuCoverage must understand is that its business is no longer insurance
alone. It was always a product company, but its products were insurance policies. Its
digital transformation is leading the firm to become a technology company, and its
products now include software. To that end, NuCoverage must start thinking like a
technology product company and making decisions that support that positioning—
not only as a quick patch, but for the long term. This is a very important shift in the
company mindset. NuCoverage’s digital transformation cannot be successful if it is
driven only by technology choices. Company executives will need to focus on chang-
ing the mindset of the organization’s members as well as the organizational culture
and processes before they decide what digital tools to use and how to use them.

 Your Enterprise and Conway’s Law

A long time ago (well, in 1967), in a galaxy not far away (our own), another really
smart software developer presented an unavoidable reality of system development.

Figure 1.3 The NuCoverage Big Ball of Mud. All business activities are intertwined with
tangled software components that are in deep debt and near maximum entropy.

Y E  C’ L 19

It’s so unavoidable that it has become known as a law. The really smart developer is
Mel Conway, and the unavoidable reality is known as Conway’s Law.

Conway’s Law: “Organizations which design systems are constrained to produce
designs which are copies of the communication structures of these organizations”
[Conway].

The correlation to the preceding description of Big Ball of Mud is fairly obvi-
ous. It’s generally a matter of broken communication that causes the “haphazardly
structured; unregulated growth; repeated, expedient repair.”

Still, there is another big communication component that’s almost always miss-
ing: the business stakeholders and the technical stakeholders having productive
communication that leads to deep learning, which in turn leads to innovation.

Assertion: Those who want to build good software that innovates must get this
 communication–learning–innovation pathway right before trying anything else.

Funny things, these laws. Is it possible to “get better” at a law? For example,
humans can’t really “get better” at the law of gravity. We know that if we jump, we
will land. The law and our earth’s gravitational influence even enable us to calculate
how much hang time anyone who jumps can possibly have. Some people can jump
higher and farther, but they are still subject to the same law of gravity as everyone
else on earth.

Just as we don’t get better at the law of gravity, we don’t really get better at Con-
way’s Law. We are subject to it. So how do we get Conway’s Law, right? By training
ourselves to be better at dealing with the unavoidable realities of this law. Consider
the challenges and the possibilities.

 Communication Is about Knowledge

Knowledge is the most important asset in every company. An organization cannot
excel at everything, so it must choose its core competencies. The specific knowledge
a company acquires within its domain of expertise enables building competitive
advantage.

Although a company’s knowledge can be materialized in physical artifacts such
as documentation, and in models and algorithms by means of source code imple-
mentations, these are not comparable to the collective knowledge of its workers.
The greater part of the knowledge is carried by individuals in their minds. The
knowledge that has not been externalized is known as tacit knowledge. It can be
collective, such as the routines of unwritten procedures within the business, or

C 1 B G  D T20

the personal preferred ways of working that every individual possesses. Personal
knowledge is about skills and crafts—the undocumented trade secrets and histori-
cal and contextual knowledge that a company has collected since its founding.

People inside the organization exchange knowledge through effective commu-
nication. The better their communication is, the better the company’s knowledge
sharing will be. Yet, knowledge is not just shared statically as if feeding encyclope-
dic input with no other gain. Sharing knowledge with an achievement goal in mind
results in learning, and the experience of collective learning can result in break-
through innovation.

 Knowledge Is Not an Artifact
Because knowledge is not something that one person passes to another in the same
way that a physical object is exchanged, the knowledge transfer takes place as a com-
bination of sense-giving and sense-reading, as illustrated in Figure 1.4 [Polanyi].

Sense-giving occurs when a person communicates knowledge. The knowledge
is structured into information and externalized [LAMSADE]. The person on the
receiving side undergoes the process of sense-reading. This individual extracts data
from the information received, creating personal knowledge and internalizing it.
The probability that two people will give the same meaning to the same informa-
tion is determined not just by the accuracy of the communication that has occurred
between those individuals, but also by past experiences and the specific contexts in
which the receiver places it.

It is not guaranteed that the piece of information that someone receives is exactly
what another person wants to communicate. This is illustrated with a concrete
example.

Figure 1.4 Tacit knowledge transfer through the process of sense-giving and sense-reading.

Y E  C’ L 21

 The Telephone Game

The Telephone Game illustrates the trouble with certain communication struc-
tures. You might know this game by another name, but the rules are the same. Peo-
ple form a line, and at one end of the line a person whispers a message to the next
person in line, which is then repeated to the next person, and so forth, until the
message reaches the last person in the line. Finally, the last message receiver tells
everyone the message that they received, and the person at the beginning of the line
discloses the original message. Of course, the fun comes from the repeated message
becoming badly distorted by the time it reaches the end.

What’s most interesting about this game and the effects on communication is that
the distortion occurs at every separate point of communication. Everyone in the line,
even those closest to the message’s origin, will be told something that they can’t repeat
accurately. The more points of relay, the more distorted the message becomes.

In essence, every point of relayed communication creates a new translation. This
highlights the reality that even communication between just two people is difficult. It’s
not unfeasible to reach clarity and agreement, but it can be challenging to get there.

When this happens in business, it’s not a game, and it isn’t fun. And, of course,
the more complex the message, the more likely it is for greater degrees of inaccuracy
to occur. As Figure 1.5 shows, there are often many points of relay. In very large

Figure 1.5 Typical communication structure from C-level to project
managers to developers.

C 1 B G  D T22

organizations, there might be even more than 20 levels. The authors often hear of so
much hierarchy that it seems insuperably difficult for anything in the organization
to be accomplished with any degree of accuracy, and the software developers near
the end of the line marvel at it.

Reaching Agreement Is Hard

The negative feelings of team members, such as indifference, complacency, disil-
lusionment, and demoralization, can be overcome. It’s done by helping the team
create reachable goals and providing new, lightweight techniques, such as shaping
the team for better communication and engaging in stepwise, value-driven restruc-
turing of the software.

Yet, the separations between points of communication and even the style of
communication at each level of hierarchy can cause a widening gap in business and
technical stakeholders. When the communication gap is broad in the face of big
changes, agreement is hard to achieve.

A noxious problem exists when technical leadership see themselves and their
teams as threatened by criticism of their work and hints that big change is immi-
nent. After all, the distorted message being heard intimates that what has existed
for a long time isn’t sustainable. As has been noted more than a few times through-
out history, humans have egos and more often than not are heavily invested in
what they have produced as a result of hard work. This strong attachment is often
referred to as being “married.” When an institution as tightly connected as mar-
riage seems breakable, the involved parties often adopt a defensive posture that not
only tightly grips what has been done, but also clings to how things have been done.
Moving beyond that hardened stance isn’t easy.

There are also those from outside who strongly recommend the kind of changes
that are incompatible with business as usual. This apparent adversary hasn’t gone
through the decades of hard work under conflicting time forces that are blamed
for the deep software debt and entropy that today throbs like two sore thumbs. All
of these uncomfortable perceptions accumulate into a pressure cooker of emotions
and shouts of “Executive betrayal!” in the conscious thoughts of technical leader-
ship. It’s obvious that the responsible parties have been singled out and will now
be repaid for ongoing delivery under unrelenting impossible circumstances with a
swift shove under a speeding bus.

When technical leadership has these misgivings, they typically multiply their
doubts by confiding in at least a few members of their teams who will support their
concerns. Naturally those supportive team members themselves confide in others,
and the fear leads to widespread resistance.

Y E  C’ L 23

 But Not Impossible

This whole problem is most often perpetuated by a company culture known as
“us versus them.” This happens, once again, because of deficient communication
structures. Glancing back at Figure 1.5, do you see a big problem? It’s the hierarchy,
which breeds an “us versus them” mentality. Edicts come down from on high and
subordinates carry out the orders. If this hierarchy is retained, executives shouldn’t
expect outcomes that lead to cooperative change.

Cooperative change must emanate from leadership, which begins at the executive
level. When executive leadership can see the untenable result of hierarchical command
and control, the answer is not to replace the old controlled with the newly controlled.

In every endeavor, teams are by far more successful at large undertakings than
are individuals. Mature sports teams succeed by crafting innovative playbooks and
communicating each play to the whole team with tedious precision.

Acting like a team requires being a team. In teams, communication is not one
way. Any one team member can have enough experience to suggest that something
was overlooked in the playbook, or that a given play could be better with this or
that additional move or removal of an inefficiency. When every team member is
respected for their competency and experienced viewpoint, it serves to make com-
munication that much more effective (Figure 1.6).

Figure 1.6 Optimal communication structures are the result of team play.

Consider these keys to optimal communication:

• It’s us, not us and them.

• Servant leadership must not be beneath anyone.

• Realize the power in building strategic organizational structures.

C 1 B G  D T24

• No one should feel threatened for communicating their constructive viewpoints.

• Positive influence is critical in motivating people toward constructive action.

• Forming business–technical partnerships based on mutual respect is essential.

• Deep communication, critical thinking, and cooperation are indispensable to
achieve disruptive, transformational, software systems.

These strategic behavioral patterns are not new and novel. They are centuries old
and are the practices of successful organizations.

