
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137355631
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137355631
https://plusone.google.com/share?url=http://www.informit.com/title/9780137355631
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137355631
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780137355631/Free-Sample-Chapter

Praise for Principles of Web API Design

“I’ve had the good fortune to work alongside and learn from James over the past several years.
His varied institutional knowledge, along with his depth of experience and eye for practical
application, makes him unique among his peers. I am ecstatic that others now have the opportu-
nity, in this book, to benefit from James’s compelling, pragmatic vision for how to make better
APIs. Principles of Web API Design surveys the gamut of available techniques and sets forth a
prescriptive, easy-to-follow approach. Teams that apply the guidance in this book will create
APIs that better resonate with customers, deliver more business value in less time, and require
fewer breaking changes. I cannot recommend Principles of Web API Design enough.”

—Matthew Reinbold, Director of API Ecosystems, Postman

“James is one of the preeminent experts on API design in the industry, and this comprehensive
guide reflects that. Putting API design in the context of business outcomes and digital capabili-
ties makes this a vital guide for any organization undergoing digital transformation.”

—Matt McLarty, Global Leader of API Strategy at MuleSoft,
a Salesforce company

“In modern software development, APIs end up being both the cause of and solution to many of
the problems we face. James’s process for dissecting, analyzing, and designing APIs from concepts
to caching creates a repeatable approach for teams to solve more problems than they create.”

—D. Keith Casey, Jr., API Problem Solver, CaseySoftware, LLC

“Following James’s clear and easy-to-follow guide, in one afternoon I was able to apply his
process to current real-world use cases. I now have the practical guidance, techniques, and
clear examples to help me take those next vital steps. Recommended reading for anyone con-
nected to and working with APIs.”

—Joyce Stack, Architect, Elsevier

“Principles of Web API Design uncovers more than principles. In it, you’ll learn a process—a
method to design APIs.”

—Arnaud Lauret, API Handyman

“This insightful playbook guides API teams through a structured process that fosters produc-
tive collaboration, valuable capability identification, and best-practice contract crafting.
James distills years of experience into a pragmatic roadmap for defining and refining API
products, and also provides a primer for API security, eventing, resiliency, and microservices
alignment. A must-read for architects either new to the API discipline or responsible for
onboarding new teams and instituting a structured API definition process.”

—Chris Haddad, Chief Architect, Karux LLC

This page intentionally left blank

Principles of Web API Design

The Pearson Addison-Wesley Signature Series provides readers with
practical and authoritative information on the latest trends in modern
technology for computer professionals. The series is based on one
simple premise: great books come from great authors.

Vaughn Vernon is a champion of simplifying software architecture and
development, with an emphasis on reactive methods. He has a unique
ability to teach and lead with Domain-Driven Design using lightweight
tools to unveil unimagined value. He helps organizations achieve
competitive advantages using enduring tools such as architectures,
patterns, and approaches, and through partnerships between business
stakeholders and software developers.

Vaughn’s Signature Series guides readers toward advances in software
development maturity and greater success with business-centric
practices. The series emphasizes organic refinement with a variety
of approaches—reactive, object, and functional architecture and
programming; domain modeling; right-sized services; patterns; and
APIs—and covers best uses of the associated underlying technologies.

Visit informit.com/awss/vernon for a complete list of available publications.

Pearson Addison-Wesley
Signature Series

Make sure to connect with us!
informit.com/socialconnect

http://informit.com/awss/vernon
http://informit.com/socialconnect

Principles of
Web API Design

Delivering Value with
APIs and Microservices

James Higginbotham

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Cover image: Anna Om/Shutterstock

Figures 7.8–7.11: © 2021 SmartBear Software

Figure 10.12, icons: dependency by Knut M. Synstad from the Noun Project; plug by Vectors Market from the Noun Project;
database by MRK from the Noun Project; filter by Landan Lloyd from the Noun Project; command line by Focus from the
Noun Project; algorithm by Trevor Dsouza from the Noun Project; name tag by Cindy Clegane from the Noun Project; task
list by Royal@design from the Noun Project; quality by Flatart from the Noun Project; broadcast by Yoyon Pujiyono from the
Noun Project.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic
versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2021947541

Copyright © 2022 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate
contacts within the Pearson Education Global Rights & Permissions Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-735563-1
ISBN-10: 0-13-735563-7

ScoutAutomatedPrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

Pearson’s Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all
learners. We embrace the many dimensions of diversity, including but not limited to
race, ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and
religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the
potential to deliver opportunities that improve lives and enable economic mobility.
As we work with authors to create content for every product and service, we
acknowledge our responsibility to demonstrate inclusivity and incorporate diverse
scholarship so that everyone can achieve their potential through learning. As the
world’s leading learning company, we have a duty to help drive change and live up
to our purpose to help more people create a better life for themselves and to create
a better world.

Our ambition is to purposefully contribute to a world where:

 • Everyone has an equitable and lifelong opportunity to succeed through
learning.

 • Our educational products and services are inclusive and represent the rich
diversity of learners.

 • Our educational content accurately reflects the histories and experiences of the
learners we serve.

 • Our educational content prompts deeper discussions with learners and
motivates them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about
any concerns or needs with this Pearson product so that we can investigate and
address them.

 • Please contact us with concerns about any potential bias at https://www.pearson
.com/report-bias.html.

https://www.pearson.com/report-bias.html
https://www.pearson.com/report-bias.html

This page intentionally left blank

To my wife,
 whose support and encouragement

makes everything possible.

To my grandfather, J.W.,
who gave me a Commodore 64 when I was eight years old

because he believed “computers are going to be big someday,
and my grandson should know how to use one”

and who inspired me to follow in his footsteps as an author.

To my dad,
who continued the work

of J.W. I miss you.

To my son,
who continues the tradition with
his endless coding in Minecraft.

And to my daughter,
who inspires me every day

to write better copy.

This page intentionally left blank

xi

Contents

Series Editor Foreword . xxi

Foreword . xxv

Preface . xxvii

Acknowledgments . xxxi

About the Author . xxxiii

Part I: Introduction to Web API Design . 1

Chapter 1: The Principles of API Design . 3

The Elements of Web API Design . 4
Business Capabilities . 4
Product Thinking . 4
Developer Experience . 5

API Design Is Communication . 6
Reviewing the Principles of Software Design . 7

Modularization . 8
Encapsulation . 8
High Cohesion and Loose Coupling . 9

Resource-Based API Design . 10
Resources Are Not Data Models . 10

Resources Are Not Object or Domain Models . 11
Resource-Based APIs Exchange Messages . 12
The Principles of Web API Design . 13
Summary . 14

Chapter 2: Collaborative API Design . 15

Why an API Design Process? . 15
API Design Process Antipatterns . 16

The Leaky Abstraction Antipattern . 16
The Next Release Design Fix Antipattern 19

Contentsxii

The Heroic Design Effort Antipattern . 19
The Unused API Antipattern . 20

The API Design-First Approach . 20
Remaining Agile with API Design-First . 22

The Agile Manifesto Revisited . 22
The Agility of API Design-First . 23

The Align-Define-Design-Refine Process . 23
The Role of DDD in API Design . 26
API Design Involves Everyone . 26
Applying the Process Effectively . 28
Summary . 28

Part II: Aligning on API Outcomes . 29

Chapter 3: Identify Digital Capabilities . 31

Ensuring Stakeholder Alignment . 32
What Are Digital Capabilities? . 33
Focusing on the Jobs to Be Done . 34
What Are Job Stories? . 35
The Components of a Job Story . 36
Writing Job Stories for APIs . 37

Method 1: When the Problem Is Known . 37
Method 2: When the Desired Outcome Is Known 37
Method 3: When the Digital Capability Has Been Identified . . . 38

Overcoming Job Story Challenges . 38
Challenge 1: Job Stories Are Too Detailed 38
Challenge 2: Job Stories Are Feature Centric 39
Challenge 3: Additional User Context Is Needed 40

Techniques for Capturing Job Stories . 40
A Real-World API Design Project . 41
Job Story Examples . 42
Summary . 42

Chapter 4: Capture Activities and Steps . 45

Extending Job Stories into Activities and Steps 46
Identify the Activities for Each Job Story 47
Decompose Each Activity into Steps . 47
What If Requirements Aren’t Clear? . 48

Contents xiii

Using EventStorming for Collaborative Understanding 49
How EventStorming Works . 50

Step 1: Identify Business Domain Events 51
Step 2: Create an Event Narrative . 51
Step 3: Review the Narrative and Identify Gaps 54
Step 4: Expand Domain Understanding 54
Step 5: Review the Final Narrative . 56

The Benefits of EventStorming . 58
Who Should Be Involved? . 59

Facilitating an EventStorming Session . 60
Prepare: Gathering Necessary Supplies . 60
Share: Communicating the EventStorming Session 62
Execute: Conducting the EventStorming Session 63
Wrap-up: Capture Activities and Activity Steps 63
Follow-up: Post-Session Recommendations 63
Customizing the Process . 64

Summary . 65

Part III: Defining Candidate APIs . 67

Chapter 5: Identifying API Boundaries . 69

Avoiding API Boundary Antipatterns . 70
The Mega All-in-One API Antipattern . 70
The Overloaded API Antipattern . 70
The Helper API Antipattern . 71

Bounded Contexts, Subdomains, and APIs . 72
Finding API Boundaries Using EventStorming . 73
Finding API Boundaries through Activities . 73
Naming and Scoping APIs . 75
Summary . 78

Chapter 6: API Modeling . 79

What Is API Modeling? . 80
The API Profile Structure . 81

The API Modeling Process . 81
Step 1: Capture API Profile Summary . 83
Step 2: Identify the Resources . 85
Step 3: Define the Resource Taxonomy . 87

Contentsxiv

Step 4: Add Operation Events . 88
Step 5: Expand Operation Details . 91

Validating the API Model with Sequence Diagrams 93
Evaluating API Priority and Reuse . 95
Summary . 96

Part IV: Designing APIs . 99

Chapter 7: REST-Based API Design . 101

What Is a REST-Based API? . 102
REST Is Client/Server . 104
REST Is Resource-Centric . 104
REST Is Message Based . 105
REST Supports a Layered System . 105
REST Supports Code on Demand . 107
Hypermedia Controls . 107
When to Choose REST . 111

REST API Design Process . 112
Step 1: Design Resource URL Paths . 112
Step 2: Map API Operations to HTTP Methods 115
Step 3: Assign Response Codes . 116
Step 4: Documenting the REST API Design 118
Step 5: Share and Gather Feedback . 124

Selecting a Representation Format . 125
Resource Serialization . 126
Hypermedia Serialization . 127
Hypermedia Messaging . 128
Semantic Hypermedia Messaging . 129

Common REST Design Patterns . 132
Create-Read-Update-Delete . 132
Extended Resource Lifecycle Support . 133
Singleton Resources . 134
Background (Queued) Jobs . 134
Long-Running Transaction Support in REST 135

Summary . 136

Chapter 8: RPC and Query-Based API Design . 137

What Is an RPC-Based API? . 138

Contents xv

The gRPC Protocol . 139
Factors When Considering RPC . 141

RPC API Design Process . 142
Step 1: Identify RPC Operations . 142
Step 2: Detail RPC Operations . 142
Step 3: Document the API Design . 145

What Is a Query-Based API? . 146
Understanding OData . 147
Exploring GraphQL . 149

Query-Based API Design Process . 150
Step 1: Designing Resource and Graph Structures 151
Step 2: Design Query and Mutation Operations 151
Step 3: Document the API Design . 154

