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Praise for Principles of Web API Design

“I’ve had the good fortune to work alongside and learn from James over the past several years. 
His varied institutional knowledge, along with his depth of experience and eye for practical 
application, makes him unique among his peers. I am ecstatic that others now have the opportu-
nity, in this book, to benefit from James’s compelling, pragmatic vision for how to make better 
APIs. Principles of  Web API Design surveys the gamut of available techniques and sets forth a 
prescriptive, easy-to-follow approach. Teams that apply the guidance in this book will create 
APIs that better resonate with customers, deliver more business value in less time, and require 
fewer breaking changes. I cannot recommend Principles of  Web API Design enough.”

—Matthew Reinbold, Director of  API Ecosystems, Postman

“James is one of the preeminent experts on API design in the industry, and this comprehensive 
guide reflects that. Putting API design in the context of business outcomes and digital capabili-
ties makes this a vital guide for any organization undergoing digital transformation.” 

—Matt McLarty, Global Leader of  API Strategy at MuleSoft, 
a Salesforce company

“In modern software development, APIs end up being both the cause of and solution to many of 
the problems we face. James’s process for dissecting, analyzing, and designing APIs from concepts 
to caching creates a repeatable approach for teams to solve more problems than they create.” 

—D. Keith Casey, Jr., API Problem Solver, CaseySoftware, LLC

“Following James’s clear and easy-to-follow guide, in one afternoon I was able to apply his 
process to current real-world use cases. I now have the practical guidance, techniques, and 
clear examples to help me take those next vital steps. Recommended reading for anyone con-
nected to and working with APIs.”

—Joyce Stack, Architect, Elsevier

“Principles of  Web API Design uncovers more than principles. In it, you’ll learn a process—a 
method to design APIs.”

—Arnaud Lauret, API Handyman

“This insightful playbook guides API teams through a structured process that fosters produc-
tive collaboration, valuable capability identification, and best-practice contract crafting. 
James distills years of experience into a pragmatic roadmap for defining and refining API 
products, and also provides a primer for API security, eventing, resiliency, and microservices 
alignment. A must-read for architects either new to the API discipline or responsible for 
onboarding new teams and instituting a structured API definition process.” 

—Chris Haddad, Chief  Architect, Karux LLC
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xxi

Series Editor Foreword

My signature series emphasizes organic growth and refinement, which I describe in 
more detail below. Before that, I will tell you a little about how organic reactions 
brought the author and I together for the first time.

If you’ve ever spent a summer in a desert, you know that your flesh-and-blood 
organism becomes very uncomfortable with the heat. That’s certainly the case 
with summer in the Sonoran Desert of Arizona. Temperatures can rise to near 
120°F, or 49°C. At 118°F/47.8°C, the Phoenix Sky Harbor Airport shuts down 
operations. So, if  you are going to break free from the heat, you get out before you 
are stuck in the desert. That’s what we did in early July 2019, when we escaped to 
Boulder, Colorado, where we had previously resided. Knowing that the author of 
this book, James Higginbotham, had relocated to Colorado Springs, Colorado, 
gave us the opportunity to meet up for a few days in that nearby Colorado city. (In 
the western US, 100 miles/160 km is considered to be nearby.) I’ll tell you more 
about our collaboration once I’ve introduced you to my signature series.

My Signature Series is designed and curated to guide readers toward advances in 
software development maturity and greater success with business-centric practices. 
The series emphasizes organic refinement with a variety of approaches—reactive, 
object, as well as functional architecture and programming; domain modeling; right-
sized services; patterns; and APIs—and covers best uses of the associated underlying 
technologies.

From here I am focusing now on only two words: organic refinement.
The first word, organic, stood out to me recently when a friend and colleague 

used it to describe software architecture. I have heard and used the word organic in 
connection with software development, but I didn’t think about that word as care-
fully as I did then when I personally consumed the two used together: organic 
architecture.

Think about the word organic, and even the word organism. For the most part 
these are used when referring to living things, but are also used to describe inani-
mate things that feature some characteristics that resemble life forms. Organic
originates in Greek. Its etymology is with reference to a functioning organ of the 
body. If you read the etymology of organ, it has a broader use, and in fact organic 
followed suit: body organs; to implement; describes a tool for making or doing; a 
musical instrument.
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We can readily think of numerous organic objects—living organisms—from the 
very large to the microscopic single-celled life forms. With the second use of organism, 
though, examples may not as readily pop into our mind. One example is an organiza-
tion, which includes the prefix of both organic and organism. In this use of organism, 
I’m describing something that is structured with bidirectional dependencies. An organ-
ization is an organism because it has organized parts. This kind of organism cannot 
survive without the parts, and the parts cannot survive without the organism.