Conway’s Law doesn’t leave anyone guessing about how to make organizational
communication structures work for the greater good. As the conclusion of Con-
way’s paper states:

We have found a criterion for the structuring of design organizations: a design effort
should be organized according to the need for communication.

Because the design which occurs first is almost never the best possible solution, the
prevailing system concept may need to change. Therefore, flexibility of organization
is important to effective design.

Ways must be found to reward design managers for keeping their organizations
lean and flexible. [Conway]

These ideas are reflected in Figure 1.5 and are woven throughout this book.

 (Re)Thinking Software Strategy

Focusing on thinking and rethinking before the more technical bits is advisable.
Until we understand what strategic business goals must be pursued, we shouldn’t
try to specify system technical characteristics. After some thoughts on thinking and
rethinking, introducing system-level planning will have meaning and purpose.

 Thinking

Known as the source of many quotable quotes, (George) Bernard Shaw made this
statement with regard to thinking:

I suppose that you seldom think. Few people think more than two or three times a
year. I have made an international reputation for myself by thinking once or twice
a week.

(R)T S S 25

Of course, we all think every day. Life would be impossible without thought. Yet,
Shaw’s entertaining statement exposes an interesting fact about people in general.
Much of life is conducted in routine function and regularly employs a kind of auto-
pilot. The less people need to think about specifics, the less they will tend to think
consciously about what they do. This is why older people tend to lose cognition
unless they remain mentally engaged into their later years. Shaw shows that deep
thought by even the most notable among thinkers may not occur that often. Rightly,
then, a lack of deep thought is a concern even among knowledge workers.

The problem with knowledge workers going on autopilot is that software has
little tolerance for mistakes, and especially mistakes left unaddressed for long peri-
ods of time. If individual software developers aren’t careful, they will become lax in
paying debt in their software and transition into the mode of allowing unregulated
growth and using repeated, expedient repair.

There is also a concern that developers will begin to increasingly rely on what prod-
uct companies want to sell them, rather than thinking for themselves in the context of
their business focus. New technology buzz and hype are pumped in from outside with
much more frequency than is possible from internal business channels. However, the
constant drumbeats are missing the context of what matters most locally. Developers
who have become complacent may wish for technology to solve the problems. Others
will simply long for new toys to engage their minds. Likewise, the dynamic underlying
the Fear of Missing Out (FOMO) is not driven by deep, critical thought.

As Figure 1.7 highlights, thinking a lot about everything involved in system spec-
ification is essential in making proper business decisions, and later the necessary
supporting technical decisions. Here are some motivation checkers:

• What are we doing? Perhaps poor-quality software is being released as a
means to meet a deadline. This doesn’t put the teams in a good position to
refactor later, and chances are strong that refactoring is not planned. It’s pos-
sible that the team is pushing for a big reimplementation using a newer, more
popular architecture as a solution. Don’t overlook the fact that those involved
have already failed to introduce a helpful architecture into existing systems
or allowed a lapse in maintaining the architecture that was already in place.

• Why are we doing it? External messages based on selling products as solu-
tions may sound more attractive than taking sensible steps to shore up existing
software that has lost its reason for existing in exchange for simply keeping
it operational. FOMO and CV-driven development can become a stronger
motivator rather than practicing good development techniques. Be certain
that a particular architecture or technology is justified by actual business and
technical needs.

C 1 B G  D T26

• Think about all the things. Every single learning must be examined with
critical thought, both for and against. Having a strong opinion and talking
the loudest is proof of nothing. Thinking in an informed manner, clearly,
broadly, deeply, and critically are all extremely important. These can lead to
deep learning.

Seeking deep thought kicks off our real mission, which is rethinking our
approach to software development that leads to strategic differentiation.

Figure 1.7 Be a leader in thought. Think a lot and discuss.

Rethinking

The ancient Hippocratic Oath6 is said to have included the statement “First do
no harm.” This seems relevant not only in medicine but in other fields, including
software engineering. A legacy system is just that—a legacy. Legacy implies value,

 6. Whether the Hippocratic Oath is still considered relevant and applicable today, or at what point
the specific statement “First do no harm” originated, is beside the point being made. Many
physicians still perceive the oath and the highlighted statement as important.

(R)T S S 27

something that is inherited. After all, if it didn’t have value, it wouldn’t be a legacy;
it would be unplugged. The system’s continued and broad use is what makes it irre-
placeable at present. As much as software professionals often think that the busi-
ness doesn’t get it, the business totally gets that decades of investment into a system
that has supported and still supports revenues must not be harmed.

Of course, the deep debt and entropy might not be the fault of those currently
responsible for keeping a system operational, or those who highly recommend its
ultimate replacement. Frankly, many legacy systems do need some help into retire-
ment. This is especially the case when these systems are implemented with one
or more archaic programming languages, technologies, and hardware created by
people with great-grandchildren, or who are no longer with us. If this sounds like
COBOL using an old database and running on mainframe computers, the authors
won’t deny the similarities.

Still, there are other systems matching this description, such as the many business
systems built on C/C++. At the time the work was done, C/C++ was admittedly
a better choice than COBOL. One big advantage was the low memory footprint
required by C programs, and the fact that a lot of software was being built for PCs
and their 256K–640K RAM limits. There are also systems built on completely
obsolete and unsupported languages and technologies such as FoxPro, marginal-
ized Delphi, and the only-mostly-dead Visual Basic language.

The major problem with replacing a legacy system is related to losing features in
the replacement process or just plain breaking things that previously worked. Replace-
ment also happens in the face of continued legacy change—perhaps slow change, but
change nonetheless. Change doesn’t necessarily mean new features. It can mean daily
patches of code and persisted data. Trying to replace a moving target is like, well,
trying to replace a moving target. It’s hard. This is not to mention the fact that the
software is already in the condition it’s in because it hasn’t received the care it has
both deserved and needed. So suddenly introducing great care as the target moves and
as people are actively firing rounds at it seems iffy at best.

That a system is to be justifiably replaced using modern architectures, program-
ming languages, and technologies doesn’t make the task any less precarious. Many
conclude that jumping in and getting it over with by ripping apart the current imple-
mentation and coding up a new one is the only way to go. It is common for those
championing such efforts to request several months to accomplish this feat, undis-
turbed by change. That request translates into halting the moving target for a num-
ber of months, and as has already been noted, the system will very likely require
patches to code and data. Shall those be put on hold for an unknown length of time?

C 1 B G  D T28

When There’s No Choice

One of the authors was involved in such an effort when platforms shifted out
from under an implementation. For example, think of moving a large system
with a graphical user interface implemented on MS-DOS to the Microsoft
Windows API. One really tricky thing, among many that you never think
about until you are deep into the problem, is that two APIs may transpose
parameters. For example, in the different APIs, the GUI X,Y coordinate
system changed. Missing even one of those translations can cause untold
problems that are extremely difficult to track down. In this case, “extremely
difficult” involved months of investigation. The overarching reason for the
complexity was the unsafe memory space with C/C++ programs, where
incorrect memory references not only overwrite memory in invalid ways, but
sometimes end up overwriting memory in different ways every time. Thus,
the bizarre memory access violations occurred in many mysterious ways.

Of course, that’s not a typical problem faced in today’s modernizations—
modern programming languages mostly prevent that specific kind of error. In
any case, there are potential gotchas that are completely unpredictable. Dealing
with these kinds of unplanned complications can eat up much of the “number
of months” that were presumably reserved for “jumping in, ripping apart, and
coding up a new one.” It’s always harder and takes longer than you think.

Where is the rethinking in all this? In blowing the common legacy escape hatch,
it appears likely that a lot of harm will be done. It’s a knee-jerk reaction to vast
problems that leads to a high probability of replacing them with immense prob-
lems or ending up with two sets of enormous problems. The Big Ball of Mud being
the enterprise norm leads to competitive paralysis—but to first cause no harm, the
patient must still be able to breathe if there can be any hope to perform health-
restoring treatments. We need to find a way to jump into a reimplementation, but
not by doing one of those cannonball dives that makes a huge splash. This requires
some special anti-splash measures and maneuvers.

What hasn’t been considered is the creation of new learning opportunities. If
we merely rewrite in C# a large system that was originally implemented in Visual
Basic, from a strategic point of view nothing at all has been learned. One client, for
example, observed in a replacement effort of a COBOL legacy system that 70% of
the business rules developed over 40 years had become obsolete. These still lived
in the COBOL code and required cognitive load to deal with them. Now, imag-
ine not learning this information, but instead spending the time and the effort to
translate all of these business rules from COBOL to a modern architecture, pro-
gramming language, and technology set. The transformation was already a com-
plex multiyear program without including a very large body of unnecessary rework.

(R)T S S 29

Expanding our previous motivation checkers, the following questions highlight
the need for vital strategic learnings:

• What are the business goals and strategies? Every software feature
within a strategic initiative should have direct traceability to a core business
goal. To accomplish this, state (1) the business goal, (2) the target market
segment (persons and/or groups) that must be influenced to reach that goal,
and (3) the impact that must be made on the target market segment. Until the
necessary impacts are understood, there is no way to identify the software
functionality that is needed or a range of specific requirements. The tools for
uncovering the strategic goals and impacts are described later in this book.