Summary . 157

Chapter 9: Async APIs for Eventing and Streaming 159

The Problem with API Polling . 160
Async APIs Create New Possibilities . 161
A Review of Messaging Fundamentals . 162

Messaging Styles and Locality . 164
The Elements of a Message . 165
Understanding Messaging Brokers . 166
Point-to-Point Message Distribution (Queues) 167
Fanout Message Distribution (Topics) 167
Message Streaming Fundamentals . 168

Async API Styles . 171
Server Notification Using Webhooks. 171
Server Push Using Server-Sent Events . 172
Bidirectional Notification via WebSocket 174
gRPC Streaming . 176
Selecting an Async API Style . 177

Designing Async APIs . 178
Command Messages . 178
Event Notifications . 179
Event-Carried State Transfer Events . 180
Event Batching . 182
Event Ordering . 183

Contentsxvi

Documenting Async APIs . 184
Summary . 186

Part V: Refining the API Design . 187

Chapter 10: From APIs to Microservices . 189

What Are Microservices? . 190
Microservices Reduce Coordination Costs . 192
The Difference between APIs and Microservices 193
Weighing the Complexity of Microservices . 193

Self-Service Infrastructure . 194
Independent Release Cycles . 194
Shift to Single-Team Ownership . 194
Organizational Structure and Cultural Impacts 195
Shift in Data Ownership . 195
Distributed Data Management and Governance 196
Distributed Systems Challenges . 196
Resiliency, Failover, and Distributed Transactions 197
Refactoring and Code Sharing Challenges 197

Synchronous and Asynchronous Microservices 198
Microservice Architecture Styles . 201

Direct Service Communication . 201
API-Based Orchestration . 201
Cell-Based Architecture . 203

Right-Sizing Microservices . 204
Decomposing APIs into Microservices . 204

Step 1: Identify Candidate Microservices 205
Step 2: Add Microservices into API Sequence Diagrams 206
Step 3: Capture Using the Microservice Design Canvas 208
Additional Microservice Design Considerations 208

Considerations When Transitioning to Microservices 210
Summary . 211

Chapter 11: Improving the Developer Experience 213

Creating a Mock API Implementation . 214
Static API Mocking . 215
API Prototype Mocking . 216
README-Based Mocking . 217

Contents xvii

Providing Helper Libraries and SDKs . 219
Options for Offering Helper Libraries 220
Versioning Helper Libraries. 220
Helper Library Documentation and Testing 221

Offering CLIs for APIs . 221
Summary . 224

Chapter 12: API Testing Strategies . 225

Acceptance Testing . 226
Automated Security Testing . 226
Operational Monitoring . 227
API Contract Testing . 227
Selecting Tools to Accelerate Testing . 229
The Challenges of API Testing . 230
Make API Testing Essential . 231
Summary . 231

Chapter 13: Document the API Design . 233

The Importance of API Documentation . 234
API Description Formats . 234

OpenAPI Specification . 235
API Blueprint . 238
RAML . 240
JSON Schema . 244
API Profiles Using ALPS . 245
Improving API Discovery Using APIs.json 247

Extending Docs with Code Examples . 248
Write Getting Started Code Examples First 249
Expanding Documentation with Workflow Examples 249
Error Case and Production-Ready Examples 251

From Reference Docs to a Developer Portal . 251
Increasing API Adoption through Developer Portals 251

Elements of a Great Developer Portal . 252
Effective API Documentation . 253

Question 1: How Does Your API Solve My Problems? 254
Question 2: What Problem Does Each API Operation

Support? . 254

Contentsxviii

Question 3: How Do I Get Started Using the API? 254
The Role of Technical Writer in API Docs. 255

The Minimum Viable Portal . 256
Phase 1: Minimum Viable Portal . 256
Phase 2: Improvement . 257
Phase 3: Focusing on Growth . 258

Tools and Frameworks for Developer Portals . 259
Summary . 260

Chapter 14: Designing for Change . 261

The Impact of Change on Existing APIs . 261
Perform an API Design Gap Analysis . 262
Determine What Is Best for API Consumers 262
Strategies for Change . 263
Change Management Is Built on Trust 264

API Versioning Strategies . 264
Common Nonbreaking Changes . 265
Incompatible Changes . 265
API Versions and Revisions . 266
API Versioning Methods . 267
Business Considerations of API Versioning 268

Deprecating APIs. 268
Establish a Deprecation Policy . 269
Announcing a Deprecation . 269

Establishing an API Stability Contract . 270
Summary . 271

Chapter 15: Protecting APIs . 273

The Potential for API Mischief . 273
Essential API Protection Practices . 274
Components of API Protection . 276

API Gateways . 276
API Management. 276
Service Meshes . 277
Web Application Firewalls . 278
Content Delivery Networks . 278
Intelligent API Protection . 279

Contents xix

API Gateway Topologies . 279
API Management Hosting Options . 279
API Network Traffic Considerations . 282
Topology 1: API Gateway Direct to API Server 283
Topology 2: API Gateway Routing to Services 283
Topology 3: Multiple API Gateway Instances 283

Identity and Access Management . 284
Passwords and API Keys . 285
API Tokens . 286
Pass-by-Reference versus Pass-by-Value API Tokens 287
OAuth 2.0 and OpenID Connect . 288

Considerations before Building an In-House API Gateway 289
Reason 1: API Security Is a Moving Target 290
Reason 2: It Will Take Longer than Expected 290
Reason 3: Expected Performance Takes Time 290
What about Helper Libraries? . 291

Summary . 291

Chapter 16: Continuing the API Design Journey . 293

Establishing an API Style Guide . 293
Methods for Encouraging Style Guide Adherence 294
Selecting Style Guide Tone . 295
Tips for Getting Started with an API Style Guide 296
Supporting Multiple API Styles . 296

Conducting API Design Reviews . 297
Start with a Documentation Review . 298
Check for Standards and Design Consistency 299
Review Automated Test Coverage . 299
Add Try It Out Support . 299

Developing a Culture of Reuse . 300
The Journey Has Only Begun . 301

Appendix: HTTP Primer . 303

Index . 319

This page intentionally left blank

xxi

Series Editor Foreword

My signature series emphasizes organic growth and refinement, which I describe in
more detail below. Before that, I will tell you a little about how organic reactions
brought the author and I together for the first time.

If you’ve ever spent a summer in a desert, you know that your flesh-and-blood
organism becomes very uncomfortable with the heat. That’s certainly the case
with summer in the Sonoran Desert of Arizona. Temperatures can rise to near
120°F, or 49°C. At 118°F/47.8°C, the Phoenix Sky Harbor Airport shuts down
operations. So, if you are going to break free from the heat, you get out before you
are stuck in the desert. That’s what we did in early July 2019, when we escaped to
Boulder, Colorado, where we had previously resided. Knowing that the author of
this book, James Higginbotham, had relocated to Colorado Springs, Colorado,
gave us the opportunity to meet up for a few days in that nearby Colorado city. (In
the western US, 100 miles/160 km is considered to be nearby.) I’ll tell you more
about our collaboration once I’ve introduced you to my signature series.

My Signature Series is designed and curated to guide readers toward advances in
software development maturity and greater success with business-centric practices.
The series emphasizes organic refinement with a variety of approaches—reactive,
object, as well as functional architecture and programming; domain modeling; right-
sized services; patterns; and APIs—and covers best uses of the associated underlying
technologies.

From here I am focusing now on only two words: organic refinement.
The first word, organic, stood out to me recently when a friend and colleague

used it to describe software architecture. I have heard and used the word organic in
connection with software development, but I didn’t think about that word as care-
fully as I did then when I personally consumed the two used together: organic
architecture.

Think about the word organic, and even the word organism. For the most part
these are used when referring to living things, but are also used to describe inani-
mate things that feature some characteristics that resemble life forms. Organic
originates in Greek. Its etymology is with reference to a functioning organ of the
body. If you read the etymology of organ, it has a broader use, and in fact organic
followed suit: body organs; to implement; describes a tool for making or doing; a
musical instrument.

Series Editor Forewordxxii

We can readily think of numerous organic objects—living organisms—from the
very large to the microscopic single-celled life forms. With the second use of organism,
though, examples may not as readily pop into our mind. One example is an organiza-
tion, which includes the prefix of both organic and organism. In this use of organism,
I’m describing something that is structured with bidirectional dependencies. An organ-
ization is an organism because it has organized parts. This kind of organism cannot
survive without the parts, and the parts cannot survive without the organism.

Taking that perspective, we can continue applying this thinking to nonliving
things because they exhibit characteristics of living organisms. Consider the atom.
Every single atom is a system unto itself, and all living things are composed of atoms.
Yet, atoms are inorganic and do not reproduce. Even so, it’s not difficult to think of
atoms as living things in the sense that they are endlessly moving, functioning. Atoms
even bond with other atoms. When this occurs, each atom is not only a single system
unto itself, but becomes a subsystem along with other atoms as subsystems, with
their combined behaviors yielding a greater whole system.

So then, all kinds of concepts regarding software are quite organic in that nonliv-
ing things are still “characterized” by aspects of living organisms. When we discuss
software model concepts using concrete scenarios, or draw an architecture diagram,
or write a unit test and its corresponding domain model unit, software starts to come
alive. It isn’t static, because we continue to discuss how to make it better, subjecting
it to refinement, where one scenario leads to another, and that has an impact on the
architecture and the domain model. As we continue to iterate, the increasing value in
refinements leads to incremental growth of the organism. As time progresses so does
the software. We wrangle with and tackle complexity through useful abstractions,
and the software grows and changes shapes, all with the explicit purpose of making
work better for real living organisms at global scales.

Sadly, software organics tend to grow poorly more often than they grow well. Even
if they start out life in good health they tend to get diseases, become deformed, grow
unnatural appendages, atrophy, and deteriorate. Worse still is that these symptoms
are caused by efforts to refine the software that go wrong instead of making things
better. The worst part is that with every failed refinement, everything that goes wrong
with these complexly ill bodies doesn’t cause their death. (Oh, if they could just die!)
Instead, we have to kill them and killing them requires nerves, skills, and the intestinal
fortitude of a dragon slayer. No, not one, but dozens of vigorous dragon slayers. Actu-
ally, make that dozens of dragon slayers who have really big brains.

That’s where this series comes into play. I am curating a series designed to help
you mature and reach greater success with a variety of approaches—reactive, object,
and functional architecture and programming; domain modeling; right-sized ser-
vices; patterns; and APIs. And along with that, the series covers best uses of the

Series Editor Foreword xxiii

associated underlying technologies. It’s not accomplished at one fell swoop. It
requires organic refinement with purpose and skill. I and the other authors are here
to help. To that end, we’ve delivered our very best to achieve our goal.

When James and I got together for a few days in July 2019, we covered a lot of
ground on APIs and Domain-Driven Design, along with related subjects. I’d con-
sider our conversations organic in nature. As we iterated on various topics, we
refined our knowledge exchange, gauged by our level of interest in whatever direc-
tion our hunger led us. Feeding our brains resulted in growing our own desire and
determination to extend our software building approaches in order to help others
expand their skills and grow toward greater successes. Those who read our books, as
well as our consulting and training clients, are the ones who have gained the most.

To say the least, I was impressed by James’s encyclopedic knowledge of every-
thing APIs. While we were together, I asked James about writing a book. He
informed me that he had self-published one book but wasn’t at that time intent on
writing another book. That was approximately nine months before I was offered
the Signature Series. When the series planning was in the works, I immediately
approached James about authoring in the series. I was so happy that he accepted
and that he proposed organic software design and development techniques, such as
with Align-Define-Design-Refine (ADDR). When you read his book, you will
understand why I am so pleased to have James in my series.