Taking that perspective, we can continue applying this thinking to nonliving 
things because they exhibit characteristics of living organisms. Consider the atom. 
Every single atom is a system unto itself, and all living things are composed of atoms. 
Yet, atoms are inorganic and do not reproduce. Even so, it’s not difficult to think of 
atoms as living things in the sense that they are endlessly moving, functioning. Atoms 
even bond with other atoms. When this occurs, each atom is not only a single system 
unto itself, but becomes a subsystem along with other atoms as subsystems, with 
their combined behaviors yielding a greater whole system.

So then, all kinds of concepts regarding software are quite organic in that nonliv-
ing things are still “characterized” by aspects of living organisms. When we discuss 
software model concepts using concrete scenarios, or draw an architecture diagram, 
or write a unit test and its corresponding domain model unit, software starts to come 
alive. It isn’t static, because we continue to discuss how to make it better, subjecting 
it to refinement, where one scenario leads to another, and that has an impact on the 
architecture and the domain model. As we continue to iterate, the increasing value in 
refinements leads to incremental growth of the organism. As time progresses so does 
the software. We wrangle with and tackle complexity through useful abstractions, 
and the software grows and changes shapes, all with the explicit purpose of making 
work better for real living organisms at global scales.

Sadly, software organics tend to grow poorly more often than they grow well. Even 
if they start out life in good health they tend to get diseases, become deformed, grow 
unnatural appendages, atrophy, and deteriorate. Worse still is that these symptoms 
are caused by efforts to refine the software that go wrong instead of making things 
better. The worst part is that with every failed refinement, everything that goes wrong 
with these complexly ill bodies doesn’t cause their death. (Oh, if they could just die!) 
Instead, we have to kill them and killing them requires nerves, skills, and the intestinal 
fortitude of a dragon slayer. No, not one, but dozens of vigorous dragon slayers. Actu-
ally, make that dozens of dragon slayers who have really big brains.

That’s where this series comes into play. I am curating a series designed to help 
you mature and reach greater success with a variety of approaches—reactive, object, 
and functional architecture and programming; domain modeling; right-sized ser-
vices; patterns; and APIs. And along with that, the series covers best uses of the 
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associated underlying technologies. It’s not accomplished at one fell swoop. It 
requires organic refinement with purpose and skill. I and the other authors are here 
to help. To that end, we’ve delivered our very best to achieve our goal.

When James and I got together for a few days in July 2019, we covered a lot of 
ground on APIs and Domain-Driven Design, along with related subjects. I’d con-
sider our conversations organic in nature. As we iterated on various topics, we 
refined our knowledge exchange, gauged by our level of interest in whatever direc-
tion our hunger led us. Feeding our brains resulted in growing our own desire and 
determination to extend our software building approaches in order to help others 
expand their skills and grow toward greater successes. Those who read our books, as 
well as our consulting and training clients, are the ones who have gained the most.

To say the least, I was impressed by James’s encyclopedic knowledge of every-
thing APIs. While we were together, I asked James about writing a book. He 
informed me that he had self-published one book but wasn’t at that time intent on 
writing another book. That was approximately nine months before I was offered 
the Signature Series. When the series planning was in the works, I immediately 
approached James about authoring in the series. I was so happy that he accepted 
and that he proposed organic software design and development techniques, such as 
with Align-Define-Design-Refine (ADDR). When you read his book, you will 
understand why I am so pleased to have James in my series.

—Vaughn Vernon
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Foreword

According to a recent IDC report on APIs and API management, 75 percent of those 
surveyed were focused on digital transformation through the design and implemen-
tation of APIs and more than one half expected call volume and response time to 
grow dramatically. And most organizations admitted they faced challenges in meet-
ing expectations for both internally and externally facing APIs. At the heart of all of 
this is the need for consistent, reliable, and scalable API design programs to help lead 
and transform existing organizations. As James Higginbotham puts it in this book: 
“The biggest challenge for today’s API programs continues to be successfully design-
ing APIs that can be understood and integrated by developers in a consistent and 
scalable fashion.”

It was for this reason that I was so happy to have this book cross my desk. I’ve had 
the pleasure of working with James over the years and, knowing his work and his 
reputation, was very happy to hear he was writing a book that covers Web API 
design. Now, after reading through this book, I am equally happy to recommend it to 
you, the reader. 

The field of Web APIs and the work of designing them has matured rapidly over 
the last few years, and keeping up with the latest developments is a major undertak-
ing. Issues like changing business expectations for the role of APIs; maturing pro-
cesses for gathering, recording, and documenting the work of API design; as well as 
evolving technology changes and all the work of coding, releasing, testing, and mon-
itoring APIs make up an API landscape large enough that few people have been able 
to successfully tackle it. Through his Align-Define-Design-Refine process, James 
offers an excellent set of recommendations, examples, and experience-based advice 
to help the reader navigate the existing space of Web APIs and prepare for the inevi-
table changes ahead in the future.