• Why aren’t we doing it? There’s another important term in technology that
needs to be taken into account when making strategic decisions: You Aren’t
Gonna Need It (YAGNI). This term was meant to help teams avoid the devel-
opment of currently unnecessary business features, and there are good reasons
to do so. Spending time and money, and taking risks, on delivering unneces-
sary software is a poor choice. Unfortunately, declaring YAGNI has become
a general way to cast any opposing viewpoint in a bad light. Using YAGNI as
a trump card won’t win team loyalty or create breakthrough learning oppor-
tunities. Sometimes not implementing some features that “aren’t needed” is
a mistake of enormous proportions. If a breakthrough that can lead to inno-
vative differentiation is shot down immediately, it’s likely more a problem
with the shooters’ ability to think deeply and recognize an opportunity or the
loss thereof. In fact, absolutely refusing to make room for subsequent discus-
sions will reveal the weakest thinkers in the mix.

• Can we try new things? Teams might agree or disagree about what might
work in their target market. It is mostly impossible to absolutely foresee the
market’s reaction to a given expression of strategy. Gauging the market’s
response accurately requires giving the market the opportunity to try out the
business ideas. Using the science of experimentation may provide the only
true way to understand the real possibilities and limitations of strategies;
however, to try new things, it’s not always easy to think outside of the estab-
lished mental model. “It is tremendously difficult for people to realize when
they are chained to a model, especially if it is subconscious or so woven into
the culture or their expectations that they can no longer see how much it is
holding them back” [Brabandère].

• What are the service-level requirements? Once a reasonable set of strategic
business goals is understood, the teams involved can start to identify the nec-
essary architectural decisions that must be made. The candidate architectural

C 1 B G  D T30

decisions will depend on the service-level requirements. Teams should not
settle on solutions too quickly because there are often advantages in delay-
ing decisions about some details of the architecture. For example, even if the
teams are convinced that a Microservices architecture is necessary, delaying
the introduction of services separated by the computing network can help the
team focus on actual business drivers rather than trying to cope with the dis-
tributed computing overhead too early. (See the section “Deployment Last,”
in Chapter 2, “Essential Strategic Learning Tools.”)

Rethinking is a critical step, and it feels right. There is a benefit from thinking
multidimensionally and critically, and rethinking from a position of ordinary to a
fresh strategic vantage point.

We need not conclude, however, that all legacy Monoliths are necessarily the Big
Ball of Mud variety. While the vast majority are definitely Big Ball of Mud systems,
we must think carefully before making this judgment. The point being made fol-
lows next.

A re Monoliths Bad?

Over the past several years, the words Monolith and Monolithic as applied to soft-
ware have come to have very negative connotations. Even so, just because the vast
majority of Monolithic legacy systems have arrived at the Big Ball of Mud zone, that
doesn’t mean it is a necessary destination. It’s not the Monolith that’s the problem—
it’s the mud.

The term Monolith can simply mean that the software of an entire application or
whole system is housed in a container that is designed to hold more than one subsys-
tem. The Monolith container often holds all or most of the subsystems of an entire
application or system. Because every part of the system is held in one container, it is
described as self-contained.

The internal architecture of a Monolith can be designed to keep the components
of different subsystems isolated from each other, but can also provide the means for
communication and information exchange between subsystems. Figure 1.8 shows
the same two subsystems from Figure 1.1, but with both subsystems inside a Mono-
lithic container.

In Figure 1.1, we assumed that the two subsystems were physically separated from
each other in two processes, and that they communicated via a network. That dia-
gram implies a distributed system. In Figure 1.8, the same two subsystems are physi-
cally together in the same process and perform their information exchange through
simple in-process mechanisms such as programming language methods or functions.

A M G? 31

Figure 1.8 A Monolithic container showing a portion of a whole system. Only two of
possibly several subsystems that make up the whole are shown here.

Even if the ultimate system architecture is to be Microservices, there are advan-
tages to the system starting out life as a Monolith. Not having a network between
subsystems can prevent a lot of problems that are unnecessary to contend with
early on and are quite counterproductive. Also, using a Monolith is a good way to
demonstrate commitment to loose coupling between subsystems when it is easier
to allow tight coupling. If transforming to a Microservices architecture is the plan,
you will ultimately find out how loose the coupling actually is.

Although some oppose the approach of using a Monolithic architecture for early
development where a distributed Microservices architecture is the target, please
reserve judgment until this topic is discussed in Parts II and III of this book.

A re Microservices Good?

The term Microservice has come to mean many different things. One definition is
that a Microservice should be no more than 100 lines of code. Another claims that
it’s not 100 lines, but 400. Yet another asserts that it’s 1,000 lines. There are at least
a few problems with all of these attempted definitions, which probably reflect more
on the name itself. The term “micro” is often seen to imply size—but what does
“micro” mean?

When using “micro” to describe computer CPUs, the full term is microproces-
sors. The basic idea behind a microprocessor is that it packs all the functionality
of a CPU onto one or a few integrated circuits. Before the design and availability
of microprocessors, computers typically relied on a number of circuit boards with
many integrated circuits.

Note, however, that the term microprocessor doesn’t carry the idea of size, as if
some arbitrary specific number of integrated circuits or transistors is either appro-
priate or not. Figure 1.9 shows a case in point—that one of the most powerful CPUs

C 1 B G  D T32

available is still a microprocessor. For example, the 28-core Xeon Platinum 8180
sports 8 billion transistors. The Intel 4004 had 2,250 transistors (year 1971). Both
are microprocessors.

Microprocessor limits are generally set based on purpose; that is, some micro-
processor types simply don’t need to provide the power of others. They can be used
for small devices that have limited power resources, and thus should require less
draws on power. Also, when the power of a single microprocessor—even one of
outstanding proportions—is not enough for the computing circumstances, comput-
ers are supplied with multiple microprocessors.

Another problem with putting some arbitrary limit on the number of lines of
code in a Microservice is the fact that a programming language has a lot to do with
the number of lines of code required to support some specific system functionality.
Saying that this limit is 100 lines of code for Java is different than saying it is 100
lines of code for Ruby, because Java tends to require 33% more code than Ruby. In
a matchup of Java versus Clojure, Java requires around 360% more lines of code.

Furthermore, and even more germane to the point, creating tiny-tiny Micro-
services has been shown to result in a number of disadvantages:

• The sheer number of Microservices can grow beyond hundreds, to thousands,
and even tens of thousands.

• Lack of dependency comprehension leads to unpredictability of changes.

• Unpredictability of change results in no changes or decommissioning.

Figure 1.9 The Intel Xeon is one of the most powerful modern microprocessors. No one
has said it is not a microprocessor because it has “too many circuits and transistors.”

A M G? 33

• More Microservices are created with similar (copy-paste) functionality.

• The expense of ever-growing yet often obsolete Microservices increases.

These major disadvantages suggest that the result is unlikely to be the hoped-for
cleaner distributed system solution and autonomy. With the background given in
this chapter, the problem should be apparent. In essence, the many tiny-tiny Micro-
services have created the same situation as the Monolithic Big Ball of Mud, as seen
in Figure 1.10. No one understands the system, which falls prey to the same issues
that are experienced with a Monolithic Big Ball of Mud: haphazard structure;
unregulated growth; repeated, expedient repair; information shared promiscu-
ously; all important information global or duplicated.

Some solutions and additional efforts may be made to move beyond these out-
comes, but they generally do not use a completely separate container deployment
per Microservice.

The best way to think about a Microservice is not by defining the size, but rather
by determining the purpose. A Microservice is smallish in comparison to a Mono-
lith, but the guidance we provide is to avoid implementing tiny-tiny Microservices.
These points are discussed in detail later, in Part II of this book.

Figure 1.10 Many tiny-tiny Microservices result in a distributed Big Ball of Mud.

C 1 B G  D T34

 Don’t Blame Agile

In the 1969 film If It’s Tuesday, This Must Be Belgium, a tour guide leads groups
of Americans on fast-paced sightseeing tours through Europe. As far as touring is
concerned, this is a classic example of travelers going through the motions.

The same kind of tour can happen with agile software development. “It’s 10:00 a.m.
and we’re standing. We must be doing agile.” With reference to daily standups,
going through the motions turns otherwise valuable project communications into
mere ceremony. Reading Scrum.org on the topic “Agile: Methodology or Frame-
work or Philosophy” is a real eye-opener. At the time of writing, there were approx-
imately 20 replies to this post, and about as many different answers.7 A reasonable
question regarding this concern is, why should that matter?

Recently, agile software development has drawn a lot of criticism. Perhaps most
of the criticism is directed toward a specific project management methodology for
which mastery certifications can be obtained after a few days of training, because
the two are often conflated. This is a sad state, given what agile software develop-
ment should represent. Much of the industry claiming to use agile methodology or
to be agile can’t really define it, as noted in the previous Scrum.org experience.

