

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page i — #1

i
i

i
i

i
i

Embracing Modern C++ Safely

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page ii — #2

i
i

i
i

i
i

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page iii — #3

i
i

i
i

i
i

Embracing Modern C++ Safely

John Lakos

Vittorio Romeo

Rostislav Khlebnikov

Alisdair Meredith

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page iv — #4

i
i

i
i

i
i

Cover image: Unconventional/Shutterstock
Pages 109, 130: cocktail glass, Laura Humpfer/OpenMojis

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training goals,
marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2021947542

Copyright © 2022 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-738035-0
ISBN-10: 0-13-738035-6

ScoutAutomatedPrintCode

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page v — #5

i
i

i
i

i
i

Pearson’s Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all learners.
We embrace the many dimensions of diversity, including but not limited to race, ethnic-
ity, gender, socioeconomic status, ability, age, sexual orientation, and religious or political
beliefs.
Education is a powerful force for equity and change in our world. It has the potential to
deliver opportunities that improve lives and enable economic mobility. As we work with
authors to create content for every product and service, we acknowledge our responsibility
to demonstrate inclusivity and incorporate diverse scholarship so that everyone can achieve
their potential through learning. As the world’s leading learning company, we have a duty
to help drive change and live up to our purpose to help more people create a better life for
themselves and to create a better world.
Our ambition is to purposefully contribute to a world where:

• Everyone has an equitable and lifelong opportunity to succeed through learning.

• Our educational products and services are inclusive and represent the rich diversity of
learners.

• Our educational content accurately reflects the histories and experiences of the learners
we serve.

• Our educational content prompts deeper discussions with learners and motivates them
to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any
concerns or needs with this Pearson product so that we can investigate and address them.

• Please contact us with concerns about any potential bias at
https://www.pearson.com/report-bias.html.

v

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page vi — #6

i
i

i
i

i
i

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page vii — #7

i
i

i
i

i
i

To my darling wife, Elyse, who I love dearly, always have, and forever will:
“‘When I use a word,’ Humpty Dumpty said in rather a scornful tone,

‘it means just what I choose it to mean—neither more nor less.’”
— Lewis Carroll, Through the Looking-Glass

JSL

To my aunts and my dad,
who have always supported me

in every aspect of my life.
VR

To Elena and my parents.
RK

To the late David and Mary Meredith,
loving parents who encouraged me in everything that I did

and would have been so proud to see their son finally in print.
AM

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page viii — #8

i
i

i
i

i
i

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page ix — #9

i
i

i
i

i
i

Contents

Foreword by Shawn Edwards xiii

Foreword by Andrei Alexandrescu xv

Acknowledgments xix

About the Authors xxv

Chapter 0 Introduction 1
What Makes This Book Different 1
Scope for the First Edition 2
The EMC++S Guiding Principles 3
What Do We Mean by Safely? 4
A Safe Feature 5
A Conditionally Safe Feature 5
An Unsafe Feature 6
Modern C++ Feature Catalog 6
How to Use This Book 8

Chapter 1 Safe Features 11
1.1 C++11 11

Attribute Syntax Generalized Attribute Support 12
Consecutive >s Consecutive Right-Angle Brackets 21
decltype Operator for Extracting Expression Types 25
Defaulted Functions Using = default for Special Member Functions 33
Delegating Ctors Constructors Calling Other Constructors 46
Deleted Functions Using = delete for Arbitrary Functions 53
explicit Operators Explicit Conversion Operators 61
Function static '11 Thread-Safe Function-Scope static Variables 68
Local Types '11 Local/Unnamed Types as Template Arguments 83
long long The long long (≥64 bits) Integral Type 89
noreturn The [[noreturn]] Attribute 95

ix

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page x — #10

i
i

i
i

i
i

Contents

nullptr The Null-Pointer-Literal Keyword 99
override The override Member-Function Specifier 104
Raw String Literals Syntax for Unprocessed String Contents 108
static_assert Compile-Time Assertions 115
Trailing Return Trailing Function Return Types 124
Unicode Literals Unicode String Literals 129
using Aliases Type/Template Aliases (Extended typedef) 133

1.2 C++14 138
Aggregate Init '14 Aggregates Having Default Member Initializers 138
Binary Literals Binary Literals: The 0b Prefix 142
deprecated The [[deprecated]] Attribute 147
Digit Separators The Digit Separator (') 152
Variable Templates Templated Variable Declarations/Definitions 157

Chapter 2 Conditionally Safe Features 167
2.1 C++11 167

alignas The alignas Specifier 168
alignof The alignof Operator 184
auto Variables Variables of Automatically Deduced Type 195
Braced Init Braced-Initialization Syntax: {} 215
constexpr Functions Compile-Time Invocable Functions 257
constexpr Variables Compile-Time Accessible Variables 302
Default Member Init Default class/union Member Initializers 318
enum class Strongly Typed, Scoped Enumerations 332
extern template Explicit-Instantiation Declarations 353
Forwarding References Forwarding References (T&&) 377
Generalized PODs '11 Trivial and Standard-Layout Types 401
Inheriting Ctors Inheriting Base-Class Constructors 535
initializer_list List Initialization: std::initializer_list<T> 553
Lambdas Anonymous Function Objects (Closures) 573
noexcept Operator Asking if an Expression Cannot throw 615
Opaque enums Opaque Enumeration Declarations 660
Range for Range-Based for Loops 679
Rvalue References Move Semantics and Rvalue References (&&) 710
Underlying Type '11 Explicit Enumeration Underlying Type 829
User-Defined Literals User-Defined Literal Operators 835
Variadic Templates Variable-Argument-Count Templates 873

2.2 C++14 958
constexpr Functions '14 Relaxed Restrictions on constexpr Functions 959
Generic Lambdas Lambdas Having a Templated Call Operator 968
Lambda Captures Lambda-Capture Expressions 986

x

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page xi — #11

i
i

i
i

i
i

Contents

Chapter 3 Unsafe Features 997
3.1 C++11 997

carries_dependency The [[carries_dependency]] Attribute 998
final Prohibiting Overriding and Derivation 1007
friend '11 Extended friend Declarations 1031
inline namespace Transparently Nested Namespaces 1055
noexcept Specifier The noexcept Function Specification 1085
Ref-Qualifiers Reference-Qualified Member Functions 1153
union '11 Unions Having Non-Trivial Members 1174

3.2 C++14 1182
auto Return Function (auto) Return-Type Deduction 1182
decltype(auto) Deducing Types Using decltype Semantics 1205

Afterword: Looking Back and Looking Forward 1215

Glossary 1217

Bibliography 1281

Index 1305

xi

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page xii — #12

i
i

i
i

i
i

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page xiii — #13

i
i

i
i

i
i

Foreword by Shawn Edwards

I have been writing programs in C++ professionally for more than 25 years, even before it
was standardized. The C++ language, in its mission to deliver zero overhead and maximum
performance, necessarily provides few guardrails; syntax and type safety go only so far.
Using C++ features in unsound ways and creating spectacular failures was always easy. But
because the language was relatively stable, good developers — over time — learned how to
write reliable C++ software.
The first standardized version, C++98, formalized what many already knew about the lan-
guage. The second version of the Standard, C++03, included some small corrections and
enhancements but did not fundamentally alter the way programs were written. What it
meant to know how to program in C++, however, changed drastically with the publication
of the C++11 Standard. For the first time in many years, the ISO C++ Standards Com-
mittee (WG21) added significant new functionality and removed functionality as well. For
example, noexcept and std::unique_ptr were in, and the days of using dynamic exception
specifications and std::auto_ptr were numbered.
At the same time, the Standards Committee announced its unprecedented commitment to
deliver a new version of the C++ Standard every three years! For a large software organi-
zation, like Bloomberg, whose software asset lifetimes are measured in decades, relying on a
language standard that is updated with such frequency is especially problematic. Bloomberg
has been reliably and accurately providing indispensable information to the professional fi-
nancial community for nearly 40 years, with services that span such diverse needs as financial
analytics, trading solutions, and real-time market data.
To support our global business, Bloomberg has developed high-performance software systems
that operate at scale and, for more than two decades now, has written them primarily in
C++. As you can imagine, incorporating and validating new tool chains that underpin our
company’s entire code base is no simple task. Each update risks the stability of the very
products upon which our customers depend.
Modern C++ has much to offer — both good and bad. Many of its newer features offer the
prospect of improving performance, expressiveness, maintainability, and so on. On the other
hand, many of these same features come with potential pitfalls, some of which are obvious,
and others less so. With each new release of C++, now every three years, the language
gets bigger, and the opportunities for misusing a feature, through lack of knowledge and
experience, grow ever larger as well.

xiii

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page xiv — #14

i
i

i
i

i
i

Foreword by Shawn Edwards

Using new features of an already sophisticated programming language such as C++, with
which many developers might not be fully familiar, introduces its own category of risk.
Less-seasoned engineers might unwittingly introduce new features into a mature code base
where they could add manifestly negative value in that context. As ever, only time and
experience can provide proof as to whether and under what conditions using a new C++
language feature would be prudent. We, as senior developers, team leads, and technical
managers of a leading financial technology company, bear responsibility for protecting our
Software Capital asset from undue risk.
We cannot justify the instability of rewriting all of our software every time a new version of
the language appears, nor can we leave it in perpetual stasis and forgo the important benefits
modern C++ has to offer. So we move forward but with expertise and caution, adopting
features only after we fully understand them. Bloomberg is committed to extracting all of
the benefit that it can from modern C++, but as a company, we must do so safely.
Bloomberg sponsored this book, Embracing Modern C++ Safely, because we felt that,
despite all of the books, conferences, blogs, etc., that covered C++11/14 features, we needed
to look at each feature from the point of view of how to apply it safely as well as effectively
in the context of a large, mature corpus of production code. Therefore, this book provides
detailed explanations of each C++11/14 language feature, examples of its effective use,
and pitfalls to avoid. Moreover, this book could only have been written now, after years
of gathering real-world experience. What’s more, we knew that we had the right people —
some of the best engineers and authors in the world — to write it.
As promised, the C++ Standards Committee has been sticking to its schedule, sometimes
in the face of major world events, and two additional versions of the Standard, C++17 and
C++20, have been published. As the community gains experience using the new features
provided in those standards, I expect that future editions of this book will offer similar
guidance and critique.
If you’ve been writing programs in C++ for more than a decade, you’ve undoubtedly noticed
that being an accomplished C++ programmer is a different challenge than it used to be.
This book will help you navigate the modern C++ landscape so that you too can feel
confident in applying C++11/14 in ways that truly add value without undue risk to your
organization’s precious Software Capital investment.