One of the things about James’s work that has always stood out is his ability to 
reach beyond the technical and into the social and business aspects of APIs and API 
programs within organizations. James has a long list of international clients across 
the business sectors of banking, insurance, global shipping, and even computer 
hardware providers, and the material in this book reflects this depth of experience. 
The techniques and processes detailed here have been tried and tested in all sorts of 
enterprise settings, and James’s ability to distill what works into this one volume is 
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impressive. Whether you are looking for advice on general design, business- 
technology alignment, or implementation details for various technologies such as 
REST, GraphQL, and event-driven platforms, you’ll find important and actionable 
advice within these pages.

In particular, I found the material on how to refine your API design and imple-
mentation efforts within an ever-growing enterprise API program particularly timely 
and especially valuable. For those tasked with launching, managing, and expanding 
the role of Web-based APIs within a company, Principles of  Web API Design should 
prove to be a welcome addition to your bookshelf.

As the aforementioned IDC report indicates, many companies around the globe 
are faced with important digital transformation challenges, and APIs have a major 
role to play in helping organizations meet the needs of their customers and in con-
tinuing to improve their own bottom line. Whether you are focused on designing, 
building, deploying, or maintaining APIs, this book contains helpful insights and 
advice. 

I know this book will become an important part of my toolkit as I work with 
companies of all stripes to continue to mature and grow their API programs, and I 
expect you, too, will find it useful. Reading this book has reminded me of all the 
opportunities and challenges we all have before us. To borrow another line from 
James: “This is only the beginning.”

—Mike Amundsen, API Strategist
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Preface

It’s hard to pinpoint the beginning of the journey to writing this book—perhaps it 
started about ten years ago. It is the result of thousands of hours of training, tens of 
thousands of miles traveled, and too many written words and lines of code to count. 
It comprises insights from organizations across the globe that were just starting their 
API journey or had already begun the adventure. The book incorporates the insights 
of API practitioners across the world whom I have had the pleasure to meet.

Or perhaps the journey started almost twenty-five years ago, when I first entered 
the software profession. So many advisors provided their insight via books and arti-
cles. Mentors along the way helped to shape my way of thinking about software. 
They laid the foundation of how I prefer to realize software architecture. 

Maybe the journey really started almost forty years ago, when my grandfather 
gifted me with a Commodore 64. He was a civil engineer and cost engineer who 
attended night school while working to support his family during the day. He was 
thirsty for knowledge, reading and absorbing everything he could. He always made 
us laugh when he said, “I’m still amazed at how television works!” after seeing a 
computer operate. Yet, he was the one who gifted me that magical computer, saying 
“computers are going to be big someday, and my grandson should know how to use 
one.” This single action started my lifelong love of software development. 

In reality, the journey started more than seventy years ago when the pioneers of 
our current age of computing established many of the foundational principles we 
still use today to construct software. Though technology choices change, and the 
trends come and go, it all builds on the work of so many in the software industry and 
beyond. Countless people have helped to carve the way for what we do today. 

What I am saying is that APIs would not be what they are today without all the 
hard work that came before us. Therefore, we must thirst for understanding the 
history of our industry to better understand “the how” and “the why” behind what 
we do today. Then, we must seek to apply these lessons to all that we do tomorrow. 
Along the way, we need to find ways to inspire others to do the same. This is what 
my grandfather and father taught me, so I pass this lesson on to you. This book 
reflects the things I’ve learned thus far in my journey. I hope you gain some new 
insights by building upon what is presented here while you seek to prepare the next 
generation. 
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Who Should Read This Book

This book is for anyone who wants to design a single API or a series of APIs that will 
delight humans. Product owners and product managers will gain a deeper under-
standing of the elements that teams need to design an API. Software architects and 
developers will benefit from learning how to design APIs by applying principles of 
software architecture. Technical writers will identify ways that they not only can 
contribute to the clarity of API documentation but also can add value throughout 
the API design process. In short, Principles of  Web API Design is for everyone 
involved in API design whether they are in a development or nondevelopment role.

About This Book

This book outlines a series of principles and a process for designing APIs. The Align-
Define-Design-Refine (ADDR) process featured in this book is designed to help indi-
viduals and cross-functional teams to navigate the complexities of API design. It 
encourages an outside-in perspective on API design by applying concepts such as the 
voice of the customer, jobs to be done, and process mapping. Although Principles of  
Web API Design walks through a greenfield example from the ground up, the book 
may also be used for existing APIs.