—Vaughn Vernon

This page intentionally left blank

xxv

Foreword

According to a recent IDC report on APIs and API management, 75 percent of those
surveyed were focused on digital transformation through the design and implemen-
tation of APIs and more than one half expected call volume and response time to
grow dramatically. And most organizations admitted they faced challenges in meet-
ing expectations for both internally and externally facing APIs. At the heart of all of
this is the need for consistent, reliable, and scalable API design programs to help lead
and transform existing organizations. As James Higginbotham puts it in this book:
“The biggest challenge for today’s API programs continues to be successfully design-
ing APIs that can be understood and integrated by developers in a consistent and
scalable fashion.”

It was for this reason that I was so happy to have this book cross my desk. I’ve had
the pleasure of working with James over the years and, knowing his work and his
reputation, was very happy to hear he was writing a book that covers Web API
design. Now, after reading through this book, I am equally happy to recommend it to
you, the reader.

The field of Web APIs and the work of designing them has matured rapidly over
the last few years, and keeping up with the latest developments is a major undertak-
ing. Issues like changing business expectations for the role of APIs; maturing pro-
cesses for gathering, recording, and documenting the work of API design; as well as
evolving technology changes and all the work of coding, releasing, testing, and mon-
itoring APIs make up an API landscape large enough that few people have been able
to successfully tackle it. Through his Align-Define-Design-Refine process, James
offers an excellent set of recommendations, examples, and experience-based advice
to help the reader navigate the existing space of Web APIs and prepare for the inevi-
table changes ahead in the future.

One of the things about James’s work that has always stood out is his ability to
reach beyond the technical and into the social and business aspects of APIs and API
programs within organizations. James has a long list of international clients across
the business sectors of banking, insurance, global shipping, and even computer
hardware providers, and the material in this book reflects this depth of experience.
The techniques and processes detailed here have been tried and tested in all sorts of
enterprise settings, and James’s ability to distill what works into this one volume is

Forewordxxvi

impressive. Whether you are looking for advice on general design, business-
technology alignment, or implementation details for various technologies such as
REST, GraphQL, and event-driven platforms, you’ll find important and actionable
advice within these pages.

In particular, I found the material on how to refine your API design and imple-
mentation efforts within an ever-growing enterprise API program particularly timely
and especially valuable. For those tasked with launching, managing, and expanding
the role of Web-based APIs within a company, Principles of Web API Design should
prove to be a welcome addition to your bookshelf.

As the aforementioned IDC report indicates, many companies around the globe
are faced with important digital transformation challenges, and APIs have a major
role to play in helping organizations meet the needs of their customers and in con-
tinuing to improve their own bottom line. Whether you are focused on designing,
building, deploying, or maintaining APIs, this book contains helpful insights and
advice.

I know this book will become an important part of my toolkit as I work with
companies of all stripes to continue to mature and grow their API programs, and I
expect you, too, will find it useful. Reading this book has reminded me of all the
opportunities and challenges we all have before us. To borrow another line from
James: “This is only the beginning.”

—Mike Amundsen, API Strategist

xxvii

Preface

It’s hard to pinpoint the beginning of the journey to writing this book—perhaps it
started about ten years ago. It is the result of thousands of hours of training, tens of
thousands of miles traveled, and too many written words and lines of code to count.
It comprises insights from organizations across the globe that were just starting their
API journey or had already begun the adventure. The book incorporates the insights
of API practitioners across the world whom I have had the pleasure to meet.

Or perhaps the journey started almost twenty-five years ago, when I first entered
the software profession. So many advisors provided their insight via books and arti-
cles. Mentors along the way helped to shape my way of thinking about software.
They laid the foundation of how I prefer to realize software architecture.

Maybe the journey really started almost forty years ago, when my grandfather
gifted me with a Commodore 64. He was a civil engineer and cost engineer who
attended night school while working to support his family during the day. He was
thirsty for knowledge, reading and absorbing everything he could. He always made
us laugh when he said, “I’m still amazed at how television works!” after seeing a
computer operate. Yet, he was the one who gifted me that magical computer, saying
“computers are going to be big someday, and my grandson should know how to use
one.” This single action started my lifelong love of software development.

In reality, the journey started more than seventy years ago when the pioneers of
our current age of computing established many of the foundational principles we
still use today to construct software. Though technology choices change, and the
trends come and go, it all builds on the work of so many in the software industry and
beyond. Countless people have helped to carve the way for what we do today.

What I am saying is that APIs would not be what they are today without all the
hard work that came before us. Therefore, we must thirst for understanding the
history of our industry to better understand “the how” and “the why” behind what
we do today. Then, we must seek to apply these lessons to all that we do tomorrow.
Along the way, we need to find ways to inspire others to do the same. This is what
my grandfather and father taught me, so I pass this lesson on to you. This book
reflects the things I’ve learned thus far in my journey. I hope you gain some new
insights by building upon what is presented here while you seek to prepare the next
generation.

Prefacexxviii

Who Should Read This Book

This book is for anyone who wants to design a single API or a series of APIs that will
delight humans. Product owners and product managers will gain a deeper under-
standing of the elements that teams need to design an API. Software architects and
developers will benefit from learning how to design APIs by applying principles of
software architecture. Technical writers will identify ways that they not only can
contribute to the clarity of API documentation but also can add value throughout
the API design process. In short, Principles of Web API Design is for everyone
involved in API design whether they are in a development or nondevelopment role.

About This Book

This book outlines a series of principles and a process for designing APIs. The Align-
Define-Design-Refine (ADDR) process featured in this book is designed to help indi-
viduals and cross-functional teams to navigate the complexities of API design. It
encourages an outside-in perspective on API design by applying concepts such as the
voice of the customer, jobs to be done, and process mapping. Although Principles of
Web API Design walks through a greenfield example from the ground up, the book
may also be used for existing APIs.

The book covers all aspects of API design, from requirements to arriving at an
API design ready for delivery. It also includes guidance on how to document the API
design for more effective communication between you, your team, and your API con-
sumers. Finally, the book touches on a few elements of API delivery that may have an
impact on your API design.

The book is divided into five parts:

• Part I: Introduction to Web API Design—An overview of why API design
is important and an introduction to the API design process used in this book.

• Part II: Aligning on API Outcomes—Ensures alignment between the team
designing the API and all customers and stakeholders.

• Part III: Defining Candidate APIs—Identifies the APIs, including the API
operations required, necessary to deliver the desired outcomes into API profiles.

• Part IV: Designing APIs—Transforms the API profiles into one or more API
styles that meet the needs of the target developers. Styles covered include REST,
gRPC, GraphQL, and event-based asynchronous APIs.

Preface xxix

 • Part V: Refining the Design—Improves the API design based on insights from
documentation, testing, and feedback. It also includes a chapter on decompos-
ing APIs into microservices. Finally, the book closes with tips on how to scale
the design process in larger organizations.

For those who need a refresher on HTTP, the language of the Web used for Web-
based APIs, the appendix provides a nice primer to help you get started.

What’s Not in the Book

There are no code listings, other than some markup used to capture API design
details. You don’t need to be a software developer to take advantage of the process
and techniques described in this book. It doesn’t dive into a specific programming
language or prescribe a specific design or development methodology.

The scope of the full API design and delivery lifecycle is big. While there are some
insights provided that extend beyond API design, it is impossible for me to capture
every detail and situation that could occur. Instead, this book tackles the challenges
teams encounter when going from an idea to business requirements and, ultimately,
to an API design.

Let’s get started.

Register your copy of Principles of Web API Design on the InformIT site for
convenient access to updates and/or corrections as they become available. To
start the registration process, go to informit.com/register and log in or create
an account. Enter the product ISBN (9780137355631) and click Submit. Look
on the Registered Products tab for an Access Bonus Content link next to this
product, and follow that link to access any available bonus materials. If you
would like to be notified of exclusive offers on new editions and updates,
please check the box to receive email from us.

http://informit.com/register

This page intentionally left blank

xxxi

Acknowledgments

First, I would like to thank my wife and kids who have supported me in so many ways
throughout the years. Your prayers and encouragement have meant so much to me.

Special thanks to Jeff Schneider, who suggested that we should write the first
enterprise Java book in 1996, before Java was enterprise. Your insights and endless
hours of coaching set me on an amazing career path. Your friendship guided me
along the way.

Keith Casey, thank you for inviting me to coauthor a book and deliver API
workshops to people all over the world. This book wouldn’t have been written
without your friendship, encouragement, and insight.

Vaughn Vernon, who sent me a message years ago asking how we could collabo-
rate, which ultimately turned into this book—thank you for inviting me on your
journey.

Mike Williams, who encouraged me to risk it all to realize my dreams, you have
been an inspiration and a great friend.

A special thank you to the many reviewers of this book. Your dedication to
reviewing the chapters, often under a time crunch, to help produce this book is
appreciated: Mike Amundsen, Brian Conway, Adam DuVander, Michael Hibay,
Arnaud Lauret, Emmanuel Paraskakis, Matthew Reinbold, Joyce Stack, Vaughn
Vernon, and Olaf Zimmermann.

To all API evangelists and influencers, thank you for the personal and professional
discussions. Here are just a few of the many people I’ve had the pleasure of meeting:
Tony Blank, Mark Boyd, Lorinda Brandon, Chris Busse, Bill Doerfeld, Marsh Gardiner,
Dave Goldberg, Jason Harmon, Kirsten Hunter, Kin Lane, Matt McLarty, Mehdi
Medjaoui, Fran Mendez, Ronnie Mitra, Darrel Miller, John Musser, Mandy Whaley,
Jeremy Whitlock, and Rob Zazueta. And to those on the Slack channel, thanks for your
support!

I would like to acknowledge everyone at Pearson who supported me throughout
the process. Haze Humbert, thank you for making this process as easy as it can be for
an author. And thank you to the entire production team: your hard work is greatly
appreciated.

Finally, to my mom, thank you for spending endless hours at the library while
I researched computer programming books before I was old enough to drive.

This page intentionally left blank

xxxiii

About the Author

James Higginbotham is a software developer and architect with over twenty-five years
of experience in developing and deploying apps and APIs. He guides enterprises
through their digital transformation journey, ensuring alignment between business and
technology through product-based thinking to deliver a great customer experience.
James engages with teams and organizations to help them align their business, prod-
uct, and technology strategies into a more composable and modular enterprise plat-
form. James also delivers workshops that help cross-functional teams to apply an API
design-first approach using his ADDR process. His industry experience includes bank-
ing, commercial insurance, hospitality, travel, and the airline industry where he helped
to get an airline off the ground—literally. You can learn more about his latest efforts at
https://launchany.com and on Twitter @launchany.

https://launchany.com

This page intentionally left blank

1

Part I

Introduction to Web
API Design

APIs are forever. Once an API is integrated into a production application, it is
difficult to make significant changes that could potentially break those existing inte-
grations. Design decisions made in haste become future areas of confusion, support
issues, and lost opportunities far into the future. The API design phase is an impor-
tant part of any delivery schedule.

Part 1 examines the fundamentals of software design and how it produces a posi-
tive or negative impact on API design. It then examines the API first design process
and presents an overview of an API design process. This process incorporates an
outside-in perspective to deliver an effective API to meet the needs of customers,
partners, and the workforce.

This page intentionally left blank

3

Chapter 1

The Principles
of API Design

All architecture is design, but not all design is architecture.Architecture represents
the set of significant design decisions that shape the form and the function of
a system.