— Shawn Edwards
Chief Technology Officer, Bloomberg LP

August 2021

xiv

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page xv — #15

i
i

i
i

i
i

Foreword by Andrei Alexandrescu

Do you like version control systems — Git, Perforce, Mercurial, and such? I love them! I have
no idea how any of today’s complex software systems could have ever been built without
using version control.
One beneficial artifact of version control software is the diff view, that quintessential side-
by-side view of a change of a large system as a differential from the previous, known version
of the system. The diff view is often the best way to review code, to assess complexity of
a feature, to find a bug, and, most importantly, to get familiar with a new system. I pore
over diff views almost every working day, perusing them for one or more of their advantages.
The diff view is proof that we can actually have the proverbial nice things.
The novel concept of this book is a diff view between classic C++ — i.e. C++03, the
baseline — and modern C++ — i.e., post-2011 C++, with its added features. A diff view
of programming language features! Now that’s a cool idea with interesting implications.
Embracing Modern C++ Safely addresses a large category of programmers: those who work
daily on complex, long-lived C++ systems and who are familiar with C++03 because said
systems were written with that technology. Classes. Inheritance. Polymorphism. Templates.
The STL. Yep, they know these notions well and work with them every day in complex prob-
lem domains. Rehashing those classic features is unnecessary. But some programmers are
perhaps less comfortable with the cornucopia of new features standardized every three years,
starting with C++11. They have no time to spend on tracking what the C++ Standards
Committee is doing. Every hour spent learning new C++ features is an hour not spent on
core systems functionality, so that snazzy new feature better be worth it. Embracing Modern
C++ Safely is cleverly optimized to maximize the ratio of usefulness in production to time
spent learning.
Pedagogically, this book achieves an almost impossible challenge: a partial diff (to allow
this nerd a mathematically motivated metaphor) for each individual new feature added to
C++ after 2003. What do I mean by that? When a book teaches language features, cross
talk is inevitable: While discussing any one given feature, most other features interfere by
necessity. As Scott Meyers once told me, “When you learn a language, all features come
at you in parallel.” The authors modularized the teaching of each new feature, so if you
want to read about, say, generic lambdas, you get to read about generic lambdas with
minimal interference from any other new language feature. When necessary, the interaction
between the feature being discussed and others is narrowly specified, documented, and cross-
referenced. The result is a fractally self-consistent book that can be read cover to cover or
chunked by themes, interconnected features, or individual topics.

xv

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page xvi — #16

i
i

i
i

i
i

Foreword by Andrei Alexandrescu

Chapters 1, 2, and 3 mimic a sort of reverse Divine Comedy, whereby, as you may recall,
the poet Dante is led by trusted guides through Hell (Inferno), Purgatory (Purgatorio), and
Heaven (Paradiso). The respective chapters help you navigate from Safe to Conditionally
Safe to Unsafe features of Modern C++.
Safe features (Chapter 1) will clearly, definitely, pound-the-table improve your code wherever
you use them. Acquiring and applying the teachings of Chapter 1 is the fastest way for a team
to start leveraging Modern C++ in production. override? Enjoy. Digit separators? Have
at ’em. Explicit conversion operators? Knock yourself out. Such features are recommended
fully and without reservation. Chapter 2 discusses conditionally safe features, those that are
good for you but come with caveats. Initializer lists? Let’s talk. Range for? Couple of things
to be mindful of. Rvalue references? Long discussion; grab a coffee. And last but not least,
unsafe features are those that can be challenging and require skill and utmost attention
in usage. Their use should be confined as much as possible and wrapped under interfaces.
Standard-layout types? Way trickier than it may seem. The noexcept specifier? Careful,
you’re on your own. Inline namespaces? At best, don’t. Extensive details, examples, and
discussions are available for every single feature added after C++03.
The authors use “unsafe” in a tongue-in-cheek manner here. Nothing taught in this book
is unsafe in the traditional computer science sense; instead, think of the casual meaning of
“safety” when used, say, in a hardware store. What’s the safety of various tools for someone
just starting to use them? A screwdriver is safe; a power drill is conditionally safe; and a
welding machine is unsafe.
You may be concerned, thinking, “That sounds authoritative. What is the basis of such
a ranking?” In fact, Embracing Modern C++ Safely is emphatically not authoritative but
objective and based on the vast community of experience that the authors collected and
curated. They intentionally, sometimes painfully, withhold their opinions. The “Use Cases”
and “Potential Pitfalls” sections, taken from production code, are empirical evidence as
much as instructive examples to learn from.
Only the passage of time can distill the programming community’s practical experience with
each feature and how well it fared, which is why this book discusses features added up to
C++14, even though C++20 is already out. Using features for years can replace passionate
debate on language design ideas with cold, hard experience, which guides this book’s remark-
ably clinical approach. In the words of John Lakos, “We explain the degrees of burns you
could get if you put your hand on a hot stove, but we won’t tell you not to do it.” The result
is a refreshingly nonideological read, no more partisan than a book on experimental physics.
Consistently avoiding injecting one’s own ego and opinion in an analysis takes paradoxically
a lot of work. Ars est celare artem, the Latin proverb goes in typical brief, cryptic, and
slightly confusing manner. (Is Latin the APL of natural languages?) That literally trans-
lates to “the art is to conceal the art,” but the profound meaning is closer to “good art is
not emphatically artsy.” Good artists don’t leave fingerprints all over their work. In a very
concrete way, that has been a design goal of Embracing Modern C++ Safely, for you won’t
find in it any opinion, pontification, or even gratuitously flowery language. (Fierce debates

xvi

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page xvii — #17

i
i

i
i

i
i

Foreword by Andrei Alexandrescu

occurred about the perfect, most spartan choice of words in one paragraph or another.) This
polished clarity will, I’m sure, shine through to any reader.

That Extra Oomph

“The only kind of writing is rewriting,” goes the famous quote. That is doubly true for
technical books. The strength of a textbook stands in the willingness of its authors to redo
their work and in the depth and breadth of its review team feeding the revision process. And
rewriting is not easy! Have you ever written some code and then resisted reviews because
you fell in love with it? Multiply that by 1024 and you’ll know how book authors feel about
rewriting passages they’ve already poured their souls into. You really need to be committed
to quality to keep heart during such a trial.
The authors’ insistence on quality brings to mind what I like most about this book, which
is also the most difficult to explain. I call it the extra oomph.
I noticed something about great work — be it in engineering, art, sports, or any other
challenging human endeavor. Almost always, great work is the result of talented people
making an extra effort that goes beyond what one might consider reasonable. In appreciating
such work, we implicitly acknowledge great capability combined with commensurately great
effort in realizing it. Good work can be done glibly; great work cannot.
Through an odd turn of events I ended up getting quite involved with this book — first,
for one review. And then another, and another, for a total of four thorough passes through
the entire book. The quest for perfection is as contagious as the resignation to sloppiness
and incomparably more fun. (“Destroy!” John Lakos pithily emailed me along with each
new revision. My often caustic reviews motivated him like nothing else.) Other reviewers —
C++ Standards Committee denizens, industry C++ experts, C++03 experts with no prior
exposure to C++1x, software-architecture experts, multithreading experts, process experts,
even LaTeX experts — have done the same, with the net result that each sentence you’ll
read has been critically considered dozens of times and probably rewritten a few. For my
part, I got so enthused with the project and with the authors’ uncompromising take on
quality, that I ended up writing a full feature for the book. (Any mistake in Section 2.1.
“Variadic Templates” is my fault.) This book project has been a lot of work, more than I
might have reasonably expected, which is everything I’d hoped for. I thought I’ve gotten
too old to still pull all-nighters; apparently I was wrong.
Having been thusly involved, I can tell: This book does have that extra oomph baked into it.
The talk is being walked, there’s no fluff, and the code examples are precise and eloquent. I
think Embracing Modern C++ Safely is Great Work. Aside from learning from this book,
I hope you derive from it inspiration to add more oomph into your own work. I know I did.

— Andrei Alexandrescu
May 2021

xvii

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page xviii — #18

i
i

i
i

i
i

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page xix — #19

i
i

i
i

i
i

Acknowledgments

Embracing Modern C++ Safely is the work of the C++ community as a whole, not just
the authors. This book comprises knowledge drawn from the depths of language design to
the boundaries of sound software development. Those who are expert at one end of that
language-design to application-development spectrum might be relatively unfamiliar with
the other. Although we, the four authors named on the front of this book, are each profes-
sional senior software engineers, our combined knowledge did not initially span everything
presented here, and we relied on many of our colleagues — from our fellow developers at
Bloomberg to the Core Working Group of the C++ Standards Committee to Bjarne Strous-
trup himself — to fill in holes in our understanding and to correct misconceptions we held.
Everyone on Bloomberg’s BDE team, founded in December 2001, contributed directly, in
one way or another, to the publication of this book: Parsa Amini, Joshua Berne, Harry
Bott, Steven Breitstein, Nathan Burgers, Bill Chapman, Attila Feher, Mungo Gill, Rostislav
Khlebnikov, Jeffrey Mendelsohn, Alisdair Meredith, Hyman Rosen, and the BDE team’s
second manager (since April 2019), Mike Verschell.
Nina Ranns, ISO C++ Standards Committee secretary and ISO C++ Foundation director,
was our principal researcher and provided a window into the depths of the C++ core lan-
guage standard. We relied on her to get to the truth: With a release coming every three years
and defect reports retroactive to previous standards, the truth is a contextual, ephemeral,
and elusive beast. Nonetheless, Nina provided us with clarity about what was in effect
when and thoroughly reviewed each and every core-language-intensive feature in this book;
see Section 2.1.“constexpr Functions” on page 257, Section 2.1.“Generalized PODs ’11” on
page 401, Section 2.1.“Rvalue References” on page 710, and Section 3.1.“noexcept Specifier”
on page 1085, as just a few examples.
Joshua Berne, senior software engineer on Bloomberg’s BDE team and an active member
of the C++ Standards Committee’s Core Working Group (CWG) and Contracts Study
Group (SG21), served multiple roles: Josh was our bridge between the core language and
software development, performing structural rewrites of major features, including the fea-
tures mentioned and many others. All benchmarking research conducted for this book was
designed, performed, and/or reviewed by Josh. He provided the technical expertise needed
to make LaTeX function to its fullest capabilities, designing and implementing the glossary,
including automating the references back into the individual sections that use the terms.
Importantly, Josh was the voice of reason throughout this entire project.
Lori Hughes, our project manager, frontline technical editor, and LaTeX designer and com-
positor, would probably tell you that herding cats is child’s play compared to what she

xix

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page xx — #20

i
i

i
i

i
i

Acknowledgments

endured during this project. The tenacity, assertiveness, and roll-up-your-sleeves hard work
she demonstrated relentlessly is arguably the only reason this book was published in 2021
(if not this decade). In short, Lori’s our rock; she is a veteran of lakos20, and we look for-
ward to working with her on all of our planned future projects — e.g., allocators (lakos22),
contracts (lakos23), Volumes II and III following lakos20 (lakos2a and lakos2b), and
anticipated future editions of this book incorporating C++17, C++20, etc.
Pablo Halpern, a former member of Bloomberg’s BDE team, an active member of the C++
Standards Committee, the creator of the std::pmr allocator model, and now a full-time col-
laborator with BDE working on language-level support for local memory allocators, served as
a ghost writer for several features in this book (e.g., see Section 2.1.“User-Defined Literals”
on page 835) and provided massive restructuring to many others (e.g., see Section 2.1.
“Generalized PODs ’11” on page 401. Notably, out of all the nonauthors who contributed
drafts in final form, only Pablo was able to write in a style approximating the authors’
voice. He also performed the research for a paper, commissioned by the authors of this
book, demonstrating that move operations, though faster to execute initially, can have neg-
ative overall runtime implications due to memory diffusion; see halpern21c.
Dr. Andrei Alexandrescu — author of the seminal book Modern C++ Design (Addison-
Wesley, 2001), coauthor of C++ Coding Standards (Addison-Wesley, 2005), and major
contributor to the D language — was called upon for multiple assists in this endeavor:
(1) as an expert author to provide an approachable guide to using variadic templates for
those accustomed to their C++03 counterparts (see Section 2.1.“Variadic Templates” on
page 873); (2) as a technical reviewer whose primary job was to reduce the tedium of John
Lakos’ writing style and its numerous parenthetical phrases and footnotes; and (3) as a mas-
cot and champion of our effort to imbue, on C++03 folk, the C++11/14 overlay of features.
Andrei also generously agreed to write a foreword to this book, advocating its utility for
senior developers familiar with classic C++.
Harold Bott, John’s TA in his Advanced C++ course during the 1990s at Columbia Univer-
sity, reconnected with John in 2019. Harry has since been a force in driving this book forward
to completion. After a month of research with Nina, John entrusted Harry, a former pro-
grammer at Goldman Sachs and Executive Director at JP Morgan, with getting the flagship
feature of modern C++ (see Section 2.1.“Rvalue References” on page 710) ready for review
— a daunting task indeed. Once reviews were in and revisions were needed, Harry worked
with John, nearly around the clock for almost three straight weeks, to incorporate reviewer
feedback and to bring this important feature to the state in which it is presented here.
Mungo Gill is one of the newest full-time contributors on the BDE team and brings with
him more than 30 years of professional software experience at such notable organizations
as Salomon Brothers, Citigroup, Lehman Brothers, Google, and Citadel Securities. Mungo
has reviewed every line of this book and has provided valuable feedback from a senior
practitioner’s perspective. He also coordinated the process of assembling glossary definitions
and gaining consensus among a host of eclectic domain experts.
Clay Wilson, a member of the BDE team since 2003, is another veteran of lakos20. Clay has,
for the past 18 years, been our “closer” when it comes to reviewing software components.