The original agile philosophy never promised to turn poor software developers
into good software developers. Has agile made any promises at all? There’s a mind-
set to developing software in an agile way (the Agile Manifesto), and there is a his-
tory behind that [Cockburn]. As already observed, agile can’t even cause developers
to embrace that mindset.

Consider one problem. The ideas of agile software development have been reduced
to arguments over whether to refer to this approach as Agile, agile, or “Agile.” In fact,
we could even draw fire for referring to it as an “approach.” So, from here on, we will
refer to “it” no longer as “it” but as #agile. This terminology is intended to represent
every possible use. However each individual chooses to spell #agile, software devel-
opers must demand to get more from #agile than #agile takes from them.

Consider a second problem. A vast complexity has become wrapped around
some rather straightforward concepts. For example, the terms and steps of #agile
are actually presented as subway maps. At least one high-end consultancy rep-
resents its #agile approach in the form of a map of the New York City or London
subway/tube system. Although traveling anywhere on an extensive subway network
is not extremely complicated, most wouldn’t choose to take every route in a large
system on a daily or weekly basis just to reach a necessary destination, such as the
workplace in the morning and home in the evening.

 7. Given that the number of permutations in three options is six, somehow ending with 20 answers
seems odder than the fact that there are even 20 answers at all.

http://Scrum.org
http://Scrum.org

D’ B A 35

This is all very unfortunate. Many have hijacked #agile and moved it far away
from its origins, or simply travel in naivety. Usage should be far simpler. Working
in #agile should boil down to these four things: collaborate, deliver, reflect, and
improve [Cockburn-Forgiveness].

Before accepting any extraneous and elaborate routes, teams should learn how
to get to work and back home in these four basic steps:

 1. Identify goals. Goals are larger than individual work tasks. They require
collaboration to find the impacts that your software must make on the con-
sumer. These kinds of impacts change the consumers’ behaviors in positive
ways. They are recognized by consumers as what they need, but before they
even realized their need.

 2. Define short iterations and implement. An iteration is a procedure in
which repetition of a sequence of operations yields results successively closer
to a desired result. A team collaborates to identify these. Given project pres-
sures, unavoidable interruptions, and other distractions, including the end of
day and week, teams should limit work items to a number that can be readily
remembered and grasped.

 3. Deploy increments when legitimate value is achieved. An increment is
the action or process of increasing, especially in quantity or value; something
gained or added; or the amount or degree by which something changes. If
delivery of value is not possible by means of one day’s work, then at least
an increment toward value can be reached. Teams should be able to string
together one or two additional days of iterations and reach value delivery.

 4. Review the outcome, record debt, goto 1. Now reflect on what was accom-
plished (or not), with the intention of improving. Has the increment achieved
an intended and vital impact? If not, the team may shift toward another set of
iterations with increments of different value. If so, note what the team sees as
reasons for success. Even when reaching delivery of some critical value, it is
normal that an incremental result doesn’t leave the team feeling entirely suc-
cessful. Implementation leads to increased learning and a clearer understand-
ing of the problem space. The iteration is time boxed and doesn’t leave enough
time to immediately remodel or refactor current results. Record it as debt.
The debt can be addressed in the next iterations, leading to an increment of
improved value that gets delivered.

Planning too far ahead will lead to conflicts in goals and execution. Going too
far too fast can lead to purposely overlooking debt or forgetting to record it. When
under heavy pressure, the team might fail to care for debt sooner than later.

C 1 B G  D T36

The few steps identified in this brief overview of essential #agile can take teams
a long way forward. This is the mindset that experimentation affords, and what
#agile should primarily be about. It’s possible to get more out of #agile than #agile
takes.

Getting Unstuck

Any company that has gotten stuck in a Big Ball of Mud and taken complex detours
with technologies and techniques needs to get unstuck and find its way out. There
isn’t one single answer; there are no silver bullets. At the same time, there are means
that can serve companies well.

A software system that has become deeply in debt and possibly reached the max-
imum entropy level took years or even decades for its sterling qualities to erode
and digress that far. It’s going to take time to make progress out of this mess. Even
so, effecting big change is not a waste of time or money. Consider two reasons for
this assertion, both based on the poor decision to continue to invest in a losing
proposition:

• Escalation of commitment. This is a human behavior pattern in which an
individual or group facing increasingly negative outcomes from a decision,
action, or investment nevertheless continues the behavior instead of altering
course. The actor maintains behaviors that are irrational, but align with pre-
vious decisions and actions [EoC].

• Sunk cost fallacy. A sunk cost is a sum paid in the past that is no longer
relevant to decisions about the future. “Sunk costs do, in fact, influence peo-
ple’s decisions, with people believing that investments (e.g., sunk costs) justify
further expenditures. People demonstrate ‘a greater tendency to continue an
endeavor once an investment in money, effort, or time has been made.’ Such
behavior may be described as ‘throwing good money after bad,’ while refusing
to succumb to what may be described as ‘cutting one’s losses’” [SunkCost].

This does not mean that saving any part of the preexisting system always equates to
chasing the sunk cost fallacy. The point is that continuing to maintain the existing
system as is, with its deep debt and near maximum entropy, is a losing proposition
from both an emotional standpoint and a financial position.

Time won’t stand still and change won’t cease while teams heroically defeat the
great brown blob. Moving onward as time ticks away while surrounded by mud and
inevitable change, and without sinking deeper, is an absolute necessity. Succeeding

S 37

under those conditions depends more on attitude than on distributed computing.
Positive attitude is developed through confidence, and the remainder of this book
delivers a number of tools and techniques to build the confidence needed to make
strides to achieve strategic innovation.

 Summary

This chapter discussed the importance of innovation as a means to achieve software
differentiation as a primary business goal. To aim for relentless improvement in dig-
ital transformation is the strongest play in the age of “software is eating the world.”
Software architecture was introduced, along with the role that it plays inside every
company. The chapter explored how the effects of Conway’s Law shape the commu-
nication paths inside organizations and teams, and the ways it impacts the software
produced by organizations and teams. Discussing the importance of communication
brought the topic of knowledge to the fore. Knowledge is one of the most important
assets in every company. To obtain the best results with software, knowledge must be
raised from tacit to shared. Knowledge cannot be shared without proper communi-
cation paths, and competitive advantage can’t be achieved without either. Ultimately,
bad communication leads to incomplete knowledge and poorly modeled software—
and then to the Big Ball of Mud as the best possible outcome. Finally, we focused on
the original #agile mindset and how it can help teams to get unstuck and focus on the
right goals.

The principal points made in this chapter are as follows:

• Innovation is the most important aspect of digital transformation. Innovation
leads to profitable differentiation from competitors, and should therefore be a
strategic goal of every company.

• Software architecture must support the inevitable change without extreme
cost and effort. Without good architecture, the best alternative is bad archi-
tecture, which eventually leads to unarchitecture.

• The Big Bull of Mud is often the outcome of broken communication that can’t
possibly lead to deep learning and shared knowledge.

• The people in organizations must exchange knowledge through open and
nuanced communication that can lead to breakthroughs in innovation.

• Monoliths are not necessarily bad and Microservices are not necessarily
good. Choosing one over the other based on purpose is a result of an informed
decision.

C 1 B G  D T38

Chapter 2 introduces strategic learning tools that can help mitigate poor com-
munication and set the bar higher for enterprise culture. By applying these tools,
you can learn how to make informed decisions based on experimentation, and how
they can affect the resulting software and its architecture.

 References

[ANW] A. N. Whitehead. “Technical Education and Its Relation to Science and
Literature.” Mathematical Gazette 9, no. 128 (1917): 20–33.

[a16z-CloudCostParadox] https://a16z.com/2021/05/27/cost-of-cloud-paradox-
market-cap-cloud-lifecycle-scale-growth-repatriation-optimization/

[BBoM] https://en.wikipedia.org/wiki/Big_ball_of_mud

[Brabandère] Luc de Brabandère and Alan Iny. Thinking in New Boxes: A New
Paradigm for Business Creativity. New York: Random House, 2013.

[Cockburn] https://web.archive.org/web/20170626102447/http://alistair.
cockburn.us/How+I+saved+Agile+and+the+Rest+of+the+World

[Cockburn-Forgiveness] https://www.youtube.com/watch?v=pq1EXK_yL04
(presented in French, English, and Spanish)

[Conway] http://melconway.com/Home/Committees_Paper.html

[Cunningham] http://wiki.c2.com/?WardExplainsDebtMetaphor

[Entropy] https://en.wikipedia.org/wiki/Entropy

[EoC] https://en.wikipedia.org/wiki/Escalation_of_commitment

[Jacobson] https://en.wikipedia.org/wiki/Software_entropy

[LAMSADE] Pierre-Emmanuel Arduin, Michel Grundstein,ǙElsa Negre,
andǙCamille Rosenthal-Sabroux. “Formalizing an Empirical Model: A Way
to Enhance the Communication between Users and Designers.” IEEE 7th
International Conference on Research Challenges in Information Science (2013):
1–10. doi: 10.1109/RCIS.2013.6577697.

[Manifesto] https://agilemanifesto.org/

[P olanyi] M. Polanyi. “Sense-Giving and Sense-Reading.” Philosophy: Journal of
the Royal Institute of Philosophy 42, no. 162 (1967): 301–323.