The book covers all aspects of API design, from requirements to arriving at an 
API design ready for delivery. It also includes guidance on how to document the API 
design for more effective communication between you, your team, and your API con-
sumers. Finally, the book touches on a few elements of API delivery that may have an 
impact on your API design. 

The book is divided into five parts:

• Part I: Introduction to Web API Design—An overview of why API design 
is important and an introduction to the API design process used in this book.

• Part II: Aligning on API Outcomes—Ensures alignment between the team 
designing the API and all customers and stakeholders.

• Part III: Defining Candidate APIs—Identifies the APIs, including the API 
operations required, necessary to deliver the desired outcomes into API profiles.

• Part IV: Designing APIs—Transforms the API profiles into one or more API 
styles that meet the needs of the target developers. Styles covered include REST, 
gRPC, GraphQL, and event-based asynchronous APIs. 
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 • Part V: Refining the Design—Improves the API design based on insights from 
documentation, testing, and feedback. It also includes a chapter on decompos-
ing APIs into microservices. Finally, the book closes with tips on how to scale 
the design process in larger organizations.

For those who need a refresher on HTTP, the language of the Web used for Web-
based APIs, the appendix provides a nice primer to help you get started.  

What’s Not in the Book

There are no code listings, other than some markup used to capture API design 
details. You don’t need to be a software developer to take advantage of the process 
and techniques described in this book. It doesn’t dive into a specific programming 
language or prescribe a specific design or development methodology. 

The scope of the full API design and delivery lifecycle is big. While there are some 
insights provided that extend beyond API design, it is impossible for me to capture 
every detail and situation that could occur. Instead, this book tackles the challenges 
teams encounter when going from an idea to business requirements and, ultimately, 
to an API design. 

Let’s get started. 

Register your copy of Principles of  Web API Design on the InformIT site for 
convenient access to updates and/or corrections as they become available. To 
start the registration process, go to informit.com/register and log in or create 
an account. Enter the product ISBN (9780137355631) and click Submit. Look 
on the Registered Products tab for an Access Bonus Content link next to this 
product, and follow that link to access any available bonus materials. If  you 
would like to be notified of exclusive offers on new editions and updates, 
please check the box to receive email from us. 

http://informit.com/register
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Part I

Introduction to Web  
API Design

APIs are forever. Once an API is integrated into a production application, it is 
difficult to make significant changes that could potentially break those existing inte-
grations. Design decisions made in haste become future areas of confusion, support 
issues, and lost opportunities far into the future. The API design phase is an impor-
tant part of any delivery schedule. 

Part 1 examines the fundamentals of software design and how it produces a posi-
tive or negative impact on API design. It then examines the API first design process 
and presents an overview of an API design process. This process incorporates an 
outside-in perspective to deliver an effective API to meet the needs of customers, 
partners, and the workforce.
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Chapter 1

The Principles  
of API Design

All architecture is design, but not all design is architecture.Architecture represents 
the set of  significant design decisions that shape the form and the function of   
a system.

— Grady Booch

Organizations have been delivering APIs for decades. APIs started as libraries and 
components shared across an organization and sold by third parties. They then grew 
into distributed components using standards such as CORBA for distributed object 
integration and SOAP for integrating distributed services across organizations. 
These standards were designed for interoperability but lacked the elements of effec-
tive design, often requiring months of effort to successfully integrate them.

As these standards were replaced by Web APIs, only a few APIs were needed. 
Teams could take the time to properly design them, iterating as needed. This is no 
longer the case. Organizations deliver more APIs and at greater velocity than ever 
before. The reach of Web APIs goes beyond a few internal systems and partners.

Today’s Web-based APIs connect organizations to their customers, partners, 
and workforce using the standards of the Web. Hundreds of libraries and frame-
works exist to make it cheap and fast to deliver APIs to a marketplace or for internal 
use. Continuous integration and continuous delivery (CI/CD) tools make it easier 
than ever to build automation pipelines to ensure APIs are delivered with speed and 
efficiency.

Yet, the biggest challenge for today’s API programs continues to be successfully 
designing APIs that can be understood and integrated by developers in a consistent 
and scalable fashion. Facing this challenge requires organizations to recognize that 
Web APIs are more than just technology. Just as works of art require the balance 
of color and light, API design benefits from the blending of business capabilities, 
 product thinking, and a focus on developer experience.
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The Elements of Web API Design

An organization’s collection of APIs provides a view into what the business values in 
the marketplace. The design quality of its APIs provides a view into how the business 
values developers. Everything an API offers—and doesn’t offer—speaks volumes 
about what an organization cares most about. Effective Web API design incorporates 
three important elements: business capabilities, product thinking, and developer 
experience. 