xx

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page xxi — #21

i
i

i
i

i
i

Acknowledgments

His attention to detail and accuracy is, in our experience, second to none. Clay has reviewed
much of this book, and we look forward to the possibility of working with him on future
projects.
Steven Breitstein, a member of BDE since 2004 and an alumnus of lakos20, has reviewed
every line and code snippet in this book and has made innumerable suggestions for manifestly
improving the rendering of the material. He also stepped up and singlehandedly applied all
the copy edits to our glossary.
Hyman Rosen retired from Bloomberg’s BDE team in April 2021 and was the master of
pragmatic real-world use cases for some of the otherwise ostensibly unsafe features of modern
C++, such as using extended friendship (see Section 3.1.“friend ’11” on page 1031) with
the curiously recurring template pattern (CRTP). You’ll find many others scattered
throughout this book.
Stephen Dewhurst, an internationally recognized expert in C++ programming and popular
repeat C++ author, conference speaker, and professional C++ trainer (including, for more
than a decade, at Bloomberg), has reviewed every feature in this book and provided copious,
practically valuable feedback, including a use case; see Use Cases — Stateless lambdas on
page 605 within Section 2.1.“Lambdas.”
Jeffrey Olkin, who joined Bloomberg in 2011, is one of its most senior software architects,
was the structural editor of lakos20, and has been a welcome advocate of this book from the
start, reviewing many features, helping to organize the preliminary material, and providing
his insightful and always valuable feedback along the way.
Steve Downey, a senior developer at Bloomberg since 2003, C++ Standards Committee
member, and multidomain expert, contributed much of the advanced material found in a
somewhat niche, conditionally safe feature of C++11; see Section 1.1.“Unicode Literals” on
page 129. Mike Giroux and Oleg Subbotin fleshed out and provided benchmark material for
another conditionally safe C++11 feature; see Section 2.1.“extern template” on page 353.
Sean Parent contributed a subsection assessing the strictness of current requirements on
moved-from objects for standard containers; see Annoyances — Standard Library require-
ments on a moved-from object are overly strict on page 807 within Section 2.1.“Rvalue
References.” Niall Douglas contributed a subsection detailing his experiences at scale with
one of the unsafe C++ features; see Appendix — Case study of using inline namespaces
for versioning on page 1083 within Section 3.1.“inline namespace.” Niels Dekker reviewed
another unsafe C++11 feature (see Section 3.1.“noexcept Specifier” on page 1085) and pro-
vided valuable additional information as well as pointers to his own benchmark research.
Kevin Klein helped organize and draft the material of yet another unsafe C++11 feature;
see Section 3.1.“final” on page 1007.
Many senior C++ software engineers, instructors, and professional developers reviewed this
work and provided copious feedback: Adil Al-Yasiri, Andrei Alexandrescu, Parsa Amini,
Brian Bi, Frank Birbacher, Harry Bott, Steve Breitstein, Tomaz Canabrava, Bill Chapman,
Marshall Clow, Stephen Dewhurst, Akshaye Dhawan, Niall Douglas, Steve Downey, Tom
Eccles, Attila Feher, Kevin Fleming, J. Daniel Garcia, Mungo Gill, Mike Giroux, Kevin

xxi

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page xxii — #22

i
i

i
i

i
i

Acknowledgments

Klein, Jeff Mendelsohn, Jeffrey Olkin, Nina Ranns, Hyman Rosen, Daniel Ruoso, Ben Saks,
Richard Smith, Oleg Subbotin, Julian Templeman, Mike Verschell, Clay Wilson, and JC
van Winkel.
In addition to reviewing the features of this book as they were being written, the BDE team
fleshed out the first draft of the glossary, after which we relied again on Josh Berne, Brian
Bi, Harry Bott, Mungo Gill, Pablo Halpern, and Nina Ranns to refine and consolidate it into
a final draft before finally reviewing it ourselves in its totality. Jeff Mendelsohn and Nathan
Burgers helped to distill the essence of this book onto its back cover. We want to thank all
the Standards Committee members who provided valuable information when researching
the details, history, etc., surrounding the various language features presented in this book.
In particular, we would like to thank Bjarne Stroustrup for affably answering our pointed
questions regarding anything related to C++. Howard Hinnant confirmed, among other
things, the details of why and how xvalues were originally invented and how they have since
morphed (a.k.a. “the delta”) from their original concept to their definition today. Michael
Wong, Paul McKenney, and Maged Michael reviewed and signed off on our presentation of
the [[carries_dependency]] attribute; see Section 3.1.“carries_dependency” on page 998.
And we cannot thank Richard Smith enough for his thorough review and myriad suggestions
on how to correct and improve our treatment of the flagship feature of modern C++ (see Sec-
tion 2.1.“Rvalue References” on page 710). We hope that Richard will review every feature
in subsequent editions of this book.
The team at Pearson — Greg Doench, our editor and fearless leader; Julie Nahil, our pro-
duction manager; and Kim Wimpsett, our copy editor — have been very supportive of our
efforts to get this book done quickly and accurately, despite its unorthodox workflow. We
had originally projected that this book would contain 300–400 pages and would be com-
plete by the end of 2020. That didn’t happen. Somehow, Greg and Julie found a way to
accommodate our process and get this book printed in time for the 2021 winter holidays;
thank you!
Online compilers, such as Godbolt (Compiler Explorer) and Wandbox, proved invaluable
in the development of this work, allowing the team to rapidly evaluate and share code
samples tested with various versions of multiple compilers accepting different dialects of the
language.
We want to give a shout-out to the folks at Bloomberg involved in making sure that
Bloomberg’s intellectual property and customer data were in no way compromised by any-
thing contained herein and that appropriate attributions were made: Tom Arcidiacono,
Kevin P. Fleming, and Chaim Haas.
Moreover, we want to recognize and thank our Bloomberg management for providing not just
the support but the imperative to do this essential work for ourselves and then share it! In
2012, Vladimir Kliatchko, then and still Global Head of Engineering at Bloomberg, directed
John Lakos, who collaborated with Rostislav Khlebnikov, to write a paper, khlebnikov18,
to describe concisely the value proposition of C++11 and how best to exploit it. That short
C++11 paper, 11 pages of 11-point type, was indeed well received, widely accepted, and
ratified by fully 85 percent of the Standards Committee members who reviewed it. After

xxii

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page xxiii — #23

i
i

i
i

i
i

Acknowledgments

that, Andrei Basov, Engineering Manager, Middleware and Core Services; Akshaye Dhawan,
Engineering Manager, Training, Documentation, and Work Management; and Adam Wolf,
Head of Engineering, Software Infrastructure, encouraged and supported us in pursuing a
more all-encompassing, practical-engineering-oriented treatment of modern C++, including
C++14, in book form.
Finally, this book would not have been possible without the generous patronage of our Chief
Technology Officer, Shawn Edwards. Without his support, and especially his sponsorship,
the vast technical resources needed for this book to come to fruition could never have been
brought to bear. Shawn, with his illustrious career as a developer, team lead, and technical
manager, and now, as a senior executive, has graciously provided a foreword to this book.

xxiii

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page xxiv — #24

i
i

i
i

i
i

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page xxv — #25

i
i

i
i

i
i

About the Authors

John Lakos, author of Large-Scale C++ Software Design (Addison-Wesley, 1996) and
Large-Scale C++ Volume I: Process and Architecture (Addison-Wesley, 2020), serves at
Bloomberg in New York City as a senior architect and mentor for C++ software develop-
ment worldwide. He is also an active voting member of the C++ Standards Committee’s
Evolution Working Group. From 1997 to 2001, Dr. Lakos directed the design and devel-
opment of infrastructure libraries for proprietary analytic financial applications at Bear
Stearns. From 1983 to 1997, Dr. Lakos was employed at Mentor Graphics, where he de-
veloped large frameworks and advanced ICCAD applications for which he holds multiple
software patents. His academic credentials include a Ph.D. in Computer Science (1997) and
an Sc.D. in Electrical Engineering (1989) from Columbia University. Dr. Lakos received his
undergraduate degrees from MIT in Mathematics (1982) and Computer Science (1981).

Vittorio Romeo (B.Sc., Computer Science, 2016) is a senior software engineer at Bloomberg
in London, where he builds mission-critical C++ middleware and delivers modern C++
training to hundreds of fellow employees. He began programming at the age of 8 and quickly
fell in love with C++. Vittorio has created several open-source C++ libraries and games, has
published many video courses and tutorials, and actively participates in the ISO C++ stan-
dardization process. He is an active member of the C++ community with an ardent desire to
share his knowledge and learn from others: He presented more than 20 times at international
C++ conferences (including CppCon, C++Now, ++it, ACCU, C++ On Sea, C++ Russia,
and Meeting C++), covering topics from game development to template metaprogramming.
Vittorio maintains a website (https://vittorioromeo.info/) with advanced C++ articles and
a YouTube channel (https://www.youtube.com/channel/UC1XihgHdkNOQd5IBHnIZWbA)
featuring well received modern C++11/14 tutorials. He is active on StackOverflow, taking
great care in answering interesting C++ questions (75k+ reputation). When he is not writing
code, Vittorio enjoys weightlifting and fitness-related activities as well as computer gaming
and sci-fi movies.

Rostislav Khlebnikov is the lead of the BDE Solutions team that works on a variety of
BDE libraries, such as the library for HTTP/2 communication, and contributes to other
projects, including improving interoperability of BDE libraries with the Standard Library
vocabulary types. He is an active member of the C++ Standards Committee and presented
at CppCon 2019. Prior to his work at Bloomberg, Dr. Khlebnikov received his undergrad-
uate degrees in Applied Mathematics and Computer Science from St. Petersburg State

xxv

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page xxvi — #26

i
i

i
i

i
i

About the Authors

Polytechnic University, Russia, and his Ph.D. in Computer Science from Graz University of
Technology, Austria. He has worked professionally as a C++ software engineer for over 15
years.

Alisdair Meredith has been a member of the C++ Standards Committee since the incep-
tion of C++11 at the Oxford 2003 meeting, focusing on feature integration and actively find-
ing and fixing language inconsistencies. Alisdair was the LWG chair when both C++11 and
C++14 were published, for which he credits the hard work of the preceding chair, Howard
Hinnant. Alisdair has been a perennial conference speaker for nearly 15 years, elucidating
new work from the C++ Standards Committee. Alisdair joined Bloomberg’s BDE team in
2009. For a decade prior, Alisdair worked as a professional C++ application programmer in
F1 motor racing with the Benetton and Renault teams, winning two world championships!
Between the two, Alisdair spent a year or so as a product manager at Borland, marketing
their C++ products. Alisdair enjoys traveling, dining, and snorkeling.

xxvi

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1 — #27

i
i

i
i

i
i

Chapter 0

Introduction

Welcome! Embracing Modern C++ Safely is a reference book designed for professionals
who develop and maintain large-scale, complex C++ software systems and want to leverage
modern C++ features.
This book focuses on the productive value of each new language feature, starting with
C++11, particularly when the systems and organizations involved are considered at scale.
We deliberately left aside ideas and idioms — however clever and intellectually intriguing
— that could hurt the bottom line when applied to large-scale systems. Instead, we focus
on making wise economic and design decisions, with an understanding of the inevitable
trade-offs that arise in any engineering discipline. In doing so, we do our best to steer clear
of subjective opinions and recommendations.
Richard Feynman famously said, “If it disagrees with experiment, it’s wrong. In that simple
statement is the key to science.”1 There is no better way to experiment with a language fea-
ture than letting time do its work. We took that to heart and decided to cover only the
features of modern C++ that have been part of the Standard for at least five years, which
we believe provides enough perspective to properly evaluate the practical impact of new
features. Thus, we are able to draw from practical experience to provide a thorough and
comprehensive treatment that is worthy of your limited professional development time. If
you’re looking for ways to improve your productivity by using tried and true modern C++
features, we hope this book will be the one you’ll reach for.
What’s missing from a book is as important as what’s present. Embracing Modern C++
Safely, known also as EMC++S, is not a tutorial on C++ programming or even on new
features of C++. We assume you are an experienced developer, team lead, or manager; that
you already have a good command of classic C++98/03; and that you are looking for clear,
goal-driven ways to integrate modern C++ features into your toolbox.