[SunkCost] https://en.wikipedia.org/wiki/Sunk_cost

https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization/
https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization/
https://en.wikipedia.org/wiki/Big_ball_of_mud
https://web.archive.org/web/20170626102447/
http:///alistair.cockburn.us/How+I+saved+Agile+and+the+Rest+of+the+World
http:///alistair.cockburn.us/How+I+saved+Agile+and+the+Rest+of+the+World
https://www.youtube.com/watch?v=pq1EXK_yL04
http://melconway.com/Home/Committees_Paper.html
http://wiki.c2.com/?WardExplainsDebtMetaphor
https://en.wikipedia.org/wiki/Entropy
https://en.wikipedia.org/wiki/Escalation_of_commitment
https://en.wikipedia.org/wiki/Software_entropy
https://agilemanifesto.org/
https://en.wikipedia.org/wiki/Sunk_cost

299

Index

A
Access control lists (ACLs), 197
Access Tokens (JWT), 197
Accidental complexity, xix, 12, 226
Actor Model

in architectural comparison chart, 191
defined, 189
in message-driven architecture, 214–215
for resilience and fault tolerance, 290
in transition to Microservices, 270

Adaptability, xx, 71
Advertising, FAANG company, xvii
Aggregates

in concept modeling, 167, 168–169, 173
Event Sourcing and, 223–227
in EventStorming model, 87, 91
purpose of, 107

Agile Manifesto, 34, 55, 111, 244
#agile development

ADR for, 72
benefit of, xx–xxi
culture of, 43
doing vs. being agile, 292
to implement business capability, 127
last responsible moment decisions, 55, 129
mindset of, 34–36, 37
tenets of, 111

Amazon, xvii, 9
Anticorruption Layer, 133, 141–142, 163
APIs

and Anticorruption Layer, 141
for Conformist pattern, 140
for Customer-Supplier Development, 138
in Monolith-to-Microservices transition,

276–277, 282–283
in Monolithic architecture, 251
Open-Host Service, 133, 143–148
security considerations, 197, 198
timeline for, 144

upstream establishment of, 138
when to create, 143–144

Apple, xvii, 39, 199
Application Service

with Domain Model, 188
Service Layer of, 187
vs. Domain Service, 170

Approval, 93
Architect, 71
Architecture. See also Message- and event-

driven architecture; Ports and Adapters
(Hexagonal) Architecture

ad hoc, 11
ADR record of, 71–72
Big Ball of Mud, 14–15
business and technical, 48
changes to, 11, 37
clean, 71
comparison chart, 191
cost of, 182
decisions, 248–253
defined, 10–11, 70–71, 181–182
design and, 181
diagrams notation legend/key, xxi–xxii
features of, xv, 10
foundation. See Foundation architecture
Modules. See Modules/Modularization
Monolith. See Monoliths
purpose-driven, 183, 193, 291
REST. See REST
strategic, 48, 70–72
supporting user outcome, 9
system vs. service level, 183

Architecture Decision Record (ADR)
for decision tracking, 43, 71–72, 248–249
NuCoverage case study, 72–74
in REST Message Exchange decision, 74
as shown on the Message Bus, 251

I300

Asynchronous messaging
alternatives to, 251
API offered as, 147
failures avoided by, 211, 232
for inter-context communication, 192, 202
for Message-based REST, 216

Atomicity, 168
Attitude. See Mindset
Authentication, 197–198
Authorization, 197–198
Auto-increment columns, 216
Autonomy, 137

B
Backend as a Service (BaaS), 229
Balance, 237, 289–290, 296
Barton, Bob, 263
Behavior

blurred software, 285
functional, 107, 170–173, 174
sustaining wrong, 285–286

Bell, Alexander Graham, 81
Bias, 42
Big Ball of Mud

communication and, 19, 37
defined, 14–15
example of, 15–18
and failure, 45–46
getting unstuck from, 36
Microservices as, 33
modularity to avoid, 54, 264
Monoliths that aren’t, 30, 253
NuCoverage example, 243
scopes of knowledge in, 113, 115
transition to Microservices, 275–286, 296
as unreliable, 204
via maintenance mode, 122–123

Big-picture modeling, 89–92, 94, 293
Blame, 46–47
Booch, Grady, 181
Boundaries, 151–152, 251
Bounded Contexts

capability housed in, 125
changes to, 126, 129
Context Maps between, 131–133
Core Domain, 122–123

defined, xiv–xv
evolution of, xv
integrating, 194, 216
as modules in a Monolith, 190–192, 247,

249–253, 296
nesting, 128–129
at NuCoverage, 160, 190, 193, 247
ownership of, 130, 252
partnerships between, 133
Published Languages for, 148–151
reducing coupling in, 253
size of, 128, 129, 130
as sphere of knowledge, 293
Ubiquitous Language and, 117–121

Brandolini, Alberto, 82, 83, 85
Bugs

discovering source of, 227, 257
disorder and, 11
as inevitable, 226
in maintenance mode, 122
quick fixes to, 11, 156
as reason to backlog items, 110
tests to patch, 256
tight coupling as, 259
via lack of tests, 204

Business
communication with developers, 48, 50
means of advancing, 110, 115
simplifying, 70
software as essential to, 297
software as hampering, 14–15
startups vs. established, 123

Business capabilities
contextual divisions and, 105, 125–128
cross-functional teams, 49, 50, 51
cycle of insights, 50
designing software for, 245
knowledge within, 127
in legacy systems, 124
modularity for, 52, 255
in Monolith-to-Microservices transition,

275, 286
NuCoverage example, 245–248
process and, 57–62, 127
recognizing, 5, 245
as revenue generators, 126

I 301

as subdomains, 114
in Topography Modeling, 154

Business experts
#agile collaboration with, 111, 115
in architecture conversations, 71
communication with developers, 48, 50
at EventStorming sessions, 82, 92–93, 94
in Topography Modeling, 153

Business processes
business capabilities and, 57–62, 127
choreography and orchestration, 212, 294
Domain Service to guide, 169
event-driven management of, 220–223
at EventStorming sessions, 88
NuCoverage example, 158

C
C-level executives

as audience for this book, xviii–xix
hierarchical command by, 23
as introverts, 77
vs. technical leadership, 22

C programs, 27, 28
Calques, 141
Change. See also Transformations

of Aggregate states, 223–225
anticipating, 264
architecture supporting, 11
to Bounded Contexts, 126, 129
within change, 256–259
cooperative, 23
in product types, 18
rate of, 192
replacing legacy systems, 27–28, 278–283
resistance to, 22
software impacts of, 11
strategic, 71
value of, 36

Change Data Capture [CDC], 281–282
Chaos, 254
ChaosMonkey, 205
Chaotic domain, 68–69, 73
Cheatsheet, 90
Child entities, 166
Choreography, 212, 213, 220, 294
Clear domain, 67, 69, 73

Client-server communication, 194
Cloud infrastructure

allocating talent to, 125
distributed computing and, 56
for Monolith messaging, 192
as serverless, 230
transformation via migrating to, 9

COBOL, 27, 28
Code

duplication of, 263
functional behavior language for, 171
repetition of, 262

Collaboration. See also EventStorming;
Teams

innovation via, 77
remote, 84
for sound architecture, 71

Command buttons, 78
Commands

CQRS pattern, 228–229
events and, 78–81
at EventStorming sessions, 87, 91, 94
in message-driven architecture, 213, 221
software models and, 81
in Topography Modeling, 154

Commitments, 36, 40–41, 240
Communication. See also Languages

about modules, 53–54
architecture via, 181–182
Big Ball of Mud via poor, 19, 37
Bounded Contexts for, 119–120
client-server, 194
collaborative, 77
complexity and, 205
innovation via, 82
inter-team, 135
by introverts, 77
knowledge and, 19–20
within a Monolith, 192, 251–252
optimal, 23–24
in remote meetings, 84
within subdomains, 114, 251, 272
and team structure, 48–49
Telephone Game, 21–22
via Context Mapping, 131–133

Competition, 7, 83

I302

Complexity
accidental, xix, 12, 226
balancing, 290
Cynefin Complex domain, 68, 69, 73
Microservices, 206
Monolith, 205
Monolith-to-Microservices transition,

277
Ports and Adapters, 186, 187
as quality attribute, 205–206
software, 70
tracking, 206

Complicated domain, 67–68, 69, 73
Concept modeling

Aggregates, 168–169
applying, 173
Domain Services, 169–170
Entities, 166–167
functional behavior, 170–173
language for, 165–166
Value Objects, 167–168

Concurrent development, 40
Confidence, 37
Conformist pattern, 133, 139–141
Consensus, 93
Consulting, xiii–xiv
Consumer-Driven Contracts, 147
Context Mapping, 131–151

Anticorruption Layer, 133, 141–142
APIs for, 143–148
Conformist pattern, 133, 139–141
Customer-Supplier, 133, 137–139
for loose coupling, 192
NuCoverage example, 160–163
Open-Host Service, 143
Partnerships, 132, 133–135
principles of, 163
Published Language, 133, 148–151
purpose of, 127, 293
Separate Ways pattern, 133, 151
Shared Kernels, 132, 135–137