Business Capabilities

Business capabilities describe the enablers an organization brings to market. They 
may include external-facing capabilities, such as unique product design, amazing 
customer service, or optimized product delivery. They may also include internally 
facing capabilities such as sales pipeline management or credit risk assessment.

Organizations deliver business capabilities in three ways: directly by the organiza-
tion, outsourced via a third-party provider, or through a combination of organiza-
tional and third-party processes. 

For example, a local coffee shop may choose to sell custom coffee blends. To 
do so, it sources coffee beans through a third-party distributor, roasts the coffee 
beans in-house, then utilizes a third-party point-of-sale (POS) system for selling 
its coffee blends in a retail store. By outsourcing some of  the necessary busi-
ness capabilities to specialized third parties, the coffee shop is able to focus on 
delivering specific business capabilities that differentiate them from others in the 
marketplace. 

APIs digitize the business capabilities that an organization brings to a market-
place. When embarking on designing a new API or expanding an existing API, the 
underlying business capabilities should be well understood and reflected into the 
API design. 

Product Thinking

Organizations were integrating with partners and customers prior to the growth of 
Web APIs. The challenge most organizations face, however, is that each integration 
has been custom made. For each new partner or customer integration, a dedicated 
team consisting of developers, a project manager, and an account manager were 
tasked with building a custom integration. This involved tremendous effort and was 
often repeated, with per-partner customizations. 
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The growth of the software-as-a-service (SaaS) business model, along with the 
increase in demand for Web APIs, have shifted the discussion from one-off integra-
tion with partners and customers to a focus on product thinking. 

Applying product thinking to the API design process shifts the team focus from 
a single customer or partner to an effective API design that is able to handle new 
automation opportunities with little to no customization effort for a given customer 
segment. It also enables a self-service model for workforce, business-to-business, and 
customer-driven integration. 

The focus of an API product becomes less on custom implementations and more 
on meeting market needs in a scalable and cost-effective way. Reusable APIs emerge 
from considering multiple consumers at once. When embarking on the design of a 
new API, use a product thinking approach to obtain feedback from multiple par-
ties that will consume the API. Doing so will shape the API design early and lead to 
increased opportunities for reuse. 

Developer Experience

User experience (UX) is the discipline of meeting the exact needs of users, from their 
interactions with the company to their interactions with its services and with the 
product itself. Developer experience (DX) is just as important for APIs as UX is for 
products and services. The DX focuses on the various aspects of engagement with 
developers for an API product. It extends beyond the operational details of the API. 
It also includes all aspects of the API product, from first impressions to day-to-day 
usage and support.

A great DX is essential to the success of an API. When a great DX is delivered, 
developers quickly and confidently consume a Web API. It also improves the mar-
ket traction of productized APIs by moving developers from being integrators to 
becoming experts on the API. The expertise translates directly into the ability to 
deliver real value to their customers and their business quickly and with reduced 
effort. 

As API teams seek to understand how to design a great experience for their API, 
remember that DX is an important factor for internal developers, also. For example, 
great documentation enables internal developers to understand and consume an API 
quickly, whereas an API that has poor documentation requires contacting the inter-
nal team responsible for the API to learn how to use it properly. While they may be 
able to gain direct access to the developers that designed and implemented an API, 
it adds unnecessary communication overhead. Internal developers benefit from great 
DX because they can create business value faster.
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CASE STUDY 
APIs and Product Thinking Meets Banking

Capital One started its API journey in 2013 with the goal of developing an 
enterprise API platform. The initial set of platform APIs focused on deliver-
ing automation throughout the organization to increase velocity of delivery 
while breaking down siloed barriers. 

As the number of  digital capabilities in its API platform grew, Capital 
One’s focus shifted from internal APIs to several product opportunities 
in the marketplace. It launched its public-facing developer portal called 
DevExchange at South by Southwest (SXSW)1 with several API products. 
These product offerings included bank-grade authorization, a rewards 
program, credit card prequalification, and even an API to create new sav-
ings accounts. 

Capital One extended the idea further by leveraging its digital capabili-
ties to develop an omnichannel presence. APIs used to power its Web site and 
mobile app formed a foundation for a voice-based interactive experience2 
using Amazon’s Alexa platform and interactive chat using a chatbot named 
Eno (the word one spelled backwards). 

Taking a product-based approach to its APIs, along with a robust API 
portfolio of digital capabilities, allowed Capital One to explore opportunities 
with its customers and partners. It didn’t happen overnight, but it did happen 
because of an API focus that started with an executive vision and execution 
by the entire organization.