What Makes This Book Different

The goal of the book you’re now reading is to be objective, empirical, and practical. We
simply present features, their applicability, and their potential pitfalls as reflected by the
analysis of millions of person-hours of using C++11 and C++14 in the development of

1Richard Feynman, lecture at Cornell University, 1964. Video and commentary available at https://fs.
blog/2009/12/mental-model-scientific-method.

1

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 2 — #28

i
i

i
i

i
i

Scope for the First Edition Chapter 0 Introduction

varied large-scale software systems; personal preference matters have been neutralized to
our best ability. We wrote down the distilled truth that remains, which should shape your
understanding of what modern C++ has to offer without being skewed by our subjective
opinions or domain-specific inclinations.
The final analysis and interpretation of what is appropriate for your context is left to you, the
reader. This book is, by design, not a C++ style or coding-standards guide; it does, however,
provide valuable input to any development organization seeking to author or enhance one.
Practicality is important to us in a real-world, economic sense. We examine modern C++
features through the lens of a large company developing and using software in a competitive
environment. In addition to showing you how to best utilize a given C++ language feature
in practice, our analysis takes into account the costs associated with routinely employing
that feature in the ecosystem of a software development organization. Most texts omit the
costs of using language features. In other words, we weigh the benefits of successfully using
a feature against the hidden cost of its widespread ineffective use (or misuse) and/or the
costs associated with training and code review required to reasonably ensure that such ill-
conceived use does not occur. We are acutely aware that what applies to one person or a small
crew of like-minded individuals is quite different from what works with a large, distributed
team. The outcome of this analysis is our signature categorization of features based on how
safe they are to adopt — namely, safe, conditionally safe, or unsafe features.
We are not aware of any similar text amid the rich offering of C++ textbooks; we wrote
this book because we needed it.

Scope for the First Edition

Given the vastness of C++’s already voluminous and rapidly growing standardized libraries,
we have chosen to limit this book’s scope to just the language features themselves. A com-
panion book, Embracing Modern C++ Standard Libraries Safely, is a separate project that
we hope to tackle in the future. To be effective, this book, however, must remain focused
on what expert C++ developers need to know well to be successful right now.
We chose to limit the scope of this first edition to only those features that have been included
in the language standard since C++11 and widely available in practice for at least five years.
This limited focus enables us to better evaluate the real-world impact of these features and
to highlight any caveats that might not have been anticipated prior to standardization
and sustained, active, and widespread use in industry.
We assume you are quite familiar with essentially all of the basic and important special-
purpose features of classic C++98/03, so in this book we confine our attention to just the
subset of C++ language features introduced in C++11 and C++14. This book is best for

2

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 3 — #29

i
i

i
i

i
i

Chapter 0 Introduction The EMC++S Guiding Principles

you if you need to know how to safely incorporate C++11/14 language features into a
predominately C++98/03 codebase, today.
We are actively planning to cover pre-C++11 material in future editions. For the time being,
however, we highly recommend Effective C++ by Scott Meyers2 as a concise, practical
treatment of many important and useful C++98/03 features.

The EMC++S Guiding Principles

Throughout the writing of Embracing Modern C++ Safely, we have followed a set of guiding
principles, which collectively drive the style and content of this book.

Facts, Not Opinions

This book describes only beneficial uses and potential pitfalls of modern C++ features.
The content presented is based on objectively verifiable facts, derived either from standards
documents or from extensive practical experience; we explicitly avoid subjective opinions
on the relative merits of design trade-offs (restraint that is a good exercise in humility).
Although such opinions are often valuable, they are inherently biased toward the author’s
area of expertise.
Note that safety — the rating we use to segregate features by chapter — is the one exception
to this objectivity guideline. Although the analysis of each feature aims at being entirely
objective, each feature’s chapter classification — indicating the relative safety of its quotidian
use in a large software-development environment — reflects our combined decades of real-
world, hands-on experience developing a variety of large-scale C++ software systems.

Elucidation, Not Prescription

We deliberately avoid prescribing any solutions to address specific feature pitfalls. Instead, we
merely describe and characterize such concerns in sufficient detail to equip you to devise a
solution suitable for your own development environment. In some cases, we might reference
techniques or publicly available libraries that others have used to work around such speed
bumps, but we do not pass judgment about which workaround should be considered a best
practice.

Thorough, Not Superficial

Embracing Modern C++ Safely is neither designed nor intended to be an introduction to
modern C++. This book is a handy reference for experienced C++ programmers who have

2meyers92

3

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 4 — #30

i
i

i
i

i
i

What Do We Mean by Safely? Chapter 0 Introduction

familiarity with earlier versions of the language (C++98/03). Our goal is to provide you
with facts, detailed objective analysis, and cogent, real-world examples. By doing so, we
spare you the task of wading through material that we presume you already know. If you
are entirely unfamiliar with the C++ language, we suggest you start with a more elementary
and language-centric text such as The C++ Programming Language by Bjarne Stroustrup.3

Real-World, Not Contrived, Examples

We hope you will find the examples in this book useful in multiple ways. The primary
purpose of the examples is to illustrate productive use of each feature as it might occur in
practice. We stay away from contrived examples that give equal importance to seldom-used
aspects and to the intended, idiomatic uses of the feature. Hence, many of our examples
are based on simplified code fragments extracted from real-world codebases. Though we
typically change identifier names to be more appropriate to the shortened example (rather
than the context and the process that led to the example), we keep the code structure of
each example as close as possible to its original, real-world counterpart.

At Scale, Not Overly Simplistic, Programs

As with many aspects of software development, what works for small programs and teams
often doesn’t scale to larger development efforts. We attempt to simultaneously capture two
distinct aspects of size: (1) the sheer product size (e.g., in bytes, source lines, separate units
of release) of the programs, systems, and libraries developed and maintained by a software
organization; and (2) the size of an organization itself as measured by the number of soft-
ware developers, quality-assurance engineers, site-reliability engineers, operators, and so on
that the organization employs.
What’s more, powerful new language features in the hands of a few expert programmers
working together on a prototype for their new start-up don’t always fare as well when they
are wantonly exercised by dozens or hundreds of developers in a large software-development
organization. Hence, when we consider the relative safety of a feature, as defined in the next
section, we do so with mindfulness that any given feature might be used — and occasionally
misused — in large programs and by a large number of programmers having a wide range
of knowledge, skill, and ability.

What Do We Mean by Safely?

The ISO C++ Standards Committee, of which we are members, would be remiss — and
downright negligent — if it allowed any feature of the C++ language to be standardized if
that feature were not reliably safe when used as intended. Still, we have chosen the word

3stroustrup13

4

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 5 — #31

i
i

i
i

i
i

Chapter 0 Introduction A Conditionally Safe Feature

“safely” as the moniker for the signature aspect of our book and the method by which we rank
the risk-to-reward ratio for using a given feature in a large-scale development environment.
By contextualizing the meaning of the term “safe,” we apply it to a real-world economy
in which everything has a cost in multiple dimensions: risk of misuse, added maintenance
burden borne by using a new feature in an older codebase, and training needs for developers
who might not be familiar with that feature.
Several factors impact the value added by the adoption and widespread use of any new
language feature, thereby reducing its intrinsic safety. By categorizing features in terms of
safety, we strive to capture an appropriately weighted combination of the following factors:

• Number and severity of known deficiencies

• Difficulty in teaching consistent proper use

• Experience level required for consistent proper use

• Risks associated with widespread misuse

In this book, the degree of safety of a given feature is the relative likelihood that widespread
use of that feature will have positive impact and no adverse effect on a large software
company’s codebase.

A Safe Feature

Some of the new features of modern C++ add considerable value, are easy to use, and
are decidedly hard to misuse unintentionally; hence, ubiquitous adoption of such features
is productive, relatively unlikely to become a problem in the context of a large-scale devel-
opment organization, and generally encouraged — even without training. We identify such
staunchly helpful, unflappable C++ features as safe.
For example, we categorize the override contextual keyword as a safe feature because
it prevents bugs, serves as documentation, cannot be easily misused, and has no serious
deficiencies. If someone has heard of this feature and tried to use it and the software compiles,
the codebase is likely better for it. Using override wherever applicable is always a sound
engineering decision.

A Conditionally Safe Feature

The vast majority of new features available in modern C++ have important, frequently
occurring, and valuable uses, yet how these features are used appropriately, let alone opti-
mally, might not be obvious. What’s more, some of these features are fraught with inherent

5

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 6 — #32

i
i

i
i

i
i

Modern C++ Feature Catalog Chapter 0 Introduction

dangers and deficiencies, requiring explicit training and extra care to circumnavigate their
pitfalls.
For example, we deem default member initializers a conditionally safe feature because, al-
though they are easy to use per se, the perhaps less-than-obvious unintended consequences
of doing so (e.g., tight compile-time coupling) might be prohibitively costly in certain cir-
cumstances (e.g., might prevent relink-only patching in production).

An Unsafe Feature

When an expert programmer uses any C++ feature appropriately, the feature typically does
no direct harm. Yet other developers — seeing the feature’s use in the codebase but failing
to appreciate the highly specialized or nuanced reasoning justifying it — might attempt to
use it in what they perceive to be a similar way, yet with profoundly less desirable results.
Similarly, maintainers might change the use of a fragile feature, altering its semantics in
subtle but damaging ways.
Features that are classified as unsafe are those that might have valid — and even impor-
tant — use cases, yet our experience indicates that routine or widespread use would be
counterproductive in a typical, large-scale, software-development enterprise.
For example, we deem the final contextual keyword an unsafe feature because the situations
in which it would be misused overwhelmingly outnumber those vanishingly few isolated
cases in which it is appropriate, let alone valuable. Furthermore, its widespread use would
inhibit fine-grained (e.g., hierarchical) reuse, which is critically important to the success of
a large organization.

Modern C++ Feature Catalog

This first edition of Embracing Modern C++ Safely was designed to serve as a comprehensive
catalog of C++11 and C++14 language features, presenting vital information for each in
a clear, consistent, and predictable format to which experienced engineers can readily refer
during development or technical discourse.

Organization

This book is divided into four chapters, the last three of which form the catalog of modern
C++ language features grouped by their respective safety classifications:

• Chapter 0: Introduction

• Chapter 1: Safe Features

6

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 7 — #33

i
i

i
i

i
i

Chapter 0 Introduction Modern C++ Feature Catalog

• Chapter 2: Conditionally Safe Features

• Chapter 3: Unsafe Features

For this first edition, the language-feature chapters (1, 2, and 3) are divided into two sec-
tions containing, respectively, C++11 and C++14 features having the safety level (safe,
conditionally safe, or unsafe) corresponding to that chapter. Recall, however, that Standard
Library features are outside the scope of this book.
Each feature is presented in a separate section, rendered in a canonical format:

• Description — A brisk but comprehensive introduction of the feature’s syntax and
semantics, supplemented with abundant code snippets. We do our best to avoid using
other new features concurrently with the one being described, so each feature can be
read independently and out of order. This might lead, on occasion, to code that is
less fluent than it could otherwise be. Make sure you consult the “See Also” section
(described below) to learn about crosstalk between features.

• Use Cases — A collection of tried-and-true use cases distilled from libraries and
applications.

• Potential Pitfalls — Misuses of the feature that might lead to serious bugs and other
problems.

• Annoyances — Shortcomings of the feature and unpleasant quirks that might make
the feature less pleasant to use.

• See Also — Cross-references to other related features within this book along with a
brief description of the connection.

• Further Reading — References to external sources discussing the feature.