— Grady Booch

Organizations have been delivering APIs for decades. APIs started as libraries and
components shared across an organization and sold by third parties. They then grew
into distributed components using standards such as CORBA for distributed object
integration and SOAP for integrating distributed services across organizations.
These standards were designed for interoperability but lacked the elements of effec-
tive design, often requiring months of effort to successfully integrate them.

As these standards were replaced by Web APIs, only a few APIs were needed.
Teams could take the time to properly design them, iterating as needed. This is no
longer the case. Organizations deliver more APIs and at greater velocity than ever
before. The reach of Web APIs goes beyond a few internal systems and partners.

Today’s Web-based APIs connect organizations to their customers, partners,
and workforce using the standards of the Web. Hundreds of libraries and frame-
works exist to make it cheap and fast to deliver APIs to a marketplace or for internal
use. Continuous integration and continuous delivery (CI/CD) tools make it easier
than ever to build automation pipelines to ensure APIs are delivered with speed and
efficiency.

Yet, the biggest challenge for today’s API programs continues to be successfully
designing APIs that can be understood and integrated by developers in a consistent
and scalable fashion. Facing this challenge requires organizations to recognize that
Web APIs are more than just technology. Just as works of art require the balance
of color and light, API design benefits from the blending of business capabilities,
 product thinking, and a focus on developer experience.

Chapter 1 The Principles of API Design 4

The Elements of Web API Design

An organization’s collection of APIs provides a view into what the business values in
the marketplace. The design quality of its APIs provides a view into how the business
values developers. Everything an API offers—and doesn’t offer—speaks volumes
about what an organization cares most about. Effective Web API design incorporates
three important elements: business capabilities, product thinking, and developer
experience.

Business Capabilities

Business capabilities describe the enablers an organization brings to market. They
may include external-facing capabilities, such as unique product design, amazing
customer service, or optimized product delivery. They may also include internally
facing capabilities such as sales pipeline management or credit risk assessment.

Organizations deliver business capabilities in three ways: directly by the organiza-
tion, outsourced via a third-party provider, or through a combination of organiza-
tional and third-party processes.

For example, a local coffee shop may choose to sell custom coffee blends. To
do so, it sources coffee beans through a third-party distributor, roasts the coffee
beans in-house, then utilizes a third-party point-of-sale (POS) system for selling
its coffee blends in a retail store. By outsourcing some of the necessary busi-
ness capabilities to specialized third parties, the coffee shop is able to focus on
delivering specific business capabilities that differentiate them from others in the
marketplace.

APIs digitize the business capabilities that an organization brings to a market-
place. When embarking on designing a new API or expanding an existing API, the
underlying business capabilities should be well understood and reflected into the
API design.

Product Thinking

Organizations were integrating with partners and customers prior to the growth of
Web APIs. The challenge most organizations face, however, is that each integration
has been custom made. For each new partner or customer integration, a dedicated
team consisting of developers, a project manager, and an account manager were
tasked with building a custom integration. This involved tremendous effort and was
often repeated, with per-partner customizations.

The Elements of Web API Design 5

The growth of the software-as-a-service (SaaS) business model, along with the
increase in demand for Web APIs, have shifted the discussion from one-off integra-
tion with partners and customers to a focus on product thinking.

Applying product thinking to the API design process shifts the team focus from
a single customer or partner to an effective API design that is able to handle new
automation opportunities with little to no customization effort for a given customer
segment. It also enables a self-service model for workforce, business-to-business, and
customer-driven integration.

The focus of an API product becomes less on custom implementations and more
on meeting market needs in a scalable and cost-effective way. Reusable APIs emerge
from considering multiple consumers at once. When embarking on the design of a
new API, use a product thinking approach to obtain feedback from multiple par-
ties that will consume the API. Doing so will shape the API design early and lead to
increased opportunities for reuse.

Developer Experience

User experience (UX) is the discipline of meeting the exact needs of users, from their
interactions with the company to their interactions with its services and with the
product itself. Developer experience (DX) is just as important for APIs as UX is for
products and services. The DX focuses on the various aspects of engagement with
developers for an API product. It extends beyond the operational details of the API.
It also includes all aspects of the API product, from first impressions to day-to-day
usage and support.

A great DX is essential to the success of an API. When a great DX is delivered,
developers quickly and confidently consume a Web API. It also improves the mar-
ket traction of productized APIs by moving developers from being integrators to
becoming experts on the API. The expertise translates directly into the ability to
deliver real value to their customers and their business quickly and with reduced
effort.

As API teams seek to understand how to design a great experience for their API,
remember that DX is an important factor for internal developers, also. For example,
great documentation enables internal developers to understand and consume an API
quickly, whereas an API that has poor documentation requires contacting the inter-
nal team responsible for the API to learn how to use it properly. While they may be
able to gain direct access to the developers that designed and implemented an API,
it adds unnecessary communication overhead. Internal developers benefit from great
DX because they can create business value faster.

Chapter 1 The Principles of API Design 6

CASE STUDY
APIs and Product Thinking Meets Banking

Capital One started its API journey in 2013 with the goal of developing an
enterprise API platform. The initial set of platform APIs focused on deliver-
ing automation throughout the organization to increase velocity of delivery
while breaking down siloed barriers.

As the number of digital capabilities in its API platform grew, Capital
One’s focus shifted from internal APIs to several product opportunities
in the marketplace. It launched its public-facing developer portal called
DevExchange at South by Southwest (SXSW)1 with several API products.
These product offerings included bank-grade authorization, a rewards
program, credit card prequalification, and even an API to create new sav-
ings accounts.

Capital One extended the idea further by leveraging its digital capabili-
ties to develop an omnichannel presence. APIs used to power its Web site and
mobile app formed a foundation for a voice-based interactive experience2
using Amazon’s Alexa platform and interactive chat using a chatbot named
Eno (the word one spelled backwards).

Taking a product-based approach to its APIs, along with a robust API
portfolio of digital capabilities, allowed Capital One to explore opportunities
with its customers and partners. It didn’t happen overnight, but it did happen
because of an API focus that started with an executive vision and execution
by the entire organization.

1. “Capital One DevExchange at SxSW 2017,” March 27, 2017, https://www.youtube.com/watch?v=
4Cg9B4yaNVk

2. “Capital One Demo of Alexa Integration at SXSW 2016,” September 6, 2016, https://www.youtube
.com/watch?v=KgVcVDUSvU4&t=36s

API Design Is Communication

When developers think of software design, thoughts of classes, methods, functions,
modules, and databases likely spring to mind. UML sequence and activity diagrams,
or simple box and arrow diagrams if preferred, are used to convey understanding
across a codebase. All these elements are part of the communication process devel-
opment teams use for understanding and future developer onboarding.

https://www.youtube.com/watch?v=4Cg9B4yaNVk
https://www.youtube.com/watch?v=4Cg9B4yaNVk
https://www.youtube.com/watch?v=KgVcVDUSvU4&t=36s
https://www.youtube.com/watch?v=KgVcVDUSvU4&t=36s

Reviewing the Principles of Software Design 7

Likewise, API design is a communication process. Rather than communicating
inwardly between the members of a single team, APIs shift the communication
outward. The lines of communication are extended in three distinct ways:

1. Communication across network boundaries: An API’s design, including its
choice of protocol, has an impact on the chattiness of the API. Network protocols,
such as HTTP, are better for coarse-grained communication. Other protocols,
such as Message Queuing Telemetry Transport (MQTT) and Advanced Message
Queuing Protocol (AMQP), often used for messaging APIs, are better suited for
fine-grained communication within a defined network boundary. The API design
reflects the frequency of communication between systems and the impact it may
have on performance because of network boundaries and bottlenecks. The API
design process has a heavy impact on performance of the client and server.

2. Communication with consuming developers: API design and associated
documentation are the user interface for developers. They inform developers
how and when they are able to use each API operation. They also determine
whether and how developers can combine operations to achieve more complex
results. Communication early and often during the API design process is essen-
tial to meet the needs of developers consuming the API.

3. Communication to the marketplace: API design and documentation inform
prospective customers, partners, and internal developers what outcomes the
APIs make possible through the digital capabilities they offer. Effective API
design helps to communicate and enable these digital capabilities.

API design is an important part of communication. An API design process helps
us to consider these aspects of communication during the design phase.

Reviewing the Principles of Software Design

Software design focuses on the organization and communication of software com-
ponents within a codebase. Techniques such as code comments, sequence diagrams,
and the judicious use of design patterns help improve the communication effort
among team members.

Web API design builds on these principles of software design, but with a
broader audience that extends beyond the team or organization. The scope of
communication expands beyond a single team or organization to developers all
over the world. Yet, the same principles of software design apply to Web-based

Chapter 1 The Principles of API Design 8

API design: modularization, encapsulation, loose coupling, and high cohesion.
While these may be subjects familiar to most developers, they are fundamental to
API design and need review before approaching any API design process.

Modularization

Modules are the smallest atomic unit within a software program. They are com-
posed of one or more source files that contain classes, methods, or functions. Mod-
ules have a local, public API to expose the functionality and business capabilities that
they offer to other modules within the same codebase. Modules are sometimes
referred to as components or code libraries.

Most programming languages support modules through the use of namespaces
or packages that group code together. Grouping related code that collaborates into
the same namespace encourages high cohesion. Internal details of a module are
protected through access modifiers provided by the programming language. For
example, the Java programming language has keywords such as pu b lic, protected,
pack ag e, and priv ate that help to encourage loose coupling through limited expo-
sure of a module.

As more and more modules are combined, a software system is created. A sub-
system combines modules into a larger module in more complex solutions, as
shown in Figure 1.1.

Applying the same concepts of modularization to Web-based API design helps to
reveal the boundaries and responsibilities of every API. This ensures clear responsi-
bilities across complementary APIs that focus on externalizing digital capabilities
while hiding the internal implementation details. Consuming developers benefit by
understanding the API quickly and effectively.

Encapsulation

Encapsulation seeks to hide the internal details of a component. Scope modifiers are
used to limit access to a module’s code. A module exposes a set of public methods
or functions while hiding the internal details of the module. Internal changes may

System

Subsystem Subsystem

Module Module

Module Module

Subsystem Subsystem

Module Module

Figure 1.1 Modules combine into ever-larger units, resulting in a software system.

Reviewing the Principles of Software Design 9

occur without impacting other modules that depend on its public methods. Some-
times encapsulation is referred to as information hiding, a concept applied to soft-
ware development since the 1970s by David Parnas.

Web APIs extend this concept a bit further. They hide the internal details of pro-
gramming language, choice of Web framework, the classes and objects of a system,
and database design behind an HTTP-based API. Internal details, encapsulated
behind the API design, encourage a loosely coupled API design that depends on mes-
sages rather than underlying database design and models for communication. No
longer do organizations need to understand all the internal implementations details,
such as for a payment gateway. Instead, they only need to understand the operations
that the API offers and how to use them to achieve the desired outcomes.

High Cohesion and Loose Coupling

High cohesion is a term used when the code within a module is all closely related to
the same functionality. A highly cohesive module results in less “spaghetti code,” as
method calls aren’t jumping all over the codebase. When code is scattered across the
entire codebase, calls frequently jump across modules and back again. This style of
code is considered to exhibit low cohesion.

Coupling is the degree of interdependence between two or more components.
Tightly coupled components indicates that the components are very constrained by
the implementation details of the other. Loosely coupled components hide the compo-
nents’ internal details away from others, restricting the knowledge between modules to a
public interface, or programming language API, that other areas of the code can invoke.

Figure 1.2 demonstrates the concepts of high cohesion and loose coupling within
and across modules.