Contexts
Bounded. See Bounded Contexts
business capabilities and, 125–128
decoupling, 260–261

domains and subdomains, 112–115
in EventStorming model, 88, 91
mapping, 124
naming, 120
size of, 128
small context scope, 113
in Topography Modeling, 153

Contextual expertise, 105–106
Continuous Architecture in Practice (Murat,

Pureur, Woods), 182, 196
Contractor model, 43–44, 126
Conway, Mel, 19
Conway’s Law

defined, 19
and design flexibility, 24
as a fact of life, xv, 291
modules and, 51, 52
and team structure, 47–48

Core Domain/context
focus on, 105, 121–123, 130
integrating, 131
NuCoverage example, 245–247
support for, 123, 124, 134
understanding, 293

Cost
Actor Model to reduce, 214
of architecture, 182
of bargain-basement hires, 244–245
of cyber-attacks, 196–197
of experimentation, 82
of innovation, 122
of server use, 230

Coupling
breaking, 259–264
in Conformist pattern, 140
as DDD failure, 155
and event translation, 137
failures and temporal, 211–212
loose, 30, 157
in a Monolith, 192, 253

CQRS (Command Query Responsibility
Segregation), 225, 227–229, 294

Creativity, 93
Critical thinking, 24–26, 42
CRUD/CRUUD, 193–194, 195

I 303

Culture
failure-tolerant, 45–46, 82
teams and, 43–45
“us versus them” mentality, 23

Cunningham, Ward, 13
Customer-Supplier Development, 133,

137–139, 163
Cyber-attacks, 196, 199
Cynefin

case study using, 72–74
for decision tracking, 43
framework defined, 66–69

D
Data

atomic translation of, 168
business model based on, 165
collection and protection, 199–201
harmonizing changes to, 278–283, 286
history of digitized, 242
latency, 201–203
replication, 155
respect for origins, 157
security, 196
theft, 199
value of, 199
viewable vs. operational, 227–228

Databases
Aggregates and, 168–169
in Bounded Contexts, 252
decoupling and changes to, 262
in Monolith-to-Microservices transition,

279
sharing, 143
to track events, 216

Debezium, 281–282
Debt metaphor, 12–13, 36, 292
Debugging, 206, 227
Decision making

ADR to record, 43, 71–72, 183
Impact Mapping, 63–66
last responsible moment, 40, 55, 206, 292
as a learning tool, 40–43
life and death examples, 47
on Monolithic architecture, 248–253
questions to ask, 25, 29

timing of, 41
tracking, 43
via Cynefin, 66–69

Decoupling
adopting temporal, 157, 232, 252
in a Monolith, 259–264
via process management, 212

Deep thought, 24–26
“Delaying Commitment” (Thimbleby), 41
DELETE, 194
Dependencies

adapter interfaces to manage, 187
ADR record of, 72
as DDD failure, 155
mapping direction of, 106
minimizing code, 49
in a Monolith, 192, 261, 265
Published Language and, 162
security and, 197
temporal, 211–212

Deployment
complexity and, 206
at the end, 55–57, 292
maintenance mode after, 122–123
in partnership, 134

Design
architecture and, 181
for business capabilities, 245
design-level storming, 89
for failure and recovery, 205, 269
flexibility, 24
purpose of, 183
reusable code, 263
for security, 197, 198
supporting user outcome, 9

Developers
#agile collaboration with, 111
challenging, 125
hiring top, 244–245
as industry leaders, xviii
maintaining experienced, 264
mental engagement of, 25
work with business experts, 48, 50

Development
best practices, 25
customer-supplier, 133, 137–139

I304

factors affecting, 66
honoring differences in, 103–104
knowledge-driven, 104, 107
negative side of, xix
security considerations, 198
of subdomains, 124

Differences
Bounded Contexts to define, 119–120
contextual divisions, 105
development that acknowledges, 103

Differentiation
as a business goal, 296–297
as a strategy, 8, 77, 100
via collaborative communication, 77
via deep thought, 26
via innovation, xviii, 37, 70
via knowledge, 115

Digital Transformation. See Transformations
Disagreements, 94
Discipline, 51
Disorder domain, 68–69
Displays, external, 84
Distributed computing, 56, 268
Diversification, 16
Docker containers, 192
Domain-Driven Design (DDD)

Bounded Contexts in, 119–120
defined, 110
failures in, 154–157
functional behavior models, 170
going beyond, xxi
introduction of, 83, 244
knowledge acquisition in, 110
modeling tools, 173
results via, 104

Domain-Driven Design Distilled (Vernon),
166, 173

Domain-Driven Design (Evans),
170–171

Domain Events, 201
Domain Model, 188–189, 191, 253, 294
Domain Services, 107, 169–170, 173
Domains. See also Concept modeling

core, 121–123
Cynefin, 66–69
defined, 104, 109–110
modeling, 106–107, 165, 173

scopes of knowledge in, 112–113
and subdomains, 112–115, 120–121

Don’t Repeat Yourself (DRY), 151, 262
Downstream teams

Anticorruption model for, 141–142
Conformist pattern for, 139–140
Customer-Supplier relationship for,

137–139
Open-Host Service, 143–148

Duplication, 151, 262, 263

E
Edison, Thomas, 81
Efficiency, 70
Encryption, 198
Engineering model, 43–44, 47
Enterprise Resource Planning (ERP), 59
Enterprise scope, 112, 120
Entities

aggregates and, 169
in concept modeling, 166–167, 173
in data-centric business, 165
decoupling, 260, 262–263
in EventStorming model, 87, 91
modeling with, 106
in refactoring operations, 257
in Topography Modeling, 154

Entropy
of established business, 123
righting the wrongs of, 254
as a slow process, 292
software, 13–14

Equities trading, 136
Erder, Murat, 182
Errors, 216
Escalation of commitment, 36
European Union (EU), 200
Evans, Eric, 170–171
Event-driven architecture. See Message- and

event-driven architecture
Event logs, 216–218
Event Sourcing, 223–227, 294
Event Surfacing, 281
Events

data-harmonizing, 282–283
at EventStorming sessions, 83, 87, 90
integrating, 145

I 305

as a learning tool, 81
in Topography Modeling, 154
translating, 136–137

Events-first experimentation
architecture supporting, 182
commands and events, 78–81
domain modeling via, 173
EventStorming, 82–99
overview of, 5–6

EventStorming
big-picture modeling, 89–92, 293
finding boundaries in, 151, 152
NuCoverage example, 94–99, 158–160
in-person, 85–89, 92–94
process of, 82–83
remote, 84–85

Experimentation. See also Events-first
experimentation

#agile, 36
blame vs., 46
in the Core Domain, 121
with domain modeling, 173
enabling safe, 51
failure-tolerant, 45, 82, 154
innovation via, 10, 110, 115, 296–297
investing in, 82
for market response, 29
by talented people, 122

Expertise, 115
Extreme Programming (XP), 111, 244
Extroverts, 77

F
Facade, 276
Facebook, xvii, 98
Failures

architectural, 71
avoiding, 154–156, 163–164
culture tolerating, 45–47, 292
in DDD, 154–157
designing for, 205
with distributed software, 267–270
embracing, 5
fear of, 45–46
modularity, 255
in Monolith-to-Microservices transition,

267

with REST, 211
Thomas Edison on, 81

Fallacies of Distributed Computing, 268
Fault tolerance, 204–205, 290
Fear

of failure, 45–46
FOMO, 25, 42

Feedback, 182
Floating point values, 135
Flow

structure vs., 61
in Topography Modeling, 152
of work, 127

Foote, Brian, 182
Foundation architecture

Modularization, 190–193
overview of, 177–178, 207–208
Ports and Adapters (Hexagonal), 183–187
quality attributes, 196–206, 289–290
REST Request-Response, 193–195
Service Layer with Domain Model,

188–189
Service Layer with Transaction Scripts,

187–188
Fowler, Martin, 284
Fratto, Natalie, xx
Function as a Service (FaaS), 204, 231, 232,

290
Functional behavior, 107, 170–173, 174
Functional Core, 170, 173, 189–191
Functional programming, 189, 231

G
General Data Protection Regulation (GDPR),

199, 201
Generic subdomains, 124–125
GET, 194
Goals, business

architecture supporting, 181, 182
based on business size, 123
capabilities and process to support, 60–62
as Core Domains, 121–123
digital transformation as, 8–10
Impact Mapping of, 63–66, 126
to inform transformations, 291–292
initiatives as tied to, 29
innovation as, 3–4, 37

I306

tracing impacts of, 115
understanding, 156

Google, xvii–xviii, 9
Google Workspace, xvii–xviii
GraphQL, 141, 277
GS1 schema, 149

H
Harmony, data, 278–283, 286
HATEOAS (Hypertext As The Engine Of

Application State), 195, 229
Health Level 7 schema, 149
Healthy culture, 44
Hexagonal architecture. See Ports and