Constraining our treatment of each individual feature to this canonized format facilitates
rapid discovery of whatever particular aspects of a given language feature you are searching
for.
Note that cross-references to subsections within a feature are in italics, and cross-references
to other features are in normal text font. We refer to each feature within its relevant chapter
and section: For example, Section 1.1.“Attribute Syntax” tells you that the“Attributes”
feature is located in Chapter 1 (Safe) and within Section 1 (C++11). Terms that are defined
within the glossary are set in a different font, with the first use in each feature being set in
bold.
The commenting style is worth noting because it conveys good information in a terse for-
mat. Note that “description” or “details” provides additional descriptive information. Place-
holders for irrelevant and/or unspecified code are shown with stylized comments in one of
the following ways:

7

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 8 — #34

i
i

i
i

i
i

How to Use This Book Chapter 0 Introduction

/*...*/
// ...
// ... (<description>)

Code that does not compile will be marked with one of the following two comments:
// Error
// Error, <details>

Code that does not link will be marked with one of the following two comments:
// LinkTime Error
// LinkTime Error, <details>

Code that does not behave as expected at run time will be marked with one of the following
two comments:
// Bug
// Bug, <details>

Code that behaves as expected will be marked with one of the following two comments:
// OK
// OK, <details>

Code that might warn but behaves as expected would be marked “OK, might warn” or
similarly. For example, if a feature is deprecated until C++17 and removed in C++20, we
might comment it like this:
// OK, deprecated4 (might warn)

How to Use This Book

Depending on your needs, Embracing Modern C++ Safely can be handy in a variety of
ways.

• Read the entire book from front to back. If you are conversant with classic C++,
consuming this book in its entirety will provide a complete and nuanced practical
understanding of each of the language features introduced by C++11 and C++14.

• Read the chapters in order but slowly over time. An incremental, priority-
driven approach is also possible and recommended, especially if you’re feeling less
sure-footed. Understanding and applying first the safe features of Chapter 1 gets you
the low-hanging fruit. In time, the conditionally safe features of Chapter 2 will allow
you to ease into the breadth of useful modern C++ language features, prioritizing
those that are least likely to prove problematic.

4Removed in C++20

8

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 9 — #35

i
i

i
i

i
i

Chapter 0 Introduction How to Use This Book

• Read the C++11 sections of each of the three catalog chapters first. If you
are a developer whose organization uses C++11 but not yet C++14, you can focus on
learning everything that can be applied now and then circle back and learn the rest
later when it becomes relevant to your evolving organization.

• Use the book as a quick-reference guide if and as needed. Random access
is great, too, especially now that you’ve made it through Chapter 0. If you prefer
not to read the book in its entirety (or simply want to refer to it periodically as a
refresher), reading any arbitrary individual feature section in any order will provide
timely access to all relevant details of whichever feature is of immediate interest.

We believe that you will derive value in several ways from the knowledge we imbued into
Embracing Modern C++ Safely, irrespective of how you read it. In addition to helping
you become a more knowledgeable and therefore safer developer, this book aims to clarify
(whether you are a developer, a lead, or a manager) which features demand more train-
ing, attention to detail, experience, peer review, and such. The factual, objective presen-
tation style also makes for excellent input into the preparation of coding standards and
style guides that suit the particular needs of a company, project, team, or even just a
single discriminating developer (which, of course, we all aim at being). Finally, any C++
software-development organization that adopts this book will be taking the first steps to-
ward leveraging modern C++ in a way that maximizes reward while minimizing risks, i.e.,
by embracing modern C++ safely.
Last but definitely not least, this is your book in more than one sense of the word. It
has been a collaborative effort with input from many engineers just like you, and it was
“designed for maintenance” because we plan future revised editions with new features and
improved treatment of the existing ones. Those future editions could greatly benefit from
your contributions. Found something broken or missing? A clever use case? A hidden pitfall?
An annoyance you can’t stand? We’d be happy to add it to the book. Point your browser
to http://emcpps.com, and follow the instructions to send us feedback. Your input will be
well received. You’ll find more information about the book on the website. Thank you, and
happy coding!

9

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 104 — #130

i
i

i
i

i
i

override Chapter 1 Safe Features

The override Member-Function Specifier

Decorating a function in a derived class with the contextual keyword override ensures that
a virtual function having a compatible declaration exists in one or more of its base classes.

Description

The contextual keyword override can be provided at the end of a member-function dec-
laration to ensure that the decorated function is indeed overriding a corresponding virtual
member function in a base class, as opposed to hiding it or otherwise inadvertently intro-
ducing a distinct function declaration:
struct Base
{

virtual void f(int);
void g(int);

virtual void h(int) const;
virtual void i(int) = 0;

};

struct DerivedWithoutOverride : Base
{

void f(); // hides Base::f(int) (likely mistake)
void f(int); // OK, implicitly overrides Base::f(int)

void g(); // hides Base::g(int) (likely mistake)
void g(int); // hides Base::g(int) (likely mistake)

void h(int); // hides Base::h(int) const (likely mistake)
void h(int) const; // OK, implicitly overrides Base::h(int) const

void i(int); // OK, implicitly overrides Base::i(int)
};

struct DerivedWithOverride : Base
{

void f() override; // Error, Base::f() not found
void f(int) override; // OK, explicitly overrides Base::f(int)

void g() override; // Error, Base::g() not found
void g(int) override; // Error, Base::g() is not virtual.

void h(int) override; // Error, Base::h(int) not found
void h(int) const override; // OK, explicitly overrides Base::h(int)

104

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 105 — #131

i
i

i
i

i
i

Section 1.1 C++11 override

void i(int) override; // OK, explicitly overrides Base::i(int)
};

Using this feature expresses design intent so that (1) human readers are aware of it and (2)
compilers can validate it.
As noted, override is a contextual keyword. C++11 introduces keywords that have special
meaning only in certain contexts. In this case, override is a keyword in the context of a
declaration, but not otherwise using it as the identifier for a variable name, for example, is
perfectly fine:
int override = 1; // OK

Use Cases

Ensuring that a member function of a base class is being overridden

Consider the following polymorphic hierarchy of error-category classes, as we might have
defined them using C++03:
struct ErrorCategory
{

virtual bool equivalent(const ErrorCode& code, int condition);
virtual bool equivalent(int code, const ErrorCondition& condition);

};

struct AutomotiveErrorCategory : ErrorCategory
{

virtual bool equivalent(const ErrorCode& code, int condition);
virtual bool equivolent(int code, const ErrorCondition& condition);

};

Notice that there is a defect in the last line of the example above: equivalent has been
misspelled. Moreover, the compiler did not catch that error. Clients calling equivalent on
AutomotiveErrorCategory will incorrectly invoke the base-class function. If the function in
the base class happens to be defined, the code might compile and behave unexpectedly at
run time. Now, suppose that over time the interface is changed by marking the equivalence-
checking function const to bring the interface closer to that of std::error_category:
struct ErrorCategory
{

virtual bool equivalent(const ErrorCode& code, int condition) const;
virtual bool equivalent(int code, const ErrorCondition& condition) const;

};

105

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 106 — #132

i
i

i
i

i
i

override Chapter 1 Safe Features

Without applying the corresponding modification to all classes deriving from
ErrorCategory, the semantics of the program change due to the derived classes now hiding
the base class’s virtual member function instead of overriding it. Both errors discussed
above would be detected automatically if the virtual functions in all derived classes were
decorated with override:
struct AutomotiveErrorCategory : ErrorCategory
{

bool equivalent(const ErrorCode& code, int condition) override;
// Error, failed when base class changed

bool equivolent(int code, const ErrorCondition& code) override;
// Error, failed when first written

};

What’s more, override serves as a clear indication of the derived-class author’s intent to
customize the behavior of ErrorCategory. For any given member function, using override
necessarily renders any use of virtual for that function syntactically and semantically
redundant. The only cosmetic reason for retaining virtual in the presence of override
would be that virtual appears to the left of the function declaration, as it always has,
instead of all the way to the right, as override does now.

Potential Pitfalls

Lack of consistency across a codebase

Relying on override as a means of ensuring that changes to base-class interfaces are prop-
agated across a codebase can prove unreliable if this feature is used inconsistently, i.e., not
applied in every circumstance where its use would be appropriate. In particular, altering the
signature of a virtual member function in a base class and then compiling the entire code
base will always flag as an error any nonmatching derived-class function where override
was used but might fail even to warn where it is not.

106

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 107 — #133

i
i

i
i

i
i

Section 1.1 C++11 override

Further Reading

• Various relationships among virtual, override, and final (see Section 3.1.“final”
on page 1007) are presented in boccara20.

• Scott Meyers advocates the use of the override specifier in meyers15b, “Item 12:
Declare overriding functions override,” pp. 79–85.

107

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 147 — #173

i
i

i
i

i
i

Section 1.2 C++14 deprecated

The [[deprecated]] Attribute

The standard attribute [[deprecated]] indicates that the use of the entity to which the
attribute pertains is discouraged, typically in the form of a compiler warning.

Description

The standard [[deprecated]] attribute is used to portably indicate that a particular entity
is no longer recommended and to actively discourage its use. Such deprecation typically fol-
lows the introduction of alternative constructs that are superior to the original one, providing
time for clients to migrate to them asynchronously before the deprecated one is removed in
some subsequent release.
An asynchronous process for ongoing improvement of legacy codebases, sometimes referred
to as continuous refactoring, often allows time for clients to migrate — on their own
respective schedules and time frames — from existing deprecated constructs to newer ones,
rather than having every client change in lock step. Allowing clients time to move asyn-
chronously to newer alternatives is often the only viable approach unless (1) the codebase
is a closed system, (2) all of the relevant code is governed by a single authority, and (3) the
change can be made mechanically.
Although not strictly required, the Standard explicitly encourages1 conforming compilers
to produce a diagnostic message in case a program refers to any entity to which the
[[deprecated]] attribute pertains. For instance, most popular compilers emit a warning
whenever a [[deprecated]] function or object is used:

void f();
[[deprecated]] void g();

int a;
[[deprecated]] int b;

void h()
{

f();
g(); // Warning: g is deprecated.
a;
b; // Warning: b is deprecated.

}

1The C++ Standard characterizes what constitutes a well-formed program, but compiler vendors require
a great deal of leeway to facilitate the needs of their users. In case any feature induces warnings, command-
line options are typically available to disable those warnings (Wnodeprecated in GCC), or methods are in
place to suppress those warnings locally, e.g., #pragma GCC diagnostic ignored "Wdeprecated".

147

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 148 — #174

i
i

i
i

i
i

deprecated Chapter 1 Safe Features

The [[deprecated]] attribute can be used portably to decorate other entities: class,
struct, union, type alias, variable, data member, function, enumeration, template
specialization.2

A programmer can supply a string literal as an argument to the [[deprecated]] attribute
— e.g., [[deprecated("message")]] — to inform human users regarding the reason for the
deprecation:
[[deprecated("too slow, use algo1 instead")]] void algo0();

void algo1();

void f()
{

algo0(); // Warning: algo0 is deprecated; too slow, use algo1 instead.
algo1();

}

An entity that is initially declared without [[deprecated]] can later be redeclared with the
attribute and vice versa:
void f();
void g0() { f(); } // OK, likely no warnings

[[deprecated]] void f();
void g1() { f(); } // Warning: f is deprecated.

void f();
void g2() { f(); } // Warning: f is deprecated still.

As shown in g2 in the example above, redeclaring an entity that was previously decorated
with [[deprecated]] without the attribute leaves the entity still deprecated.

Use Cases

Discouraging use of an obsolete or unsafe entity

Decorating any entity with the [[deprecated]] attribute serves both to indicate a particular
feature should not be used in the future and to actively encourage migration of existing uses
to a better alternative. Obsolescence, lack of safety, and poor performance are common
motivators for deprecation.
As an example of productive deprecation, consider the RandomGenerator class having a
static nextRandom member function to generate random numbers:

2Applying [[deprecated]] to a specific enumerator or namespace, however, is guaranteed to be supported
only since C++17; see smith15a.

148

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 149 — #175

i
i

i
i

i
i

Section 1.2 C++14 deprecated

struct RandomGenerator
{

static int nextRandom();
// Generate a random value between 0 and 32767 (inclusive).