1. “Capital One DevExchange at SxSW 2017,” March 27, 2017, https://www.youtube.com/watch?v= 
4Cg9B4yaNVk

2. “Capital One Demo of Alexa Integration at SXSW 2016,” September 6, 2016, https://www.youtube 
.com/watch?v=KgVcVDUSvU4&t=36s

API Design Is Communication

When developers think of software design, thoughts of classes, methods, functions, 
modules, and databases likely spring to mind. UML sequence and activity diagrams, 
or simple box and arrow diagrams if preferred, are used to convey understanding 
across a codebase. All these elements are part of the communication process devel-
opment teams use for understanding and future developer onboarding.

https://www.youtube.com/watch?v=4Cg9B4yaNVk
https://www.youtube.com/watch?v=4Cg9B4yaNVk
https://www.youtube.com/watch?v=KgVcVDUSvU4&t=36s
https://www.youtube.com/watch?v=KgVcVDUSvU4&t=36s
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Likewise, API design is a communication process. Rather than communicating 
inwardly between the members of a single team, APIs shift the communication 
outward. The lines of communication are extended in three distinct ways:

1. Communication across network boundaries: An API’s design, including its 
choice of protocol, has an impact on the chattiness of the API. Network protocols, 
such as HTTP, are better for coarse-grained communication. Other protocols, 
such as Message Queuing Telemetry Transport (MQTT) and Advanced Message 
Queuing Protocol (AMQP), often used for messaging APIs, are better suited for 
fine-grained communication within a defined network boundary. The API design 
reflects the frequency of communication between systems and the impact it may 
have on performance because of network boundaries and bottlenecks. The API 
design process has a heavy impact on performance of the client and server. 

2. Communication with consuming developers: API design and associated 
documentation are the user interface for developers. They inform developers 
how and when they are able to use each API operation. They also determine 
whether and how developers can combine operations to achieve more complex 
results. Communication early and often during the API design process is essen-
tial to meet the needs of developers consuming the API.

3. Communication to the marketplace: API design and documentation inform 
prospective customers, partners, and internal developers what outcomes the 
APIs make possible through the digital capabilities they offer. Effective API 
design helps to communicate and enable these digital capabilities.

API design is an important part of communication. An API design process helps 
us to consider these aspects of communication during the design phase. 

Reviewing the Principles of Software Design 

Software design focuses on the organization and communication of software com-
ponents within a codebase. Techniques such as code comments, sequence diagrams, 
and the judicious use of design patterns help improve the communication effort 
among team members. 

Web API design builds on these principles of software design, but with a 
broader audience that extends beyond the team or organization. The scope of 
communication expands beyond a single team or organization to developers all 
over the world. Yet, the same principles of software design apply to Web-based 
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API design:  modularization, encapsulation, loose coupling, and high cohesion. 
While these may be subjects familiar to most developers, they are fundamental to 
API design and need review before approaching any API design process. 

Modularization

Modules are the smallest atomic unit within a software program. They are com-
posed of one or more source files that contain classes, methods, or functions. Mod-
ules have a local, public API to expose the functionality and business capabilities that 
they offer to other modules within the same codebase. Modules are sometimes 
referred to as components or code libraries. 

Most programming languages support modules through the use of namespaces 
or packages that group code together. Grouping related code that collaborates into 
the same namespace encourages high cohesion. Internal details of a module are 
protected through access modifiers provided by the programming language. For 
example, the Java programming language has keywords such as pu b lic, protected, 
pack ag e, and priv ate that help to encourage loose coupling through limited expo-
sure of a module. 

As more and more modules are combined, a software system is created. A sub-
system combines modules into a larger module in more complex solutions, as 
shown in Figure 1.1.

Applying the same concepts of modularization to Web-based API design helps to 
reveal the boundaries and responsibilities of every API. This ensures clear responsi-
bilities across complementary APIs that focus on externalizing digital capabilities 
while hiding the internal implementation details. Consuming developers benefit by 
understanding the API quickly and effectively. 

Encapsulation

Encapsulation seeks to hide the internal details of a component. Scope modifiers are 
used to limit access to a module’s code. A module exposes a set of public methods 
or functions while hiding the internal details of the module. Internal changes may 

System

Subsystem Subsystem

Module Module

Module Module

Subsystem Subsystem

Module Module

Figure 1.1 Modules combine into ever-larger units, resulting in a software system.
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occur without impacting other modules that depend on its public methods. Some-
times encapsulation is referred to as information hiding, a concept applied to soft-
ware development since the 1970s by David Parnas. 