Figure 1.2 Loose coupling and high cohesion are fundamentals of modular API design.

Package Methods

Public Methods

Client Code
Scope keywords
limit client code
access to public
methods

The result is high cohesion within modules
and loose coupling across modules

... ...

... ...

...

Package Methods

Chapter 1 The Principles of API Design 10

Web APIs extend these concepts by grouping related API operations for high
cohesion while ensuring that the internal details are encapsulated to encourage a
loosely coupled API design.

Resource-Based API Design

A resource is a digital representation of a concept, often an entity or collection of
entities that may change over time. It consists of a unique name or identifier that can
reference documents, images, collections of other resources, or a digital representa-
tion of anything in the real world such as a person or thing. Resources may even rep-
resent business processes and workflows.

Resource-based APIs focus on interactions across a network, independent of how
they are stored in a database or manifested as objects. They offer different opera-
tions, or affordances, as possible interactions with a specific resource. In addition,
resources support multiple representations that allow a Web app, mobile app, and
reporting tool to interact with the resource using different media formats such as
JSON or XML.

Resources Are Not Data Models

It is important to recognize that resources are not the same thing as a data model
that resides with a database. The data model, often reflected as a schema design in a
database, is optimized for the read and write interactions necessary to support the
required I/O performance and reporting needs of a solution.

While data may be part of an API, the data model should not be used as the basis
of API design. Data models meet a specific set of requirements, including read and
write performance, optimized data storage, and optimized query support. Data
models are optimized for the internal details of an application.

Like the choice of programming languages and frameworks, the choice of data-
base types and vendors changes over time. APIs designed to directly map to a data
or object model expose these internal implementation details to API consumers. The
result is a more fragile API that must introduce significant design changes when the
data model changes.

Web API design seeks to achieve a different set of goals, including delivering
outcomes and experiences, optimized network access, and programming language
independence. Because APIs involve integration between systems, they should
remain stable over a long period of time, whereas data models may change to
accommodate new or changing data access requirements.

While APIs may have an impact on the data model, an API design should evolve
independently from the latest database trends.

Resources Are Not Object or Domain Models 11

What Happens When Teams Expose a Data Model as an API?

Constant code changes: Database schema changes will result in a constantly
changing API, as the API must keep in lockstep with the underlying database.
This change to the data model forces consumers into a complex conformist
relationship in which they must rewrite their API integration code every time
the underlying data model changes. This hindrance may be overcome by an
anticorruption layer that isolates a unit of code from these changes. How-
ever, the constant flux of the API creates a high cost of development as down-
stream developers maintain the anticorruption layer.

Create network chattiness: Exposing link tables as separate API endpoints
causes API “chattiness,” as the consumer is forced to make multiple API calls,
one for each table. It is similar to how an n+1 query problem degrades data-
base performance. While an n+1 problem can be a performance bottleneck
for databases, API chattiness has a devastating impact on API performance.

Data inconsistencies: Not only does performance suffer from network chat-
tiness, but the n+1 problem also results in data inconsistencies. Clients are
forced to make multiple API calls and stitch the results together into a single
unified view. This may result in incomplete or corrupted data due to inconsis-
tent reads, perhaps across transactional boundaries, that occur from multiple
API requests necessary to obtain necessary data.

Confuse API details: Columns optimized for query performance, such as
a C HAR (1) column that uses character codes to indicate status, become
 meaningless to API consumers without additional clarification.

Expose sensitive data: Tools that build APIs that mirror a data model expose
all columns with a table using S EL EC T * F R OM [tab le name] . This also exposes
data that API consumers should never see, such as personally identifiable
information (PII). It may also expose data that helps hackers compromise
 systems through a better understanding of the internal details of the API.

Resources Are Not Object or Domain Models

API resources are not the same as objects in an object-oriented codebase. Objects
support collaboration within a codebase. Objects are often used to map data models
into code for easier manipulation. They suffer from the same issues as exposed data
models: constant code changes, network chattiness, and data inconsistencies.

Chapter 1 The Principles of API Design 12

Likewise, domain models, typically comprised of objects, represent the specific
business domain. They may be used in a variety of ways to address the needs of
the system. They may even traverse different transactional contexts based on how
they are applied. Web APIs, however, are most effective when they take transactional
boundaries into consideration rather than directly exposing internal domain or
object model behavior.

Keep in mind that API consumers don’t have the luxury of seeing the details of
a data model and all the code behind an API. They didn’t sit in on the endless meet-
ings that resulted in the multitude of decisions that drove a data model design. They
don’t have the context of why data model design decisions were made. Great API
designs avoid leaking internal details, including database design choices, by shifting
from data design to message design.

Resource-Based APIs Exchange Messages

Resource-based APIs create a conversation between the business and a user or remote
system. For example, suppose a user of a project management application was con-
versing with the API server. The conversation may look something like what’s shown
in Figure 1.3.

Does it seem strange to think about APIs as a chat session? It isn’t far off from what
Alan Kay originally intended when he coined the term object-oriented programming.
Rather than a focus on inheritance and polymorphic design, he envisioned object-
oriented programming as sending messages between components:

I’m sorry that I long ago coined the term “objects” for this topic because it gets many
people to focus on the lesser idea.
The big idea is “messaging.”3

Like Kay’s original vision for object-oriented programming, Web APIs are mes-
sage based. They send request messages to a server and receive a response message as
a result. Most Web APIs perform this message exchange synchronously by sending a
request and waiting for the response.

API design considers the conversational message exchange between systems to
produce desired outcomes by customers, partners, and the workforce. A great API
design also considers how this communication evolves as requirements change.

3. Alan Kay, “Prototypes vs Classes was: Re: Sun’s HotSpot,” Squeak Developer’s List, October 10, 1998,
http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html.

http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html

The Principles of Web API Design 13

Client: Could you send me
a list of the projects I am
allowed to see?

Server: Sure, here is what
we have for you

Today 8:32 AM

Client: Could you create a
new project for me, with a
name of ‘My Project’?

Server: Done. Here is
where you will find it

Today 8:32 AM

Client: Could you send me
the details for project
12345 (I know it as ‘My
Project’)?

Server: Oh, sure thing.
Here are the details for
you

Today 8:32 AM

Figure 1.3 An example interaction between an API client and API server, as if the user was
talking to the server in conversational terms.

The Principles of Web API Design

An API design approach must include a balance between robust digital capabilities
and a focus on a great developer experience that supports quick and easy integration.
It must be rooted in a series of principles that create a solid foundation. These five
principles establish the necessary foundation and are detailed throughout this book:

Principle 1: APIs should never be designed in isolation. Collaborative API design
is essential for a great API. (Chapter 2)

Chapter 1 The Principles of API Design 14

Principle 2: API design starts with an outcome-based focus. A focus on the
outcome ensures the API delivers value to everyone. (Chapters 3–6)

Principle 3: Select the API design elements that match the need. Trying to find the
perfect API style is a fruitless endeavor. Instead, seek to understand and apply the
API elements appropriate for the need, whether that is REST, GraphQL, gRPC, or
an emerging style just entering the industry. (Chapters 7–12)

Principle 4: API documentation is the most important user interface for
developers. Therefore, API documentation should be first class and not left as
a last-minute task. (Chapter 13)

Principle 5: APIs are forever, so plan accordingly. Thoughtful API design com-
bined with an evolutionary design approach makes APIs resilient to change.
(Chapter 14)

Summary

Web API design incorporates three important elements to deliver a successful API:
business capabilities, product thinking, and developer experience. These cross-
functional disciplines mean that organizations cannot ignore the process of API
design. Developers, architects, domain experts, and product managers must work
together to design APIs that meet the needs of the marketplace.

In addition, Web API design builds on the principles of software design, includ-
ing modularization, encapsulation, loose coupling, and high cohesion. API designs
should hide the internal details of the systems they externalize. They should not
expose underlying data models but rather focus on a system-to-system message
exchange that is both flexible in design and resilient to change over time.

So, how do teams go from business requirements to an API design that is evolvable
while delivering the desired outcomes to customers, partners, and the internal work-
force? That is the subject of the next chapter, which introduces a process that bridges
business and product requirements into an API design. The process is explored in
detail in subsequent chapters.

319

Index

A
Acceptance testing, 226
ActiveMQ, 166
Activity steps captured in ADDR process,

24, 25
ADDR. See Align-Define-Design-Refine (ADDR)
Advanced Message Queuing Protocol (AMQP),

7, 164, 165, 166
Affordances, 10, 107
Aggregate sticky note, 55
Agile Manifesto principles, 22
Agility of API design-first, 22–23
Alexa, Amazon’s, 6
Align, in ADDR process, 23
Align-Define-Design-Refine (ADDR), 23–26

feedback in, 23, 24
goals achieved by, 24–25
phases of, 23
process overview, 25
steps in phases of, 24
steps used in real-world design project, 25–26

Align phase of ADDR process, 23, 29
capture activities and steps, 45–65
digital capabilities, 31–43

ALPS (Application-Level Profile Semantics), 83,
245–46

Amazon Kinesis, 169
Amazon’s Alexa, 6
Amazon Web Services (AWS), 221, 281
AMQP (Advanced Message Queuing Protocol),

7, 164, 165, 166
Amundsen, Mike, 128
Analytics, in MVP, 259
Anticorruption layer, 11
Antipatterns

avoiding, 70–71
helper API antipattern, 71

mega all-in-one API antipattern, 70
overloaded API antipattern, 70–71

Apache Avro, 126, 178
Apache Kafka, 169, 173
Apache Lucene, 16, 19
Apache Pulsar, 169
Apache Spark, 170
Apiary, 238
API-based orchestration, 201, 202
API Blueprint, 238–40
API boundaries, 69–78

antipatterns, avoiding, 70–71
bounded contexts, subdomains, and APIs, 71–72
finding, 72–75

activities for, 74–75
DDD for, 72
EvenStorming for, 72–74

identified in ADDR process, 24, 25
identifying, 69–78
naming and scoping APIs, 75–77, 78

API consumption lifecycle, 300
API contract testing, 227–28
API description formats, 234–48

ALPS, 245–46
API Blueprint, 238–40
improving API discovery using APIs.json, 247–48
JSON Schema, 244–45
OAS, 235–37
RAML, 240–43

API design
antipatterns, 16–20

coding, 16–19
heroic design effort antipattern, 19–20
next release design fix antipattern, 19
unused API antipattern, 20

approach, 13, 14
business capabilities of, 4
for change, 261–71

320 Index

API stability contract, establishing,
270–71

API versioning strategies, 264–68
deprecating APIs, 268–70
determining what is best for API

consumers, questions for, 262–63
impact of, on existing APIs, 261–64
management built on trust, 264
perform API design gap analysis, 262
strategies for, 263–64

collaborative, 13
as communication, 6–7
data model exposed as, 11
developer experience in, 5
documentation, 5, 7, 14
elements of, 4–6, 14, 102
outcome-based focus of, 14
principles of, 13–14
process, 15–28

ADDR in, 23–26
API design antipatterns in, 16–20
API design-first approach in, 20–23
applying effectively, 28
applying product thinking to, 5
communication in, 6–7, 15
DDD in, 26
reasons for, 15–16
roles involved in API design sessions, 27

product thinking and, 4–5, 6
refined in ADDR process, 24, 25
resiliency to change, evolutionary approach

for, 14, 264, 301
resource-based, 10–11
reviews, conducting, 297–300

automated test coverage, 299
benefits of, 297
caution about, 297–98
documentation review, starting

with, 298
standards and design consistency,

checking for, 299
try it out support, adding, 299–300

scaling, within organization, 293–302
API consumption lifecycle, 300
API style guide, establishing, 293–97
culture of reuse, developing, 300–301

software design and, reviewing principles of,
7–10

API designers and architects, 27
API design-first approach, 20–23

agility of, 22–23
phases of, 20–21
principles relevant to concerns of, 22

API design gap analysis, 262
API documentation, 233–60

in ADDR process, 24, 25
API description formats, 234–48
areas of improvement, questions

to identify, 253–56
async APIs, 184–85
developer portals, 251–53
extending docs with code examples,