};

Although such a simple random number generator can be useful, it might become unsuit-
able for heavy use because good pseudorandom number generation requires more state
(and the overhead of synchronizing such state for a single static function can be a signif-
icant performance bottleneck), while good random number generation requires potentially
high overhead access to external sources of entropy. The rand function, inherited from C
and available in C++ through the <cstdlib> header, has many of the same issues as our
RandomGenerator::nextRandom function, and similarly developers are guided to use the
facilities provided in the <random> header since C++11.
One solution is to provide an alternative random number generator that maintains more
state, allows users to decide where to store that state (the random number generator objects),
and overall offers more flexibility for clients. The downside of such a change is that it comes
with a functionally distinct API, requiring that users update their code to move away from
the inferior solution:
class StatefulRandomGenerator
{

// ... (internal state of a quality pseudorandom number generator)

public:
int nextRandom();

// Generate a quality random value between 0 and 32767, inclusive.
};

Any user of the original random number generator can migrate to the new facility with
little effort, but that is not a completely trivial operation, and migration will take some time
before the original feature is no longer in use. The empathic maintainers of RandomGenerator
can decide to use the [[deprecated]] attribute to discourage continued use of
RandomGenerator::nextRandom() instead of removing it completely:
struct RandomGenerator
{

[[deprecated("Use StatefulRandomGenerator class instead.")]]
static int nextRandom();

// ...
};

149

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 150 — #176

i
i

i
i

i
i

deprecated Chapter 1 Safe Features

By using [[deprecated]] as shown in the previous example, existing clients of
RandomGenerator are informed that a superior alternative, BetterRandomGenerator, is avail-
able, yet they are granted time to migrate their code to the new solution rather than having
their code broken by the removal of the old solution. When clients are notified of the depre-
cation (thanks to a compiler diagnostic), they can schedule time to rewrite their applications
to consume the new interface.
Continuous refactoring is an essential responsibility of a development organization, and
deciding when to go back and fix what’s suboptimal instead of writing new code that will
please users and contribute more immediately to the bottom line will forever be a source
of tension. Allowing disparate development teams to address such improvements in their
own respective time frames, perhaps subject to some reasonable overall deadline date, is a
proven real-world practical way of ameliorating this tension.

Potential Pitfalls

Interaction with treating warnings as errors

In some code bases, compiler warnings are promoted to errors using compiler flags, such as
Werror for GCC and Clang or /WX for MSVC, to ensure that their builds are warning-clean.
For such code bases, use of the [[deprecated]] attribute by their dependencies as part of
the API might introduce unexpected compilation failures.
Having the compilation process completely stopped due to use of a deprecated entity defeats
the purpose of the attribute because users of such an entity are given no time to adapt
their code to use a newer alternative. On GCC and Clang, users can selectively demote
deprecation errors back to warnings by using the Wnoerror=deprecateddeclarations
compiler flag. On MSVC, however, such demotion of warnings is not possible, and the
available workarounds, such as entirely disabling the effects of the /WX flag or the deprecation
diagnostics using the wd4996 flag, are often unsuitable.
Furthermore, this interaction between [[deprecated]] and treating warnings as errors
makes it impossible for owners of a low-level library to deprecate a function when releasing
their code requires that they do not break the ability for any of their higher-level clients
to compile; a single client using the to-be-deprecated function in a code base that treats
warnings as errors prevents the release of the code that uses the [[deprecated]] attribute.
With the frequent advice given in practice to aggressively treat warnings as errors, the use
of [[deprecated]] might be completely unfeasible.

150

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 353 — #379

i
i

i
i

i
i

Section 2.1 C++11 extern template

Explicit-Instantiation Declarations

The extern template prefix can be used to suppress implicit generation of local object
code for the definitions of particular specializations of class, function, or variable templates
used within a translation unit, with the expectation that any suppressed object-code-level
definitions will be provided elsewhere within the program by template definitions that are
instantiated explicitly.

Description

Inherent in the current ecosystem for supporting template programming in C++ is the
need to generate redundant definitions of fully specified function and variable templates
within .o files. For common instantiations of popular templates, such as std::vector, the
increased object-file size, a.k.a. code bloat, and potentially extended link times might
become significant:
#include <vector> // std::vector is a popular template.
std::vector<int> v; // std::vector<int> is a common instantiation.

#include <string> // std::basic_string is a popular template.
std::string s; // std::string, an alias for std::basic_string<char>, is

// a common instantiation.

The intent of the extern template feature is to suppress the implicit generation of duplica-
tive object code within every translation unit in which a fully specialized class template, such
as std::vector<int> in the code snippet above, is used. Instead, extern template allows
developers to choose a single translation unit in which to explicitly generate object code for
all the definitions pertaining to that specific template specialization as explained next.

Explicit-instantiation definition

Creating an explicit-instantiation definition was possible prior to C++11.1 The req-
uisite syntax is to place the keyword template in front of the name of the fully special-
ized class template, function template, or, in C++14, variable template (see Section 1.2.
“Variable Templates” on page 157):

1The C++03 Standard term for the syntax used to create an explicit-instantiation definition, though
rarely used, was explicit-instantiation directive. The term explicit-instantiation directive was clarified in
C++11 and can now also refer to syntax that is used to create a declaration — i.e., explicit-instantiation
declaration.

353

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 354 — #380

i
i

i
i

i
i

extern template Chapter 2 Conditionally Safe Features

#include <vector> // std::vector (general template)

template class std::vector<int>;
// Deposit all definitions for this specialization into the .o for this
// translation unit.

This explicit-instantiation directive compels the compiler to instantiate all functions defined
by the named std::vector class template having the specified int template argument; any
collateral object code resulting from these instantiations will be deposited in the resulting .o
file for the current translation unit. Importantly, even functions that are never used are still
instantiated, so this solution might not be the correct one for many classes; see Potential
Pitfalls — Accidentally making matters worse on page 373.

Explicit-instantiation declaration

C++11 introduced the explicit-instantiation declaration, a complement to the explicit-
instantiation definition. The newly provided syntax allows us to place extern template
in front of the declaration of an explicit specialization of a class template, a function tem-
plate, or a variable template:
#include <vector> // std::vector (general template)

extern template class std::vector<int>;
// Suppress depositing of any object code for std::vector<int> into the
// .o file for this translation unit.

Using the modern extern template syntax above instructs the compiler to refrain from
depositing any object code for the named specialization in the current translation unit and
instead to rely on some other translation unit to provide any missing object-level definitions
that might be needed at link time; see Annoyances — No good place to put definitions for
unrelated classes on page 373.
Note, however, that declaring an explicit instantiation to be an extern template in no
way affects the ability of the compiler to instantiate and to inline visible function-definition
bodies for that template specialization in the translation unit:
// client.cpp:
#include <vector> // std::vector (general template)

extern template class std::vector<int>;

void client(std::vector<int>& inOut) // fully specialized instance of a vector
{

if (inOut.size()) // This invocation of size can inline.
{

int value = inOut[0]; // This invocation of operator[] can be inlined.
}

}

354

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 355 — #381

i
i

i
i

i
i

Section 2.1 C++11 extern template

In the previous example, the two tiny member functions of vector, namely, size and
operator[], will typically be inlined — in precisely the same way they would have been had
the extern template declaration been omitted. The only purpose of an extern template
declaration is to suppress object-code generation for this particular template instantiation
for the current translation unit.
Finally, note that the use of explicit-instantiation directives has absolutely no effect on the
logical meaning of a well-formed program; in particular, when applied to specializations of
function templates, they have no effect on overload resolution:
template <typename T> bool f(T v) {/*...*/} // general template definition

extern template bool f(char c); // specialization of f for char
extern template bool f(int v); // specialization of f for int

bool bc = f((char) 0); // exact match: Object code is suppressed locally.
bool bs = f((short) 0); // not exact match: Object code is generated locally.
bool bi = f((int) 0); // exact match: Object code is suppressed locally.
bool bu = f((unsigned)0); // not exact match: Object code is generated locally.

As the example above illustrates, overload resolution and template argument deduction
occur independently of any explicit-instantiation declarations. Only after the template to
be instantiated is determined does the extern template syntax take effect; see also Potential
Pitfalls — Corresponding explicit-instantiation declarations and definitions on page 371.

A more complete illustrative example

So far, we have seen the use of explicit-instantiation declarations and explicit-instantiation
definitions applied to only a standard class template, std::vector. The same syntax shown
in the previous code snippet applies also to full specializations of individual function tem-
plates and variable templates.
As a more comprehensive, albeit largely pedagogical, example, consider the overly simplis-
tic my::Vector class template along with other related templates defined within a header
file, my_vector.h:
// my_vector.h:
#ifndef INCLUDED_MY_VECTOR // internal include guard
#define INCLUDED_MY_VECTOR

#include <cstddef> // std::size_t
#include <utility> // std::swap

namespace my // namespace for all entities defined within this component
{

template <typename T>
class Vector

355

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 356 — #382

i
i

i
i

i
i

extern template Chapter 2 Conditionally Safe Features

{
static std::size_t s_count; // track number of objects constructed
T* d_data_p; // pointer to dynamically allocated memory
std::size_t d_length; // current number of elements in the vector
std::size_t d_capacity; // number of elements currently allocated

public:
// ...

std::size_t length() const { return d_length; }
// Return the number of elements.

// ...
};

// ... Any partial or full specialization definitions ...
// ... of the class template Vector go here. ...

template <typename T>
void swap(Vector<T> &lhs, Vector<T> &rhs) { return std::swap(lhs, rhs); }

// free function that operates on objects of type my::Vector via ADL

// ... Any [full] specialization definitions ...
// ... of free function swap would go here. ...

template <typename T>
const std::size_t vectorSize = sizeof(Vector<T>); // C++14 variable template

// This nonmodifiable static variable holds the size of a my::Vector<T>.

// ... Any [full] specialization definitions ...
// ... of variable vectorSize would go here. ...

template <typename T>
std::size_t Vector<T>::s_count = 0;

// definition of static counter in general template

// ... We might opt to add explicitinstantiation declarations here.
// ...

} // Close my namespace.

#endif // Close internal include guard.

In the my_vector component in the code snippet above, we have defined the following, in
the my namespace.

1. A class template, Vector, parameterized on element type

356

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 357 — #383

i
i

i
i

i
i

Section 2.1 C++11 extern template

2. A free-function template, swap, that operates on objects of corresponding specialized
Vector type

3. A const C++14 variable template, vectorSize, that represents the number of bytes
in the footprint of an object of the corresponding specialized Vector type

Any use of these templates by a client might and typically will trigger the depositing of
equivalent definitions as object code in the client translation unit’s resulting .o file, irre-
spective of whether the definition being used winds up getting inlined.
To eliminate object code for specializations of entities in the my_vector component, we must
first decide where the unique definitions will go; see Annoyances — No good place to put
definitions for unrelated classes on page 373. In this specific case, we own the component
that requires specialization, and the specialization is for a ubiquitous built-in type; hence,
the natural place to generate the specialized definitions is in a .cpp file corresponding to the
component’s header:
// my_vector.cpp:
#include <my_vector.h> // We always include the component's own header first.

// By including this header file, we have introduced the general template
// definitions for each of the explicitinstantiation declarations below.

namespace my // namespace for all entities defined within this component
{

template class Vector<int>;
// Generate object code for all nontemplate member functions and definitions
// of static data members of template my::Vector having int elements.

template std::size_t Vector<double>::length() const; // BAD IDEA
// In addition, we could generate object code for just a particular member
// function definition of my::Vector (e.g., length) for some other
// argument type (e.g., double).

template void swap(Vector<int>& lhs, Vector<int>& rhs);
// Generate object code for the full specialization of the swap free
// function template that operates on objects of type my::Vector<int>.

template const std::size_t vectorSize<int>; // C++14 variable template
// Generate the objectcodelevel definition for the specialization of the
// C++14 variable template instantiated for builtin type int.

template std::size_t Vector<int>::s_count;
// Generate the objectcodelevel definition for the specialization of the
// static member variable of Vector instantiated for builtin type int.

} // Close my namespace.