Web APIs extend this concept a bit further. They hide the internal details of pro-
gramming language, choice of Web framework, the classes and objects of a system, 
and database design behind an HTTP-based API. Internal details, encapsulated 
behind the API design, encourage a loosely coupled API design that depends on mes-
sages rather than underlying database design and models for communication. No 
longer do organizations need to understand all the internal implementations details, 
such as for a payment gateway. Instead, they only need to understand the operations 
that the API offers and how to use them to achieve the desired outcomes.

High Cohesion and Loose Coupling

High cohesion is a term used when the code within a module is all closely related to 
the same functionality. A highly cohesive module results in less “spaghetti code,” as 
method calls aren’t jumping all over the codebase. When code is scattered across the 
entire codebase, calls frequently jump across modules and back again. This style of 
code is considered to exhibit low cohesion. 

Coupling is the degree of interdependence between two or more components. 
Tightly coupled components indicates that the components are very constrained by 
the implementation details of the other. Loosely coupled components hide the compo-
nents’ internal details away from others, restricting the knowledge between modules to a 
public interface, or programming language API, that other areas of the code can invoke.

Figure 1.2 demonstrates the concepts of high cohesion and loose coupling within 
and across modules.

Figure 1.2 Loose coupling and high cohesion are fundamentals of  modular API design.

Package Methods

Public Methods

Client Code
Scope keywords 
limit client code 
access to public 
methods 

The result is high cohesion within modules
and loose coupling across modules

... ...

... ...

...

Package Methods
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Web APIs extend these concepts by grouping related API operations for high 
cohesion while ensuring that the internal details are encapsulated to encourage a 
loosely coupled API design. 

Resource-Based API Design

A resource is a digital representation of a concept, often an entity or collection of 
entities that may change over time. It consists of a unique name or identifier that can 
reference documents, images, collections of other resources, or a digital representa-
tion of anything in the real world such as a person or thing. Resources may even rep-
resent business processes and workflows. 

Resource-based APIs focus on interactions across a network, independent of how 
they are stored in a database or manifested as objects. They offer different opera-
tions, or affordances, as possible interactions with a specific resource. In addition, 
resources support multiple representations that allow a Web app, mobile app, and 
reporting tool to interact with the resource using different media formats such as 
JSON or XML. 

Resources Are Not Data Models

It is important to recognize that resources are not the same thing as a data model 
that resides with a database. The data model, often reflected as a schema design in a 
database, is optimized for the read and write interactions necessary to support the 
required I/O performance and reporting needs of a solution. 

While data may be part of an API, the data model should not be used as the basis 
of API design. Data models meet a specific set of requirements, including read and 
write performance, optimized data storage, and optimized query support. Data 
models are optimized for the internal details of an application.

Like the choice of programming languages and frameworks, the choice of data-
base types and vendors changes over time. APIs designed to directly map to a data 
or object model expose these internal implementation details to API consumers. The 
result is a more fragile API that must introduce significant design changes when the 
data model changes.

Web API design seeks to achieve a different set of goals, including delivering 
outcomes and experiences, optimized network access, and programming language 
independence. Because APIs involve integration between systems, they should 
remain stable over a long period of time, whereas data models may change to 
accommodate new or changing data access requirements. 

While APIs may have an impact on the data model, an API design should evolve 
independently from the latest database trends. 
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What Happens When Teams Expose a Data Model as an API?

Constant code changes: Database schema changes will result in a constantly 
changing API, as the API must keep in lockstep with the underlying database. 
This change to the data model forces consumers into a complex conformist 
relationship in which they must rewrite their API integration code every time 
the underlying data model changes. This hindrance may be overcome by an 
anticorruption layer that isolates a unit of code from these changes. How-
ever, the constant flux of the API creates a high cost of development as down-
stream developers maintain the anticorruption layer.

Create network chattiness: Exposing link tables as separate API endpoints 
causes API “chattiness,” as the consumer is forced to make multiple API calls, 
one for each table. It is similar to how an n+1 query problem degrades data-
base performance. While an n+1 problem can be a performance bottleneck 
for databases, API chattiness has a devastating impact on API performance. 

Data inconsistencies: Not only does performance suffer from network chat-
tiness, but the n+1 problem also results in data inconsistencies. Clients are 
forced to make multiple API calls and stitch the results together into a single 
unified view. This may result in incomplete or corrupted data due to inconsis-
tent reads, perhaps across transactional boundaries, that occur from multiple 
API requests necessary to obtain necessary data. 

Confuse API details: Columns optimized for query performance, such as  
a C HAR ( 1)  column that uses character codes to indicate status, become 
 meaningless to API consumers without additional clarification.

Expose sensitive data: Tools that build APIs that mirror a data model expose 
all columns with a table using S EL EC T *  F R OM [ tab le name] . This also exposes 
data that API consumers should never see, such as personally identifiable 
information (PII). It may also expose data that helps hackers compromise 
 systems through a better understanding of the internal details of the API.