248–51
helper libraries, 221
importance of, 234
as most important user interface for

developers, 14, 234, 301
MVP, 256–59
in query-based design process, 154–57
REST API design, 118, 120–23
review, 298
role of technical writer in API docs, 255–56
in RPC API design process, 145–46

API fundamentals, in API style guide, 294
API gateways, 276

direct to API server, 283
in-house, 289–91
management hosting options, 279–81
middleware, 276
multicloud API management retail (case

study), 281–82
multiple instances of, 283–84, 285
network traffic considerations, 282–83
routing to services, 283
topologies, 279–84

API keys, 285–86
API management layers (APIMs), 260,

276–77
APIMatic, 223
API modeling, 79–98

API priority and reuse, 95–96, 97
API profile structure, 81, 82
defined, 80–81

321Index

OAS in, 83
process, 81–93

add operation events, 88, 91, 92
capture API profile summary, 83–84
expand operation details, 91, 93, 94
resource identification, 85–87
resource taxonomy, defining, 87–88,

89–90
sequence diagrams for validating, 93–95

APIMs (API management layers), 260, 276–77
API polling, 160–61
API priority and reuse

assess business and competitive value, 96
evaluating, 95–96, 97
sizing and prioritization, 96, 97

API profile, 80
modeled in ADDR process, 24, 25
structure, 81, 82
summary, 83–84

API protection, 273–91. See also API gateways
APIMs in, 276–77
authentication (authn) in, 274
authorization (authz) in, 275
CDNs in, 278
claims in, 275
components of, 276–79
cryptography in, 275
data scraping and botnet protection in, 276
gateway topologies, 279–84
IAM in, 284–89
intelligent API protection in, 279
message validation in, 275
mutual TLS in, 275
practices in, essential, 274–76
protocol filtering and protection in, 275
quotas in, 275
rate limiting (throttling) in, 275
review and scanning in, 276
security breaches, 273–74
service meshes in, 277–78
session hijack prevention in, 275
WAFs in, 278

API prototype mocking, 216–17
APIs differentiated from microservices, 193
API security breaches, 273–74
APIs.json, 247–48
API stability contract, 270–71

API Stylebook (Lauret), 296
API style guide, 293–97

adherence, 294–95
getting started with, tips for, 296
multiple API styles, supporting, 296–97
tone, selecting, 295
topics included in, 294

API testing, 225–31
acceptance testing, 226
automated security testing, 226–27
challenges of, 230–31
contract testing, 227–28
helper libraries, 221
importance of, 231
operational monitoring, 227
tools to accelerate, selecting, 229–30
user interface testing versus, 228–29

API versioning, 264–68
business considerations of, 268
common nonbreaking changes, 265
incompatible changes, 265–66
methods, 267–68

header-based, 267
homename-based, 268
URI-based, 267–68

revisions, 266–67
versions, 266–67

APM (application performance management)
tools, 221

Application-Level Profile Semantics
(ALPS), 83, 245–46

Application performance management
(APM) tools, 221

Architects, 27
“Architectural Styles and the Design of Network-

based Software Architectures” (Fielding),
102

Architecture styles in microservices, 201–3
API-based orchestration, 201, 202
cell-based architecture, 203
direct service communication, 201, 202

Associative relationship, 87, 88, 89
Async APIs for eventing and streaming,

159–86
async API styles, 171–78

bidirectional notification via WebSocket
protocol, 174–76

322 Index

gRPC streaming, 176–77
selecting, 177–78
server notification using webhooks,

171–72
server push using SSE, 172–74

benefits of, 160
designing, 178–83

command messages, 178–79
event batching, 182–83
event-carried state transfer events, 180–82
event messages, 179–80
event notifications, 179–80
event ordering, 183

documenting, 184–85
limitations of, 160
messaging fundamentals, review of, 162–71
new possibilities created with, 161–62
polling, problem with, 160–61

AsyncAPI specification, 185
Asynchronous messaging, 164
Asynchronous microservices, 198–201
Authentication (authn), 274
Authentication, in developer portal, 253
Authorization (authz), 275
Automated security testing, 226–27
Automated test coverage, reviewing, 299
AWS (Amazon Web Services), 221, 281

B
Backend API, 16, 17, 18
Backend developers and implementation, 16,

17, 18
Background (queued) jobs, 134–35
BDD (behavior-driven development), 219
Behavior-driven development (BDD), 219
Bidirectional notification via WebSocket, 174–76
Bidirectional streaming, 139, 177
Booch, Grady, 3
Botnet attacks, 279
Botnet protection, 276
Bounded contexts, 71–72
Brandolini, Alberto, 45, 49, 51, 64
Browsers

gRPC and, 176
HTML and, 132
HTTP and, 141

JavaScript files and, 107
middleware and, 141
SSE and, 172–74
webhooks and, 177
WebSocket and, 174–76, 178

Business capabilities, 4
Business domain events, 51
Business event sticky note, 55
Business value, assessing, 96

C
Cacheable (architectural property), 103
Call chaining, 197, 198–201, 208
Capability, in job story, 36–37
Capital One, 6
Capture activities and steps, 45–65

EventStorming, 58–65
job stories in, 46–48

Case studies
in developer portal, 252
as element of great developer portals, 252
enterprise developer portal success, 252
to generate growth in adoption, 258
GitHub webhooks create new CI/CD

marketplace, 162
multicloud API management retail, 281–82
in MVP, 258
product thinking meets banking, 6

Casey, D. Keith, 233, 273
CDNs (content delivery networks), 278
Cell-based architecture, 203
Chaining API calls, 197, 198–201
Changelog, in developer portal, 253
Christensen, Clayton M., 31, 35, 36
CI/CD (continuous integration and continuous

delivery) tools, 3
Claims in API protection, 275
Cleanroom data set creation, 230
Client acknowledgement mode, 166
Client/server, 103, 104
CLIs. See Command-line interfaces (CLIs)
Clock skew, 183
Clone method, to enforce style guide compliance,

295
Coarse-grained communication, 7

323Index

Code
in API design antipatterns, 16–19
in API design-first approach, 20–21
changes, 11
in coupling, 9
on demand, 103

supported by REST, 107
in encapsulation, 8
examples, extending docs with, 248–51

error case and production-ready
examples, 251

expanding documentation with workflow
examples, 249–51

write getting started code examples first,
249

generators
for CLI generation, 223
for helper libraries generation, 223

grouping related, 8
in heroic design effort antipattern, 19
in high/low cohesion, 9
libraries, 8
in modularization, 8
in next release design fix antipattern, 19
objects used to map data models into,

11, 12
refactoring and sharing, 197
response, in REST, 116, 118, 119
role of developers in writing, 27
sharing in microservices, 197

Codebase, object-oriented, 11–12
Collaborative API design, 15–28
Command-line automation, 255
Command Line Interface Guidelines, 223
Command-line interfaces (CLIs), 221–23

for APIs, 221–23
using code generators for CLI generation, 223

Command message, 162, 163
designing, 178–79

Command sticky note, 55
Commercial off-the-shelf (COTS) APIs, 96
Communication, in API design process,

6–7, 15
Community-contributed helper libraries, 220
Competitive value, assessing, 96
Components, 8
Consumer-generated helper libraries, 220

Consuming developers, communication
with, 7

Content delivery networks (CDNs), 278
Continuous integration and continuous delivery

(CI/CD) tools, 3
Coordination costs reduced by, 192–93
Coordination costs reduced by microservices,

192–93
CORBA, 3
CORS (cross-origin resource sharing), 275
COTS (commercial off-the-shelf) APIs, 96
Create-read-update-delete (CRUD)

API mocking tool to store data for, 217
lifecycle, 132, 147, 210
pattern, 132–33
REST and, 104

Creation timestamps, 165
Cross-origin resource sharing (CORS), 275
Cross-site request forgery (CSRF), 275
CRUD. See Create-read-update-delete (CRUD)
Cryptography, 275
CSRF (cross-site request forgery), 275
Cucumber testing tool, 219
Cultural impacts of microservices, 195
Culture of reuse, developing, 300–301
Customers, defined, 32
Customize method, to enforce style guide

compliance, 295

D
Data

in API design-first, 20
API mocking tool for storing, 217
exposing sensitive, 11
inconsistencies, 11
models

exposing as API, 11
microservices architecture and, 196
objects for mapping, 11
resource-based API design differentiated

from, 10
mutating, 147
ownership in microservices, shift in, 194–95
scraping in API protection, 276
test data sets for APIs, 230

324 Index

DDD. See Domain-driven design (DDD)
DDE (dynamic data exchange), 164
DDoS (distributed denial-of-service) attacks, 276
Dead letter queue (DLQ), 166, 201
Decomposing APIs into microservices, 204–10

additional design considerations, 208, 210
candidate microservices, identifying, 205–6
MDC to capture, 208, 209
microservices added to API sequence

diagrams, 206–8
Define, in ADDR process, 23
Define phase of ADDR process, 23, 67

API boundaries, identifying, 69–78
API modeling, 79–98

Delivery process
in API design-first approach, 21
API modeling and, 80
efficiency in, 16, 17–18
EventStorming and, 59
mock implementations, 21, 214
in reduced team coordination, 192
speed in, 190

Dependent resources, 87, 112–13
Deprecated stability contract, 271
Deprecating APIs, 268–70

announcing deprecation, 269–70
deprecation policy, establishing, 269

Design
in ADDR process, 23
in API design-first approach, 20, 21
consistency, 299
flaws, 19
patterns, in API style guide, 294

Designer experience, 27
Design phase of ADDR process, 23, 99. See also

High-level design
Developer experience (DX), 5
Developer experience, improving, 213–24

CLIs for APIs, 221–23
creating mock API implementation, 214–19
helper libraries and SDKs, providing, 219–21

Developer portals, 251–53
API adoption through developer portals,

increasing, 251–52
API reference documentation in, 253
authentication and documentation in, 253

case studies in, 252
easy onboarding in, 253
elements of great, 252–53
enterprise developer portal success (case

study), 252
feature discovery in, 252
getting started guide (or quick start guide)

in, 252
live support in, 253
operational insight in, 253
release notes and changelog in, 253
tools and frameworks for, 259–60

Developer relations (DevRel), 253
DevExchange at South by Southwest

(SXSW), 6
DevOps, 191–92
DevRel (developer relations), 253
Digital capabilities, 31–43

in ADDR process, 24, 25
defined, 33–34
identifying, 31–43
job stories, 35–42
JTBD, 34–35
stakeholder alignment, ensuring, 31–33

Dillon, Karen, 31
Direct service communication, 201, 202
Discover, in API design-first approach, 20, 21
Distributed data management in microservices,

196
Distributed denial-of-service (DDoS) attacks, 276
Distributed messaging, 164
Distributed systems challenges in microservices,

196
Distributed transactions in microservices, 197
DLQ (dead letter queue), 166, 201
Documenting API design. See API documentation
Documents, for capturing job stories, 41
DOMA (Domain-Oriented Microservice