357

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 358 — #384

i
i

i
i

i
i

extern template Chapter 2 Conditionally Safe Features

Each of the constructs introduced by the keyword template within the my namespace in the
previous example represents a separate explicit-instantiation definition. These constructs
instruct the compiler to generate object-level definitions for general templates declared in
my_vector.h specialized on the built-in type int. Explicit instantiation of individual member
functions, such as length() in the example, is, however, only rarely useful; see Annoyances
— All members of an explicitly defined template class must be valid on page 374.
Having installed the necessary explicit-instantiation definitions in the component’s
my_vector.cpp file, we must now go back to its my_vector.h file and, without altering
any of the previously existing lines of code, add the corresponding explicit-instantiation
declarations to suppress redundant local code generation:
// my_vector.h:
#ifndef INCLUDED_MY_VECTOR // internal include guard
#define INCLUDED_MY_VECTOR

namespace my // namespace for all entities defined within this component
{

// ...
// ... everything that was in the original my namespace
// ...

//
// explicitinstantiation declarations
//

extern template class Vector<int>;
// Suppress object code for this class template specialized for int.

extern template std::size_t Vector<double>::length() const; // BAD IDEA
// Suppress object code for this member, only specialized for double.

extern template void swap(Vector<int>& lhs, Vector<int>& rhs);
// Suppress object code for this free function specialized for int.

extern template std::size_t vectorSize<int>; // C++14
// Suppress object code for this variable template specialized for int.

extern template std::size_t Vector<int>::s_count;
// Suppress object code for this static member definition w.r.t. int.

} // Close my namespace.

#endif // Close internal include guard.

Each of the constructs that begins with extern template in the example above are explicit-
instantiation declarations, which serve only to suppress the generation of any object code

358

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 359 — #385

i
i

i
i

i
i

Section 2.1 C++11 extern template

emitted to the .o file of the current translation unit in which such specializations are used.
These added extern template declarations must appear in my_header.h after the decla-
ration of the corresponding general template and, importantly, before whatever relevant
definitions are ever used.

The effect on various .o files

To illustrate the effect of explicit-instantiation declarations and explicit-instantiation def-
initions on the contents of object and executable files, we’ll use a simple lib_interval
library component consisting of a header file, lib_interval.h, and an implementation
file, lib_interval.cpp. The latter, apart from including its corresponding header, is effec-
tively empty:
// lib_interval.h:
#ifndef INCLUDED_LIB_INTERVAL // internal include guard
#define INCLUDED_LIB_INTERVAL

namespace lib // namespace for all entities defined within this component
{

template <typename T> // elided definition of a class template
class Interval
{

T d_low; // interval's low value
T d_high; // interval's high value

public:
explicit Interval(const T& p) : d_low(p), d_high(p) { }

// Construct an empty interval.

Interval(const T& low, const T& high) : d_low(low), d_high(high) { }
// Construct an interval having the specified boundary values.

const T& low() const { return d_low; }
// Return this interval's low value.

const T& high() const { return d_high; }
// Return this interval's high value.

int length() const { return d_high d_low; }
// Return this interval's length.

// ...
};

template <typename T> // elided definition of a function template
bool intersect(const Interval<T>& i1, const Interval<T>& i2)

// Determine whether the specified intervals intersect.

359

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 360 — #386

i
i

i
i

i
i

extern template Chapter 2 Conditionally Safe Features

{
bool result = false; // nonintersecting until proven otherwise
// ...
return result;

}

} // Close lib namespace.

#endif // INCLUDED_LIB_INTERVAL

// lib_interval.cpp:
#include <lib_interval.h>

This library component above defines, in the namespace lib, an implementation of (1) a
class template, Interval, and (2) a function template, intersect.
Let’s also consider a trivial application that uses this library component:

// app.cpp:
#include <lib_interval.h> // Include the library component's header file.

int main(int argv, const char** argc)
{

lib::Interval<double> a(0, 5); // instantiate with double type argument
lib::Interval<double> b(3, 8); // instantiate with double type argument
lib::Interval<int> c(4, 9); // instantiate with int type argument

if (lib::intersect(a, b)) // instantiate deducing double type argument
{

return 0; // Return "success" as (0.0, 5.0) does intersect (3.0, 8.0).
}

return 1; // Return "failure" status as function apparently doesn't work.
}

The purpose of this application is merely to exhibit a couple of instantiations of the library
class template, lib::Interval, for type arguments int and double, and of the library func-
tion template, lib::intersect, for just double.
Next, we compile the application and library translation units, app.cpp and
lib_interval.cpp, and inspect the symbols in their respective corresponding object files,
app.o and lib_interval.o:

$ gcc I. c app.cpp lib_interval.cpp
$ nm C app.o lib_interval.o

app.o:
0000000000000000 W lib::Interval<double>::Interval(double const&, double const&)

360

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 361 — #387

i
i

i
i

i
i

Section 2.1 C++11 extern template

0000000000000000 W lib::Interval<int>::Interval(int const&, int const&)
0000000000000000 W bool lib::intersect<double>(lib::Interval<double> const&,

lib::Interval<double> const&)
0000000000000000 T main

lib_interval.o:

Looking at app.o in the previous example, the class and function templates used in the main
function, which is defined in the app.cpp file, were instantiated implicitly, and the rele-
vant code was added to the resulting object file, app.o, with each instantiated function
definition in its own separate section. In the Interval class template, the generated symbols
correspond to the two unique instantiations of the constructor, i.e., for double and int,
respectively. The intersect function template, however, was implicitly instantiated for only
type double. Note that all of the implicitly instantiated functions have the W symbol type,
indicating that they are weak symbols, which are permitted to be present in multiple object
files. By contrast, this file also defines the strong symbol main, marked here by a T. Linking
app.o with any other object file containing such a symbol would cause the linker to report
a multiply-defined-symbol error. On the other hand, the lib_interval.o file corresponds
to the lib_interval library component, whose .cpp file served only to include its own .h
file, and is again effectively empty.
Let’s now link the two object files, app.o and lib_interval.o, and inspect the symbols in
the resulting executable, app2:
$ gcc o app app.o lib_interval.o
$ nm C app
000000000040056e W lib::Interval<double>::Interval(double const&, double const&)
00000000004005a2 W lib::Interval<int>::Interval(int const&, int const&)
00000000004005ce W bool lib::intersect<double>(lib::Interval<double> const&,

lib::Interval<double> const&)
00000000004004b7 T main

As the textual output above confirms, the final program contains exactly one copy of each
weak symbol. In this tiny illustrative example, these weak symbols have been defined in
only a single object file, thus not requiring the linker to select one definition out of many.
More generally, if the application comprises multiple object files, each file will potentially
contain their own set of weak symbols, often leading to duplicate code sections for implicitly
instantiated class, function, and variable templates instantiated on the same type arguments.
When the linker combines object files, it will arbitrarily choose at most one of each of these
respective and ideally identical weak-symbol sections to include in the final executable.
Imagine now that our program includes a large number of object files, many of which
make use of our lib_interval component, particularly to operate on double intervals.

2We have stripped out extraneous unrelated information that the nm tool produces; note that the C
option invokes the symbol demangler, which turns encoded names like _ZN3lib8IntervalIdEC1ERKdS3_ into
something more readable like lib::Interval<double>::Interval(double const&, double const&).

361

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 362 — #388

i
i

i
i

i
i

extern template Chapter 2 Conditionally Safe Features

Suppose, for now, we decide we would like to suppress the generation of object code for
templates related to just double type with the intent of later putting them all in one place,
i.e., the currently empty lib_interval.o. Achieving this objective is precisely what the
extern template syntax is designed to accomplish.
Returning to our lib_interval.h file, we need not change one line of code; we need only to
add two explicit-instantiation declarations— one for the class template, Interval<double>,
and one for the function template, intersect<double>(const double&, const double&) —
to the header file anywhere after their respective corresponding general template declaration
and definition:
// lib_interval.h: // No change to existing code.
#ifndef INCLUDED_LIB_INTERVAL // internal include guard
#define INCLUDED_LIB_INTERVAL

namespace lib // namespace for all entities defined within this component
{

template <typename T>
class Interval
{

// ... (same as before)
};

template <typename T>
bool intersect(const Interval<T>& i1, const Interval<T>& i2)
{

// ... (same as before)
}

extern template class Interval<double>; // explicitinstantiation declaration

extern template // explicitinstantiation declaration
bool intersect(const Interval<double>&, const Interval<double>&);

} // close lib namespace

#endif // INCLUDED_LIB_INTERVAL

Let’s again compile the two .cpp files and inspect the corresponding .o files:
$ gcc I. c app.cpp lib_interval.cpp
$ nm C app.o lib_interval.o

app.o:
U lib::Interval<double>::Interval(double const&, double const&)

362

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 363 — #389

i
i

i
i

i
i

Section 2.1 C++11 extern template

0000000000000000 W lib::Interval<int>::Interval(int const&, int const&)
U bool lib::intersect<double>(lib::Interval<double> const&,

lib::Interval<double> const&)
0000000000000000 T main

lib_interval.o:

Notice that this time some of the symbols, specifically those relating to the class and function
templates instantiated for type double, have changed from W, indicating a weak symbol, to
U, indicating an undefined one. This symbol type change means that instead of generating
a weak symbol for the explicit specializations for double, the compiler left those symbols
undefined, as if only the declarations of the member and free-function templates had been
available when compiling app.cpp, yet inlining of the instantiated definitions is in no way
affected. Undefined symbols are expected to be made available to the linker from other
object files. Attempting to link this application expectedly fails because no object files being
linked contain the needed definitions for those instantiations:
$ gcc o app app.o lib_interval.o

app.o: In function 'main':
app.cpp:(.text+0x38): undefined reference to
`lib::Interval<double>::Interval(double const&, double const&)'

app.cpp:(.text+0x69): undefined reference to
`lib::Interval<double>::Interval(double const&, double const&)'

app.cpp:(.text+0xa1): undefined reference to
`bool lib::intersect<double>(lib::Interval<double> const&,

lib::Interval<double> const&)'

collect2: error: ld returned 1 exit status

To provide the missing definitions, we will need to instantiate them explicitly. Since the
type for which the class and function are being specialized is the ubiquitous built-in type,
double, the ideal place to sequester those definitions would be within the object file of
the lib_interval library component itself, but see Annoyances — No good place to put
definitions for unrelated classes on page 373. To force the needed template definitions into
the lib_interval.o file, we will need to use explicit-instantiation definition syntax, i.e., the
template prefix:
// lib_interval.cpp:
#include <lib_interval.h>

template class lib::Interval<double>;
// example of an explicitinstantiation definition for a class

template bool lib::intersect(const Interval<double>&, const Interval<double>&);
// example of an explicitinstantiation definition for a function

363

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 364 — #390

i
i

i
i

i
i

extern template Chapter 2 Conditionally Safe Features

We recompile once again and inspect our newly generated object files:
$ gcc I. c app.cpp lib_interval.cpp
$ nm C app.o lib_interval.o

app.o:
U lib::Interval<double>::Interval(double const&, double const&)

0000000000000000 W lib::Interval<int>::Interval(int const&, int const&)
U bool lib::intersect<double>(lib::Interval<double> const&,

lib::Interval<double> const&)
0000000000000000 T main

lib_interval.o:
0000000000000000 W lib::Interval<double>::Interval(double const&)
0000000000000000 W lib::Interval<double>::Interval(double const&, double const&)
0000000000000000 W lib::Interval<double>::low() const
0000000000000000 W lib::Interval<double>::high() const
0000000000000000 W lib::Interval<double>::length() const
0000000000000000 W bool lib::intersect<double>(lib::Interval<double> const&,

lib::Interval<double> const&)

The application object file, app.o, naturally remained unchanged. What’s new here is
that the functions that were missing from the app.o file are now available in the
lib_interval.o file, again as weak (W), as opposed to strong (T), symbols. Notice, how-
ever, that explicit instantiation forces the compiler to generate code for all of the member
functions of the class template for a given specialization. These symbols might all be linked
into the resulting executable unless we take explicit precautions to exclude those that aren’t
needed3:
$ gcc o app app.o lib_interval.o Wl,gcsections
$ nm C app
00000000004005ca W lib::Interval<double>::Interval(double const&, double const&)
000000000040056e W lib::Interval<int>::Interval(int const&, int const&)
000000000040063d W bool lib::intersect<double>(lib::Interval<double> const&,

lib::Interval<double> const&)
00000000004004b7 T main

The extern template feature is provided to enable software architects to reduce code bloat
in individual object files for common instantiations of class, function, and, as of C++14,
variable templates in large-scale C++ software systems. The practical benefit is in reducing
the physical size of libraries, which might lead to improved link times. Explicit-instantiation
declarations do not (1) affect the meaning of a program, (2) suppress inline template implicit
instantiation, (3) impede the compiler’s ability to inline, or (4) meaningfully improve

3To avoid including the explicitly generated definitions that are being used to resolve undefined symbols,
we have instructed the linker to remove all unused code sections from the executable. The Wl option passes
comma-separated options to the linker. The gcsections option instructs the compiler to compile and
assemble and instructs the linker to omit individual unused sections, where each section contains, for example,
its own instantiation of a function template.