Adapters (Hexagonal) Architecture
Hippocratic Oath, 26
Historical overview, 241–244
Hollnagel, Erik, 51
Hooke, Robert, 81
HTTP, 193
HTTPS, 198

I
ICD-10 codes, 136, 149
Icebreakers, 93
Immutability

for domain concepts, 172
of entities, 167
of stored events, 216
of value, 167, 168

Impact, 111–112
Impact Mapping

of business goals, 126
Core Domains, 121–122
overview of, 63–66

Imperative Shell, 189–190, 191
Implementing Domain-Driven Design

(Vernon), 166, 173, 219
Implementing Strategic Monoliths and

Microservices (Vernon and Jaskuła,
forthcoming)

architectural decisions in, 183
on Bounded Contexts, 253
caching in, 219
design-level modeling in, 89
implementation techniques in, 157, 172,

277

Incremental improvement, 4, 8–9
Infrastructure innovations, 9
Innovation

as business goal, 37
communication and, 19, 77, 82
in the Core Domain, 121
culture supporting, 44–45
developers as industry leaders for,

xviii
for digital transformation, 9
envisioning need, 7
as essential, 296–297, 298
mindset and tools for, 3–6, 291
predecessor inventions, 81–82
risks, xx
by SpaceX, 8
in technical mechanisms, 125
via architecture and design, 292
via experimentation, 110, 115

Insurance, 15
Integration

between Bounded Contexts, 194
Context Mapping for, 131
Open-Host Service, 144–145
Separate Ways pattern, 151

Intel Xeon, 32
Intelligence, xxi
Intercommunication formula, 49
Introverts, 77
“Inverse Conway Maneuver,” 48
Investment

beyond Core Domain, 123
in Core Domain, 122
maintaining talent, 264–265
over project’s life cycle, 123
timing and placement of, 111–112,

115
Iterate, xiii–xiv

J
J2EE, 242
Jobs, Steve, 7, 39
JSON objects, 223

K
Knowledge

acquisition, 110, 115

I 307

of business capabilities, 127
communication and, 19–20, 37
for Cynefin framework, 69
domain of, 104, 109
at EventStorming sessions, 82–83
law of least, 128
and legacy system replacement, 27
scopes of, 112–114, 120, 128, 293
taking advantage of, 293
value of, 199

Kubernetes Pods, 192

L
Lamport, Leslie, 211
Languages. See also Communication

to convey business concepts, 166
functional behavior, 170–171
outdated programming, 27
Published Language, 133, 148–151
translating events, 136–137
ubiquitous, 117–121, 127

Latency, 201–203
Lateral communication, 23–24
Law of Demeter, 128
Leadership, technical, 22
Learning

Communicate-learn-innovate path, 19
cost of, 82
digesting, 157
innovation via, 110, 115
tools for, 4–5
via decision making, 42
via EventStorming, 81–83
via failure, 154

Learning tools, strategic
ADR, 71–74
capability, process and strategy, 57–62
Conway’s Law in action, 47–51
culture and teams, 43–47
Cynefin, 66–69
decision making, 40–43
modularity, 51–55
overview of, 4–5
strategic delivery, 62–66
success via use of, 156, 292
when to deploy, 55–57

Legacy systems
how to unplug, 285–287
integrating with, 145
in Monolith-to-Microservices transition,

278–283
replacing, 26–28
as subdomains, 124

Legal team, 200–201
Light, speed of, 201

M
Machine learning algorithms, 97–98,

158–159, 199
Maintenance mode, 122–123, 264
Mapping

Context Mapping, 131–151
team dynamics, 106
via Topography Modeling, 152

Markers, 85
Market timing, xv, 111–112
Medium-to-large system scope, 112
Memory, 28, 50, 51
Mental engagement, 24–26
Message- and event-driven architecture

applying, 231
breaking dependencies in, 261
choreography and orchestration, 212
communication in, 213–215
CQRS, 227–229
event-driven process management,

220–223
Event Sourcing, 223–227
FaaS, 231
failures in, 211–212
lightweight modeling of, 292–293
in Monoliths, 251–252
overview of, 178–179, 231–232
principles of, 294–295
REST, 216–220
serverless models, 229–231

Message Bus
in event-driven choreography, 213, 214,

220–222
inter-context communication via, 251,

252, 272
in a Monolith, 222

I308

in Monolith-to-Microservices transition,
273, 274

unfamiliarity with, 216
Message bus, 213–215, 221
Microprocessors, 31
Microservices

attack surfaces, 197
Bounded Contexts as, 127, 129
complexity of, 206
Event Sourcing for, 226
irresponsible choice of, 42
latency in, 201–203
in message-driven architecture, 222–223
modularity for, 128
NuCoverage example, 72–74, 193
potential fail points, 267–270
reasons for forming, 192
reliability for, 204
scalability of, 203–204
transitioning to, 236–237, 267–288,

295–296
value of, 31–33
when to use, 235, 267, 290, 296

Microsoft, 9
Miller’s Law, 51
Mindset

changes to, 18
confidence and positivity, 37
disciplined and thoughtful, 239
of experimentation, 41
of innovators, 122
for Monolith-to-Microservices transition,

270, 295
Mocks, 189
Modeling

of Bounded Contexts, 127
design-level, 89
domain concepts, 106–107
at EventStorming sessions, 85–92
lightweight, event-driven, 292–293
money, 135–136
new business models, xiv–xv
software, 81
topography, 151–154

Modules/Modularization
architecture based on, xiv–xv
in data-centric business, 165

decoupling, 259–260
lack of meaningful, 254, 255
for Monoliths, 190–193, 249–253, 271
naming, 55, 80
NuCoverage example, 126
overview of, 51–55
in refactoring operations, 258
reliability and, 204
when to create, 207

Monetary schemes, 135–136
Mono-repo, 205, 206
Monoliths, 239–266

attack surfaces, 197
complexity of, 205
concerns and goals with, 241
historical perspective on, 241–244
latency in, 203
in message-driven architecture, 222–223
modular, 190–193, 255, 271
at NuCoverage, 72–74, 190, 193, 243–250
overview of, 265
reliability for, 204
righting wrongs in, 253–264
scalability of, 203–204
scopes of knowledge in, 115
tips for successful, 244–253, 264
transition to Microservices, 253, 267–288,

295–296
value of, 30–31, 295
when to use, 56, 235–236, 237, 290
why and hows of, 239–240

Multitasking, 50
Mutability, 167, 171–172

N
Naming

business capabilities and processes, 61
commands and events, 79
deliverables, 64
modules, 55, 80, 81

Need, in business context, xvii, 62
Netflix, xvii, 220
NoSQL database, 217
NotPetya, 196
Nouns, 165–166
“Now Every Company Is a Software

 Company” (Forbes), 297

I 309

NuCoverage Insurance
ADR for, 72–74
Anticorruption model for, 142
business context, 16–17
capabilities and process, 58–62, 126–127
commands and events in, 79–80
Conformist pattern for, 140
Context Mapping, 132, 160–163
context naming for, 120–121
Core Domain, 122
Customer-Supplier pattern for, 138–139
decoupling example, 260, 261–262
event-driven process for, 220–222
EventStorming session for, 94–99, 158–160
functional behavior example, 171–172
historical perspective, 242–243
message-driven architecture at, 213–214
Microservices transition for, 271
modules for, 55, 192, 271
Open-Host Service, 143–148
opportunity, 17–18
Partnerships, 134–135
Published Language, 148–151
scopes of knowledge in, 113
Shared Kernels, 136
subdomains, 124
use of Cynefin, 69
user interface graph, 278

Nygard, Michael, 72

O
Object-oriented language, 170, 173, 189
Object-relational mappers, 223
Objectives and Key Results (OKRs), 123
O’Grady, Stephen, xviii
Office 365, 9
Onion architecture, 71
Open-Host Service, 133, 143
Opportunities

cloud-based, 9
in EventStorming model, 88, 92, 95–98
EventStorming to find, 82, 83
strangler as taking advantage of, 284
in Topography Modeling, 154
via failure, 46
YAGNI and, 29

Orchestration, 212, 220–221, 294

P
Pain points, 127
Parent entities, 166, 168
Partnerships, 132, 133–135, 160
PATCH, 194, 195
Performance, 201–203, 289, 290
Personal data, 199–200
Personality, 5, 77
Perspective, 114
Policy

Bounded Contexts to define, 119–120
at EventStorming sessions, 87, 91, 94
GDPR, 199
as heterogeneous, 103
module-based, 104
in Topography Modeling, 154
use of term, 119–120

Poll-based REST, 212
Poppendieck, Mary

on the last responsible moment, 40
on multi-pronged approaches, 47
on SpaceX innovation, 8, 44
on tools for successful ventures,

xiii–xvi
Poppendieck, Tom, 40
Ports and Adapters (Hexagonal)

Architecture
authors’ promotion of, 71
benefits of, 207
Bounded Contexts in, 249–250
complexity of, 186, 187
flexibility via, 177
illustration of, 185, 188, 250
overview of, 183–189, 244
in serverless approach, 230
for tracing decisions, 43