Resources Are Not Object or Domain Models

API resources are not the same as objects in an object-oriented codebase. Objects 
support collaboration within a codebase. Objects are often used to map data models 
into code for easier manipulation. They suffer from the same issues as exposed data 
models: constant code changes, network chattiness, and data inconsistencies. 
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Likewise, domain models, typically comprised of objects, represent the specific 
business domain. They may be used in a variety of ways to address the needs of 
the system. They may even traverse different transactional contexts based on how 
they are applied. Web APIs, however, are most effective when they take transactional 
boundaries into consideration rather than directly exposing internal domain or 
object model behavior. 

Keep in mind that API consumers don’t have the luxury of seeing the details of 
a data model and all the code behind an API. They didn’t sit in on the endless meet-
ings that resulted in the multitude of decisions that drove a data model design. They 
don’t have the context of why data model design decisions were made. Great API 
designs avoid leaking internal details, including database design choices, by shifting 
from data design to message design.

Resource-Based APIs Exchange Messages

Resource-based APIs create a conversation between the business and a user or remote 
system. For example, suppose a user of a project management application was con-
versing with the API server. The conversation may look something like what’s shown 
in Figure 1.3.

Does it seem strange to think about APIs as a chat session? It isn’t far off from what 
Alan Kay originally intended when he coined the term object-oriented programming. 
Rather than a focus on inheritance and polymorphic design, he envisioned object-
oriented programming as sending messages between components:

I’m sorry that I long ago coined the term “objects” for this topic because it gets many 
people to focus on the lesser idea.
The big idea is “messaging.”3

Like Kay’s original vision for object-oriented programming, Web APIs are mes-
sage based. They send request messages to a server and receive a response message as 
a result. Most Web APIs perform this message exchange synchronously by sending a 
request and waiting for the response. 

API design considers the conversational message exchange between systems to 
produce desired outcomes by customers, partners, and the workforce. A great API 
design also considers how this communication evolves as requirements change. 

3. Alan Kay, “Prototypes vs Classes was: Re: Sun’s HotSpot,” Squeak Developer’s List, October 10, 1998, 
http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html.

http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html
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Client: Could you send me
a list of the projects I am
allowed to see?

Server: Sure, here is what
we have for you

Today 8:32 AM

Client: Could you create a
new project for me, with a
name of ‘My Project’?

Server: Done. Here is
where you will find it

Today 8:32 AM

Client: Could you send me
the details for project
12345 (I know it as ‘My
Project’)?

Server: Oh, sure thing.
Here are the details for
you

Today 8:32 AM

Figure 1.3 An example interaction between an API client and API server, as if  the user was 
talking to the server in conversational terms.

The Principles of Web API Design

An API design approach must include a balance between robust digital capabilities 
and a focus on a great developer experience that supports quick and easy integration. 
It must be rooted in a series of principles that create a solid foundation. These five 
principles establish the necessary foundation and are detailed throughout this book:

Principle 1: APIs should never be designed in isolation. Collaborative API design 
is essential for a great API. (Chapter 2)
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Principle 2: API design starts with an outcome-based focus. A focus on the 
outcome ensures the API delivers value to everyone. (Chapters 3–6)

Principle 3: Select the API design elements that match the need. Trying to find the 
perfect API style is a fruitless endeavor. Instead, seek to understand and apply the 
API elements appropriate for the need, whether that is REST, GraphQL, gRPC, or 
an emerging style just entering the industry. (Chapters 7–12)

Principle 4: API documentation is the most important user interface for 
developers. Therefore, API documentation should be first class and not left as 
a last-minute task. (Chapter 13)

Principle 5: APIs are forever, so plan accordingly. Thoughtful API design com-
bined with an evolutionary design approach makes APIs resilient to change. 
(Chapter 14)

Summary

Web API design incorporates three important elements to deliver a successful API: 
business capabilities, product thinking, and developer experience. These cross- 
functional disciplines mean that organizations cannot ignore the process of API 
design. Developers, architects, domain experts, and product managers must work 
together to design APIs that meet the needs of the marketplace. 

In addition, Web API design builds on the principles of software design, includ-
ing modularization, encapsulation, loose coupling, and high cohesion. API designs 
should hide the internal details of the systems they externalize. They should not 
expose underlying data models but rather focus on a system-to-system message 
exchange that is both flexible in design and resilient to change over time. 

So, how do teams go from business requirements to an API design that is evolvable 
while delivering the desired outcomes to customers, partners, and the internal work-
force? That is the subject of the next chapter, which introduces a process that bridges 
business and product requirements into an API design. The process is explored in 
detail in subsequent chapters.
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