Architecture), 203
Domain-driven design (DDD)

aggregates in, 55
for finding API boundaries, 69, 72
role of, in API design, 26

Domain events, 51
Domain experts, 27
Domain models, 11–12

325Index

Domain-Oriented Microservice Architecture
(DOMA), 203

Domain understanding, 54–56
Duncan, David S., 31
Duplicate message processing, 170
Durable subscriptions, 166
DX (developer experience), 5
Dynamic data exchange (DDE), 164

E
Easy onboarding, in developer portal, 253
Embedded resources, 127
Emerging styles, 14, 102
Encapsulation, 8–9
Eno chat bot, 6
Enterprise developer portal success

(case study), 252
Error case examples, 251
ETL (extract-transform-load) processes, 170, 196
Evans, Eric, 26, 69, 72
Event batching, 182–83
Event-carried state transfer events, 180–82
Eventing. See Async APIs for eventing and

streaming; EventStorming;
Server-Sent Events (SSE)

Event message, 163
designing, 179–80

Event notifications, 179–80
Event ordering, 183
EventStorming, 58–65

attendees, 59–60
benefits of, 58–60
for collaborative understanding, 49
for finding API boundaries, 72–74
for international wire transfers

(case study), 49–50
process, 50–57

create event narrative, 51–53
customizing, 64–65
expand domain understanding, 54–56
identify business domain events, 51
review final narrative, 56–57
review narrative and identify gaps, 54

session, 60–65
executing, 63
follow-up, 63–64

preparing for, 60–61
sharing in, 62
wrap-up, 63

sticky note types in, 55–56
Evolutionary design approach, 14, 19
Exchange messages, 12–13
Experimental stability contract, 271
External system sticky note, 56
Extract-transform-load (ETL) processes, 170, 196

F
Failover in microservices, 197
Fanout, use of term, 168
Feature discovery, in developer portal, 252
Federated method, to enforce style guide

compliance, 295
Feedback

in ADDR process, 23, 24
in API design-first approach, 21
in design process, 16, 17–18
product thinking approach to obtain, 5
prototype or mock API to acquire, 21
in REST, 124–25

Fielding, Roy Thomas, 101, 102–4, 105, 107, 108,
111, 137

Fire-and-follow-up pattern, 135
Fire-and-forget pattern, 135
45-degree angle sticky notes, 64
Frontend developers and implementation,

16, 17, 18
Functional testing, 227–28
Further reading, in API style guide, 294

G
Getting started code examples, 249
Getting started guide

in developer portal, 252
in MVP, 258–59

GitHub
API workshop examples on, 42, 48, 93, 136
CI/CD marketplace created by webhooks

(case study), 162
documentation examples on, 235

326 Index

example asynchronous API descriptions on, 185
job stories on, 42
REST pattern resources on, 136

GitLab, 217
GoLang, 139, 255
Google

Cloud, 221
Docs, 63
gRPC, 139–41, 176–77
logging in with account, 288
SPDY protocol, 176

Governance in microservices, 196
GraphQL, 14, 102, 149–50, 154–57
Graph structures, designing, 151, 152
GRPC, 14, 102

in RPC-based API design, 139–41
selecting, 178
Shopping Cart API design for, 142, 145–46
streaming, 176–77, 178

H
HAL (Hypertext Application Language), 108, 127
Hall, Taddy, 31
HATEOAS, 108
Header-based versioning, 267
Helper API antipattern, 71
Helper libraries

documentation and testing, 221
in-house gateway and, 291
offering, options for, 220
providing, 219–21
using code generators for generating, 223
versioning, 220–21

Heroic design effort antipattern, 19–20
Heroku, 221, 223
H-Factors, 128
High cohesion, 9–10
High-level design, 24, 25

async APIs for eventing and streaming,
159–86

query-based API design, 146–57
REST-based API design, 101–36
RPC-based API design, 138–46

Hightower, Kelsey, 189
Homename-based versioning, 268

Hotspot sticky note, 55
HTML

API reference documentation, 234, 235, 259,
270

in browsers, 132
deprecation warning in, 270
Markdown files and, 41
in Rest-based APIs, 111
SSE as part of HTML5, 172

HTTP
API protection and, 275, 278
in async APIs, 161, 162, 171–76, 177, 178
browsers and, 141
for coarse-grained communication, 7, 111
content negotiation in, 125
in helper libraries, 219, 220
methods

incompatible changes in, 266
invalid combinations of, 275
JSON:API for determining, 128
mapping API operations to, 115–16, 117
as protocol of choice, 103
safety classifications for, 91, 93, 115
selecting, 91, 294
via TLS, 275

in Query-based APIs, 147, 149, 150
request headers, 105, 141, 229, 267, 286
response codes, 116, 118–19
in REST-based APIs, 102–3, 105, 106, 110,

111, 112, 133, 134, 235, 240
in RMM, 110
in RPC-based APIs, 139, 141, 235
service meshes and, 277
in synchronous microservices, 198

HTTP methods
mapping API operations to, 115–16, 117
safety classifications for, 91, 93, 115

HTTP POST, 16, 19
Hugo, 217, 259
Hunt, Andrew, 80
Hypermedia controls, 107–10
Hypermedia messaging, 128–29

semantic, 129–32
Hypermedia serialization, 127–28
Hypertext Application Language (HAL),

108, 127

327Index

I
IAM. See Identity and access management (IAM)
Idempotent HTTP operation, 91, 115
Identifier, 10
Identity and access management (IAM), 284–89

API tokens, 286–88
pass-by-reference versus pass-by-value,

287–88
OAuth 2.0, 288, 289
OpenID Connect, 288, 289
passwords and API keys, 285–86

IDEs (integrated development environments),
197, 219, 238

IDL (interface definition language), 139–40, 145,
228, 270

Implementing Domain-Driven Design
(Evans and Vernon), 26, 72

Incentivized method, to enforce style guide
compliance, 294–95

Independent release cycles in microservices, 194
Independent resources, 87
Information hiding, 9
Infrastructure and operations, 27
Integrated development environments (IDEs),

197, 219, 238
Intelligent API protection, 279
Interface definition language (IDL), 139–40, 145,

228, 270
Interface testing versus API testing, 228–29
Internet Engineering Task Force, 174
Internet of Things (IoT), 184
Interprocess messaging, 164
Introduction, in API style guide, 294
IoT (Internet of Things), 184
Isolation, APIs designed or delivered in,

13, 17, 20, 33

J
Java Message Service (JMS), 150, 166
Java programming language, 8, 138, 166
JavaScript, 103, 107, 111, 255, 275, 286
Jekyll, 217, 259, 260
Jmqtt, 166
JMS (Java Message Service), 150, 166

Jobs to be done (JTBD), 34–35, 222
Job stories, 35–42

in activities and steps, 46–48
decompose each activity into steps, 47–48
identify activities for each job story, 47
when requirements aren’t clear, 48

capturing, 40–41
challenges in, 38–40

detailed job stories, 38–39
feature centric job stories, 39–40
need for additional user context, 40

components of, 36–37
defined, 35–36
examples of, 42
real-world API design project, 41–42
writing, for APIs, 37–38

Jones, Caspers, 225
JSON, 10
JSON Schema, 244–45
JSON Web Tokens (JWTs), 288
JTBD (jobs to be done), 34–35, 222
JWTs (JSON Web Tokens), 288

K
Kay, Alan, 12, 159
Key performance indicators (KPIs), 33
Klement, Alan, 36
KPIs (key performance indicators), 33
Kubernetes, 139, 221, 223

L
Lauret, Arnaud, 296
Layered system

in Fielding’s paper, 103
supported by REST, 105–6

Lifecycle management, in API style guide, 294
Lifecycle support, in REST, 133–34
Lindsay, Jeff, 171
Link tables, 11, 231
Live support, in developer portal, 253
Local messaging, 164
Long-running transaction support in REST,

135–36
Loose coupling, 9–10

328 Index

M
Management hosting options, 279–81
Markdown files, 39, 41, 217, 238, 259
Marketplace, communication to, 7
McLarty, Matt, 293
MDC (Microservice Design Canvas), 208, 209
Mega all-in-one API antipattern, 70
Message broker

examples of, 166
fanout message distribution (topics), 167–68
features offered by, 166
point-to-point message distribution (queues),

167
terminology, 168
understanding, 166–67

Message Queuing Telemetry Transport (MQTT),
7, 164, 165, 184

Message streaming. See also Async APIs for
eventing and streaming

considerations, 170–71
fundamentals, 168–70
gRPC, 176–77, 178
servers, 169

Messaging/messages, 162–71
elements of, 165
exchanged through resource-based API

design, 12–13
filtering, 170
immutable nature of, 163
message validation in API protection, 275
priority and TTL, 166
processing failures, 166
styles and locality, 164
types, 162–63

Microservice Design Canvas (MDC), 208, 209
Microservices, 189–211

APIs differentiated from, 193
architecture styles, 201–3
complexity of, 193–97
coordination costs reduced by, 192–93
decomposing APIs into, 204–10
defined, 190–91
distributed data management and governance

in, 196
distributed systems challenges in, 196
distributed transactions in, 197

failover in, 197
independent release cycles in, 194
need for, 198
organizational structure and cultural impacts

of, 195
reduced team coordination and, 192–93
refactoring and code sharing in, 197
resiliency of, 197
right-sizing, 204
self-service infrastructure in, 194
shift in data ownership in, 195
shift to single-team ownership in, 194–95
synchronous/asynchronous, 198–201
transitioning to, considerations in, 210
warning about term, 191

Middleware, 141, 276
Minimum viable portal (MVP), 256–59

checklist, 256–57
growth in adoption, 258–59

analytics for, 259
case studies for, 258
documentation for, 259
getting started guides for, 258–59
single-page format for, 259

improving, 257–58
template, 260

Mock API implementation, 214–19
API prototype mocking, 216–17
README-based mocking, 215, 217–19
static API mocking, 215–16

Mockaroo, 230
Modularization, 8
Modular monoliths, 198
Modules, 8
Mozilla, 174
MQTT (Message Queuing Telemetry Transport),

7, 164, 165, 184
MTLS (mutual TLS), 275
MuleSoft, 240
Multicloud API management retail (case study),

281–82
Multipart EventStorming sessions, 64
Multiple API gateway instances, 283–84, 285
Mutation operations, designing, 151, 153–54
Mutual TLS (mTLS), 275
MVP. See Minimum viable portal (MVP)

329Index

N
N+1 query problem, 11
Namespaces, 8
Naming APIs, 75–77, 78
Narratives, in EventStorming

creating, 51–53
identify gaps, 54
review of final narrative, 56–57

National Institute of Standards and Technology
(NIST), 282

Network boundaries, communication across, 7
Network chattiness, 7, 11
Network protocols, 6
Network traffic considerations, 282–83
Next release design fix antipattern, 19
NIST (National Institute of Standards and

Technology), 282
Nix tools, 223
Node.js, 216
Nonpublic information (NPI), 27

O
OAI (OpenAPI Initiative), 235
OAS (OpenAPI Specification), 83, 120–22, 184,

217, 235–37
OAuth 2.0, 288, 289
Objective-C, 255
Objectives and key results (OKRs), 33
Object-oriented programming, 12
Objects, in domain models, 11–12
OData, 147–48
OKRs (objectives and key results), 33
OLAP (online analytical processing), 196
Onboarding, 6, 21
O’Neill, Mark, 213
Online analytical processing (OLAP), 196
OpenAPI Initiative (OAI), 235
OpenAPI Specification (OAS), 83, 120–22, 184,

217, 235–37
OpenID Connect, 288, 289
Open Web Application Security Project

(OWASP), 229
Operational insight, in developer portal, 253
Operational monitoring, in API testing, 227