POST, 194
Privacy, 199–201, 295
Problem space

divisions by expertise, 114
multi-pronged approach to, 50, 105
naming of, 104
in scopes of knowledge, 113, 114, 115,

120–121
subdividing, 52, 75, 115
understanding the, 35

I310

Problems
correcting, 253–264
with distributed software, 267–270
in event-driven architecture, 294
at EventStorming sessions, 88, 92, 95–98
integrating events to find, 145
modularity to solve, 51
money modeling, 135–136
problem-solving language, 119
subdomain/context alignment, 114, 115
in Topography Modeling, 154

Process. See Business processes
Product development, 16, 18
Product terminology, 119
Profit, 37, 46
Progress state, 167
Published Language, 133, 148–151, 162
Pureur, Pierre, 182
PUT, 194, 195

Q
Queries. See Views/Queries
Query tools, 277

R
Reactive architecture, 213, 214, 215
Records, immutable, 172
Refactoring, 12–13, 253, 256, 259
Relational databases, 216, 217, 218, 223
Reliability, 204–205, 290
Remote meetings, 84–85
Remote procedure calls (RPC), 147, 155, 198,

211, 213
Replacing systems, 27–28
Requests, 193–194
Resilience, 204–205, 290
Responsibility, 40, 49, 114
REST-over-HTTP, 211, 294
REST (REpresentational State Transfer)

message- and event-driven, 216–220, 294
in Monoliths, 251–252
popularity of, 211
resources, 145, 146, 147
REST Request-Response, 193–195,

216–220
REST Request-Response, 193–195, 216–220

Rethinking, 26–30
Revenue generators

business capabilities as, 57, 126
of FAANG companies, xvii–xviii
legacy systems as, 27
NuCoverage example, 58, 59
for startups, 123
via digital transformation, 3, 103
via incremental innovation, 82

Risk
adaptability and, xx
context naming for, 120–121
EventStorming for, 97, 99, 158–160
in insurance industry, 15–16

Rocket crashes, SpaceX, 8
Rounding off numbers, 135–136
Runtime failure, 267

S
Scalability

balancing, 289, 290
of choreography-based processes, 220
and code reuse, 263
of event logs, 217
of Monoliths, 206
as quality attribute, 203–204

Schema registry, 151
Scopes of knowledge

for Bounded Contexts, 120
within business capabilities, 128
defined, 112–115

Scrum, 34, 110
Security, 196–199, 295
Self-contained systems, 30
Sense-giving/-reading, 20, 67–68
Separate Ways pattern, 133, 151
Sequences, 216
Server-Sent Events (SSE), 219–220
Serverless models, 204, 229–232
Service API, 146–148
Service Layer with Domain Model, 191
Service Layer with Transaction Scripts,

187–188, 191
Service Layers, 256–257
Service Level Agreement (SLA), 205, 252
Service-level requirements, 29–30

I 311

Shared Kernels, 128, 132, 135–137
Sharing, database, 143
Sharpie Fine Point markers, 85
Shaw, George Bernard, 24
Side effects, 171
Size, 128
Small context scope, 113
Snowden, Dave, 66
Social media, 98–99
Software

brittle, aging, 11–12
commands and events in, 78–81
entropy, 13–14
at FAANG companies, xvii–xviii
failures for distributed, 267–270
fighting complex, 70
generic, 124
history of, 242
implementation of, 55, 64
initiatives, 63–64, 122
legacy, 287
modeling, 81
as a profit center, xvii, 6
refactoring, 13
retiring, 27–28
rushed, 25
as ubiquitous, 3, 297
YAGNI, 62

Software architect. See Architect
Software architecture. See Architecture
Software as a Service (SaaS) model

for Google Workspace access, xviii
NuCoverage use of, 113, 271, 272
reasons for failures in, 242
transitions to, 237, 298
VLINGO products, xxviii

Source code, 63, 173, 254
SpaceX

architecture supporting, xv
engineering model of, 44
innovation by, 3, 8
learning tools for, 4

Stakeholders
at EventStorming sessions, 82–83,

92–93
understanding needs of, 62

Startups, 123, 245
Sticky notes, 86–89
Storage, data, 200–201
Strangler Application, 284
Strategic Monoliths and Microservices (Ver-

non and Jaskuła), xix, xxi
Strategy

differentiation via, 39
digital transformation as, 291–292
as an imperative, 237
Monolith/Microservices choices, 290
opportunistic, 284
strategic architecture, 70–72
strategic discovery focus, 155

Structure, flow vs., 61
Subdomains

domains and, 112–115, 120–121
expansion into, 104
generic, 124–125
integrating, 131
nesting, 128–129
partnerships between, 134
problem/context alignment, 115, 121
purpose of, 123
in refactoring operations, 258
scopes of knowledge in, 112–113
supporting, 123–124
in Topography Modeling, 153
understanding, 293

Subscriber polling, 218–219
Subsystems

architecture for, 10, 183
communication for, 211, 213–214
integrating, 131

Success
effort required for, 103
how to right wrongs for, 253–264
via healthy culture, 44
ways to ensure, 156–157

Sunk cost fallacy, 36
Supervision, 269–270
Supporting/generic contexts

integrating, 131
lesser investment in, 105
NuCoverage example, 245–247
overview of, 124–125

I312

T
Table array, 217
Tacit knowledge, 19, 113
Talent

allocated to tech mechanisms, 125
in Core Domain, 122
hiring top, 244–245
for subdomains, 124

Team cohesion
communication and, 19–24
as component of success, xv
culture and, 43–45
organizational tips for, 48–49

Team Topologies [TT], 48
Teams

architecture communicated by, 181–182
Context Maps between, 131–133
EventStorming, 82–83, 92–94
in maintenance mode, 122–123, 264
mapping dynamics between, 105–106
Partnerships for, 133–134
Topography Modeling, 152
ubiquitous language of, 117
upstream and downstream, 137

Technical excellence, xv, 125
Telephone Game, 21–22
Telephone, invention of the, 81
Tesla, 44
The Open Group Architecture Framework

(TOGAF), 113
Theft, data, 199
Thermodynamics, 13
Thimbleby, Harold, 41
Thought

critical, 24–26, 291
highlighting need for, xxi
rethinking, 26–30
simplification via, 70
technology cannot replace, 244

Timing, 254
Tokens, security, 197–198, 201
Tools, learning. See Learning tools, strategic
Topography Modeling, 151–154, 163
Tracking

complexity and, 206
decision making, 43
event logs, 216–218

modular conversations, 53
unnecessary features, 62–63

Transaction Scripts, 187–188, 191
Transformations

business goals informing, 291–292
creating environments for, xv
digital, 3–4
goal of, 8–10
innovation for, 9
by Iterate, xiii–xiv
Monolith-to-Microservices, 241, 253,

267–288
from wrong to right, 253–264

Transport Layer Security (TLS), 198
Triggers, database, 280
Truth, single source of, 279–280
Tuples, 172

U
Ubiquitous Language

for Bounded Contexts, 117–121, 129
within modules, 192
UI included in, 127
upstream/downstream, 141

Unarchitecture
Big Ball of Mud as, 14, 37
failures leading to, 71

Uncertainty, 94
Universally unique identifier (UUID), 201
Updates, 194–195
Upstream teams

Anticorruption model for, 141–142
Conformist pattern for, 139–140
Customer-Supplier relationship for, 137–139
Open-Host Service, 143–148

URIs, 195
“us versus them” mentality, 23
Users

#agile collaboration with, 111
commands and events for, 78
improving outcomes for, 9
modeling roles for, 88, 91, 99, 198
Monolith interactions by, 251
in Monolith-to-Microservices transition,

276–278
viewable vs. operational data, 227–228
workflow of, 127

I 313

V
Value Objects

in concept modeling, 106, 107, 167–168,
173

to implement functional behavior, 171
in refactoring operations, 257

Values
data and knowledge, 199
monetary, 135–136

Vernon, Vaughn, 83
Views/Queries

in EventStorming model, 88
Query Model, 229
in Topography Modeling, 154

Virtual environment, 84–85
VLINGO XOOM, xxviii, 151, 215
Voluminous enterprise scope, 112

W
White-label product, 17
Whitehead, Alfred North, 7
Woods, Eoin, 182
Workflow, 127
“Wrong,” being

and decision making, 40–41
in experimentation, 297
fear of, 45
righting wrongs, 253–264

Y
You Aren’t Gonna Need It (YAGNI), 29,

62

Z
Zachman Framework, 113

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Authors
	Chapter 1: Business Goals and Digital Transformation
	Digital Transformation: What Is the Goal?
	Software Architecture Quick Glance

	Why Software Goes Wrong
	Debt Metaphor
	Software Entropy
	Big Ball of Mud
	Running Example

	Your Enterprise and Conway’s Law
	Communication Is about Knowledge
	The Telephone Game
	Reaching Agreement Is Hard
	But Not Impossible

	(Re)Thinking Software Strategy
	Thinking
	Rethinking

	Are Monoliths Bad?
	Are Microservices Good?
	Don’t Blame Agile
	Getting Unstuck
	Summary
	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'PDFX-1a2001_LSC'] [Based on 'PDFX-1a2001'])
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