Operational recommendations, in API style
guide, 294

Operation details, in API modeling, 91, 93, 94
Oracle, 238
Organizational structure of microservices, 195
Outcome, in job story, 36–37
Outcome-based focus, APIs designed or delivered

in, 14, 35, 264, 301
Outsourcing, 4
Overloaded API antipattern, 70–71
OWASP (Open Web Application Security

Project), 229

P
Parnas, David, 9
Pass-by-reference API tokens, 287–88
Pass-by-value API tokens, 287–88
Passwords, 285–86
Personally identifiable information (PII), 11, 27
PHP, 216
PII (personally identifiable information), 11, 27
Pipe and filter design pattern, 223
POCs (proofs of concept), 221
Point-of-sale (POS) system, third-party, 4
Policy sticky note, 55
Polling, 160–61
POS (point-of-sale) system, third-party, 4
POS (third-party point-of-sale) system, 4
The Pragmatic Programmer (Thomas

and Hunt), 80
Prerelease stability contract, 271
Product definition, 32
Production-ready examples, 251
Product managers, 27
Product thinking, 4–5, 6
Product thinking meets banking (case study), 6
Programming languages, 8
Project managers, 27
Proofs of concept (POCs), 221
Protecting APIs. See API protection
Protocol Buffers, 126, 139–40, 142, 145, 176, 178
Protocol filtering, 275
Prototype, in API design-first approach, 21
Prototyping APIs, 19
Provider-supported helper libraries, 220

330 Index

Public-facing developer portal, 6
Python, 216, 220, 255

Q
QA (quality assurance), 229–30
QA teams, 27
Quality assurance (QA), 229–30
Query-based API design, 146–57

defined, 146–47
GraphQL, exploring, 149–50
OData, understanding, 147–48
process, 150–57

designing resource and graph structures,
151, 152

design query and mutation operations,
151, 153–54

document API design, 154–57
Query operations, designing, 151, 153–54
Queues, use of term, 168
Quick start guide. See Getting started guide
Quotas, 275

R
RabbitMQ, 166, 168, 173
RAML (RESTful API Modeling Language), 228,

240–43
Rate limiting (throttling), 275
README-based mocking, 215, 217–19
Refactoring in microservices, 197
Reference documentation, in developer portal,

253
Refine, in ADDR process, 23
Refine phase of ADDR process, 23, 187

documenting API design, 233–60
API description formats, 234–48
developer portals, 251–53
extending docs with code examples,

248–51
importance of, 234
MVP, 256–59
questions to identify areas of

improvement for API documentation,
253–56

role of technical writer in API docs,
255–56

refining the design
API testing strategies, 225–31
improving developer experience, 213–24
microservices, 189–211

Refining the design
API testing strategies, 225–31
improving developer experience, 213–24
microservices, 189–211

Release notes, in developer portal, 253
Remote method invocation (RMI), 138
Remote procedure call (RPC)–based API design.

See RPC-based API design
Reply message, 163
Representation format, 125–32

categories of, 126
hypermedia messaging, 128–29
hypermedia serialization, 127–28
resource serialization, 126–27
semantic hypermedia messaging, 129–32

Request messages, 162
Resiliency of microservices, 197
Resource, defined, 10
Resource-based API design, 10–11

data models differentiated from, 10
messages exchanged through, 12–13
object or domain models differentiated from,

11–12
Resource-centric REST, 104–5
Resource identification, in API modeling, 85–87
Resource serialization, 126–27
Resource structures, designing, 151, 152
Resource taxonomy, in API modeling, 87–88,

89–90
Response messages, 163
REST-based API design, 101–36

architectural constraints in Fielding’s paper,
102–3

client/server, 104
code on demand supported by, 107
CRUD and, 104
defined, 102
dependent resources, 113
hypermedia controls, 107–10
layered system supported by, 105–6
measuring REST using RMM, 110–11

331Index

message based, 105

patterns, 132–36

API workshop examples on GitHub, 136

background (queued) jobs, 134–35

CRUD-based APIs, 132–33

extended resource lifecycle support,

133–34

long-running transaction support, 135–36

singleton resources, 133

process, 112–23

assign response codes, 116, 118, 119

design resource URL paths, 112–14

documenting REST API design, 118,

120–23

map API operations to HTTP methods,

115–16, 117

share and gather feedback, 124–25

representation format, selecting, 124–32

resource-centric, 104–5

when to choose, 111–12

RESTful API Modeling Language (RAML), 228,

240–43

REST Hooks documentation, 171

Retired stability contract, 271

Review and scanning, 276

RFC 2119, 295

RFC 6455, 174

Richardson, Leonard, 110

Richardson Maturity Model (RMM), 110–11

Right-sizing, 204

RMI (remote method invocation), 138

RMM (Richardson Maturity Model), 110–11

RPC-based API design, 138–46

defined, 138–39

factors when considering, 141

gRPC protocol, 139–41

process, 142–46

detail RPC operations, 142, 144

document API design, 145–46

identify RPC operations, 142, 143

RPC (remote procedure call)–based API design.

See RPC-based API design

Ruby, 216, 220, 250, 255

S
SaaS (software-as-a-service), 5, 41, 162, 279, 281,

284
Safe HTTP operation, 91, 115
SAML (Security Assertion Markup Language),

289
Schema definitions, 122–23
Scope modifiers, 8
Scopes, 286
Scoping APIs, 75–77, 78
Scrum Masters, 27
SDKs (software development kits), 219–21
Security Assertion Markup Language (SAML),

289
Security teams, 27
Self-service infrastructure in microservices, 194
Self-service model, 5
Semantic hypermedia messaging, 129–32
Sequence diagrams

microservices added to, 206–8
for validating API modeling, 93–95

Serialization
hypermedia, 127–28
resource, 126–27

Server push using SSE, 172–74
selecting, 177

Server-Sent Events (SSE), 184, 185, 296
for multiple API styles, 296
selecting, 177
server push using, 172–74
use cases not supported by, 174
use cases supported by, 173

Service-level agreement (SLA), 81, 227
Service meshes, 277–78
Service-oriented architecture (SOA), 197
Session hijack prevention, 275
Shared facilitation, in EventStorming, 65
Shopping Cart API, 142, 145–46, 151–54, 235,

240
Single-page applications (SPAs), 149
Single-page format, in MVP, 259
Single sign-on (SSO), 289
Single-team data ownership in microservices,

194–95
Singleton resources, in REST, 134
Sizing and prioritization, 96, 97

332 Index

SLA (service-level agreement), 81, 227
SMEs (subject matter experts), 27, 47
Snapshots, 80, 230
SOA (service-oriented architecture), 197
SOAP, 3, 33, 110, 135–36, 138, 150, 296
Software-as-a-service (SaaS), 5, 41, 162, 279, 281,

284
Software design, reviewing principles of, 7–10

encapsulation, 8–9
high cohesion and loose coupling, 9–10
modularization, 8

Software development
agile, 23
DDD approach to, 26
defect removal and, 226
information hiding in, 9
people involved in, 26–27
in reduced team coordination, 192

Software development kits (SDKs), 219–21
Solution-oriented testing, 226
Spaghetti code, 9
SPAs (single-page applications), 149
Spreadsheets, for capturing job stories, 41
SSE. See Server-Sent Events (SSE)
SSO (single sign-on), 289
Stakeholders

alignment with, ensuring, 31–33
in API design-first, 22
in EventStorming, 58, 59
feedback from, 21, 93, 270
gathering domain details from, 45
unused API antipattern and, 20

Standards
in API design reviews, 299
in API style guide, 294
connectivity based on, 166

Stateless (architectural property), 103
Static API mocking, 215–16
Static site generators, 259
Sticky notes, 55–56
Streaming. See Async APIs for eventing and

streaming; Message streaming
Subdomains, 71–72
Subject matter experts (SMEs), 27, 47
Subprotocol, 174
Supported stability contract, 271

Surface area, 27, 42, 54
Swagger, 120, 228, 235
Swagger Codegen project, 223
Swagger Editor, 120
SwaggerUI, 235, 259, 260
Swift, 255
SXSW (DevExchange at South by Southwest), 6
Synchronous messaging, 164
Synchronous microservices, 198–201

T
TCP/IP, 277
TDD (test-driven development), 230
Technical leads, 27
Technical writer, roles of

in API design, 27
in API docs, 255–56

Technologies, in API style guide, 294
Test-driven development (TDD), 230
Thin events, 179
Third-party point-of-sale (POS) system, 4
Thomas, David, 15, 80
Three-lane approach, 64
Throttling (rate limiting), 275
Time to First Hello World (TTFHW), 249–51
Time-to-live (TTL), 165, 166
TLS (Transport Layer Security), 275
Tone, in API style guide, 295
Tools

to accelerate API testing, 229–30
API mocking, 217
in API style guide, 294
APM, 221
CI/CD, 3
for developer portals, 259–60
for Markdown support, 217

Topics, in API style guide, 294
Topics, use of term, 168
Tracer bullet, 80
Transactional boundaries, 166
Transport Layer Security (TLS), 275
Triggering event, in job story, 36–37
Try it out support, 299–300
TTFHW (Time to First Hello World), 249–51
TTL (time-to-live), 165, 166

333Index

U
Uber Engineering, 203
Ubiquitous language, 49
UI (user interface) tests, 228–29
Uniform interface, 103
Unique name, 10
UNIX, 118, 164
Unsafe HTTP operation, 93, 115
Unused API antipattern, 20
URI-based versioning, 267–68
URL paths, in REST, 112–14
User experience (UX), 5, 27, 255
User interface sticky note, 56
User interface (UI) tests, 228–29
User sticky note, 56
UX (user experience), 5, 27, 255

V
Vernon, Vaughn, 26, 72
Versioning helper libraries, 220–21
Virtual machine (VM), 277
Virtual private network (VPN), 282
VM (virtual machine), 277
VOC (voice of the customer), 35
Vogels, Werner, 261
Voice of the customer (VOC), 35
VPN (virtual private network), 282

W
W3C, 172, 174
WAFs (Web application firewalls), 277, 278
Web APIs, 3–5, 9–10

boundaries, 12, 71
customer- and partner-facing, 112
evolvable, 103
high cohesion and loose coupling in, 10
information hiding, 9
message-based, 12
REST-based, 107, 112, 161–62

Web application firewalls (WAFs), 277, 278
Webhooks

dispatcher, 171, 172
implementing effectively, 171
selecting, 177
server notification using, 171–72

WebSocket
bidirectional notification via, 174–76
selecting WebSocket protocol, 178

Wright, Frank Lloyd, 79
Writing job stories, for APIs, 37–38

when desired outcome is known, 37–38
when digital capability has been identified, 38
when problem is known, 37

WS-Transaction specification, 135–36

X
XML Schema, 244

Y
YAML, 126, 235, 240, 245, 247
“You ain’t gonna need it” (YAGNI) principle, 211

Z
Zero trust architecture (ZTA), 282

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Series Editor Foreword
	Foreword
	Preface
	Acknowledgments
	About the Author
	Part I: Introduction to Web API Design
	Chapter 1: The Principles of API Design
	The Elements of Web API Design
	Business Capabilities
	Product Thinking
	Developer Experience

	API Design Is Communication
	Reviewing the Principles of Software Design
	Modularization
	Encapsulation
	High Cohesion and Loose Coupling

	Resource-Based API Design
	Resources Are Not Data Models

	Resources Are Not Object or Domain Models
	Resource-Based APIs Exchange Messages
	The Principles of Web API Design
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