364

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 365 — #391

i
i

i
i

i
i

Section 2.1 C++11 extern template

compile time. To be clear, the only purpose of the extern template syntax is to suppress
object-code generation for the current translation unit, which is then selectively overridden
in the translation unit(s) of choice.

Use Cases

Reducing template code bloat in object files

The motivation for the extern template syntax is as a purely compile-time, not runtime,
optimization, i.e., to reduce the amount of redundant code within individual object files
resulting from common template instantiations in client code. As an example, consider a
fixed-size-array class template, FixedArray, that is used widely, i.e., by many clients from
separate translation units, in a large-scale game project for both integral and floating-point
calculations, primarily with type arguments int and double and array sizes of either 2 or 3:
// game_fixedarray.h:
#ifndef INCLUDED_GAME_FIXEDARRAY // internal include guard
#define INCLUDED_GAME_FIXEDARRAY

#include <cstddef> // std::size_t

namespace game // namespace for all entities defined within this component
{

template <typename T, std::size_t N> // widely used class template
class FixedArray
{

// ... (elided private implementation details)
public:

FixedArray() { /*...*/ }
FixedArray(const FixedArray<T, N>& other) { /*...*/ }
T& operator[](std::size_t index) { /*...*/ }
const T& operator[](std::size_t index) const { /*...*/ }

};

template <typename T, std::size_t N>
T dot(const FixedArray<T, N>& a, const FixedArray<T, N>& b) { /*...*/ }

// Return the scalar ("dot") product of the specified 'a' and 'b'.

// Explicitinstantiation declarations for full template specializations
// commonly used by the game project are provided below.

extern template class FixedArray<int, 2>; // class template
extern template int dot(const FixedArray<int, 2>& a, // function template

const FixedArray<int, 2>& b); // for int and 2

365

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 366 — #392

i
i

i
i

i
i

extern template Chapter 2 Conditionally Safe Features

extern template class FixedArray<int, 3>; // class template
extern template int dot(const FixedArray<int, 3>& a, // function template

const FixedArray<int, 3>& b); // for int and 3

extern template class FixedArray<double, 2>; // for double and 2
extern template double dot(const FixedArray<double, 2>& a,

const FixedArray<double, 2>& b);

extern template class FixedArray<double, 3>; // for double and 3
extern template double dot(const FixedArray<double, 3>& a,

const FixedArray<double, 3>& b);

} // Close game namespace.

#endif // INCLUDED_GAME_FIXEDARRAY

Specializations commonly used by the game project are provided by the game library. In
the component header in the example above, we have used the extern template syntax to
suppress object-code generation for instantiations of both the class template FixedArray
and the function template dot for element types int and double, each for array sizes 2 and
3. To ensure that these specialized definitions are available in every program that might
need them, we use the template syntax counterpart to force object-code generation within
just the one .o corresponding to the game_fixedarray library component4:
// game_fixedarray.cpp:
#include <game_fixedarray.h> // included as first substantive line of code

// Explicitinstantiation definitions for full template specializations
// commonly used by the game project are provided below.

template class game::FixedArray<int, 2>; // class template
template int game::dot(const FixedArray<int, 2>& a, // function template

const FixedArray<int, 2>& b); // for int and 2

template class game::FixedArray<int, 3>; // class template
template int game::dot(const FixedArray<int, 3>& a, // function template

const FixedArray<int, 3>& b); // for int and 3

template class game::FixedArray<double, 2>; // for double and 2
template double game::dot(const FixedArray<double, 2>& a,

const FixedArray<double, 2>& b);

4Notice that we have chosen not to nest the explicit specializations — or any other definitions —
of entities already declared directly within the game namespace, preferring instead to qualify each entity
explicitly to be consistent with how we render free-function definitions to avoid self-declaration; see lakos20,
section 2.5, “Component Source-Code Organization,” pp. 333–342, specifically Figure 2-36b, p. 340. See also
Potential Pitfalls — Corresponding explicit-instantiation declarations and definitions on page 371.

366

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 367 — #393

i
i

i
i

i
i

Section 2.1 C++11 extern template

template class game::FixedArray<double, 3>; // for double and 3
template double game::dot(const FixedArray<double, 3>& a,

const FixedArray<double, 3>& b);

Compiling game_fixedarray.cpp and examining the resulting object file shows that the
code for all explicitly instantiated classes and free functions was generated and placed into
the object file, game_fixedarray.o, of which we show a subset of the relevant symbols:
$ gcc I. c game_fixedarray.cpp
$ nm C game_fixedarray.o
0000000000000000 W game::FixedArray<double, 2ul>::FixedArray(
game::FixedArray<double, 2ul> const&)

0000000000000000 W game::FixedArray<double, 2ul>::FixedArray()
0000000000000000 W game::FixedArray<double, 2ul>::operator[](unsigned long)
0000000000000000 W game::FixedArray<double, 3ul>::FixedArray(
game::FixedArray<double, 3ul> const&)

0000000000000000 W game::FixedArray<int, 3ul>::FixedArray()
:

0000000000000000 W double game::dot<double, 2ul>(
game::FixedArray<double, 2ul> const&, game::FixedArray<double, 2ul> const&)

0000000000000000 W double game::dot<double, 3ul>(
game::FixedArray<double, 3ul> const&, game::FixedArray<double, 3ul> const&)

0000000000000000 W int game::dot<int, 2ul>(
game::FixedArray<int, 2ul> const&, game::FixedArray<int, 2ul> const&)

:
0000000000000000 W game::FixedArray<int, 2ul>::operator[](unsigned long) const
0000000000000000 W game::FixedArray<int, 3ul>::operator[](unsigned long) const

This FixedArray class template is used in multiple translation units within the game project.
The first one contains a set of geometry utilities:
// app_geometryutil.cpp:

#include <game_fixedarray.h> // game::FixedArray
#include <game_unit.h> // game::Unit

using namespace game;

void translate(Unit* object, const FixedArray<double, 2>& dst)
// Perform precise movement of the object on 2D plane.

{
FixedArray<double, 2> objectProjection;
// ...

}

void translate(Unit* object, const FixedArray<double, 3>& dst)
// Perform precise movement of the object in 3D space.

367

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 368 — #394

i
i

i
i

i
i

extern template Chapter 2 Conditionally Safe Features

{
FixedArray<double, 3> delta;
// ...

}

bool isOrthogonal(const FixedArray<int, 2>& a1, const FixedArray<int, 2>& a2)
// Return true if 2d arrays are orthogonal.

{
return dot(a1, a2) == 0;

}

bool isOrthogonal(const FixedArray<int, 3>& a1, const FixedArray<int, 3>& a2)
// Return true if 3d arrays are orthogonal.

{
return dot(a1, a2) == 0;

}

The second one deals with physics calculations:
// app_physics.cpp:

#include <game_fixedarray.h> // game::FixedArray
#include <game_unit.h> // game::Unit

using namespace game;

void collide(Unit* objectA, Unit* objectB)
// Calculate the result of object collision in 3D space.

{
FixedArray<double, 3> centerOfMassA = objectA>centerOfMass();
FixedArray<double, 3> centerOfMassB = objectB>centerOfMass();
// ..

}

void accelerate(Unit* object, const FixedArray<double, 3>& force)
// Calculate the position after applying a specified force for the
// duration of a game tick.

{
// ...

}

Note that the object files for the application components throughout the game project do
not contain any of the implicitly instantiated definitions that we had chosen to uniquely
sequester externally, i.e., within the game_fixedarray.o file:
$ nm C app_geometryutil.o
000000000000003e T isOrthogonal(game::FixedArray<int, 2ul> const&,
game::FixedArray<int, 2ul> const&)

368

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 369 — #395

i
i

i
i

i
i

Section 2.1 C++11 extern template

0000000000000068 T isOrthogonal(game::FixedArray<int, 3ul> const&,
game::FixedArray<int, 3ul> const&)

0000000000000000 T translate(game::Unit*, game::FixedArray<double, 2ul> const&)
000000000000001f T translate(game::Unit*, game::FixedArray<double, 3ul> const&)

U game::FixedArray<double, 2ul>::FixedArray()
U game::FixedArray<double, 3ul>::FixedArray()
U int game::dot<int, 2ul>(game::FixedArray<int, 2ul> const&,

game::FixedArray<int, 2ul> const&)
U int game::dot<int, 3ul>(game::FixedArray<int, 3ul> const&,

game::FixedArray<int, 3ul> const&)

$ nm C app_physics.o
0000000000000039 T accelerate(game::Unit*,
game::FixedArray<double, 3ul> const&)

0000000000000000 T collide(game::Unit*, game::Unit*)
U game::FixedArray<double, 3ul>::FixedArray()

0000000000000000 W game::Unit::centerOfMass()

Whether optimization involving explicit-instantiation directives reduces library sizes on disk
has no noticeable effect or actually makes matters worse will depend on the particulars of
the system at hand. Having this optimization applied to frequently used templates across
a large organization has been known to decrease object file sizes, storage needs, link times,
and overall build times, but see Potential Pitfalls — Accidentally making matters worse on
page 373.

Insulating template definitions from clients

Even before the introduction of explicit-instantiation declarations, strategic use of explicit-
instantiation definitions made it possible to insulate the definition of a template from client
code, presenting instead just a limited set of instantiations against which clients may link.
Such insulation enables the definition of the template to change without forcing clients to
recompile. What’s more, new explicit instantiations can be added without affecting existing
clients.
As an example, suppose we have a single free-function template, transform, that operates
on only floating-point values:

// transform.h:
#ifndef INCLUDED_TRANSFORM
#define INCLUDED_TRANSFORM

template <typename T> // declaration only of freefunction template
T transform(const T& value);

// Return the transform of the specified floatingpoint value.

#endif

369

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 370 — #396

i
i

i
i

i
i

extern template Chapter 2 Conditionally Safe Features

Initially, this function template will support just two built-in types, float and double, but
it is anticipated to eventually support the additional built-in type long double and perhaps
even supplementary user-defined types (e.g., Float128) to be made available via separate
headers (e.g., float128.h). By placing only the declaration of the transform function tem-
plate in its component’s header, clients will be able to link against only two supported
explicit specializations provided in the transform.cpp file:
// transform.cpp:
#include <transform.h> // Ensure consistency with clientfacing declaration.

template <typename T> // redeclaration/definition of freefunction template
T transform(const T& value)
{

// insulated implementation of transform function template
}

// explicitinstantiation definitions
template float transform(const float&); // Instantiate for type float.
template double transform(const double&); // Instantiate for type double.

Without the two explicit-instantiation declarations in the transform.cpp file above, its
corresponding object file, transform.o, would be empty.
Note that, as of C++11, we could place the corresponding explicit-instantiation declarations
in the header file for, say, documentation purposes:
// transform.h:
#ifndef INCLUDED_TRANSFORM
#define INCLUDED_TRANSFORM

template <typename T> // declaration only of freefunction template
T transform(const T& value);

// Return the transform of the specified floatingpoint value.

// explicitinstantiation declarations, available as of C++11
extern template float transform(const float&); // user documentation only;
extern template double transform(const double&); // has no effect whatsoever

#endif

Because no definition of the transform free-function template is visible in the header, no
implicit instantiation can result from client use; hence, the two explicit-instantiation decla-
rations above for float and double, respectively, do nothing.

370

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 371 — #397

i
i

i
i

i
i

Section 2.1 C++11 extern template

Potential Pitfalls

Corresponding explicit-instantiation declarations and definitions

To realize a reduction in object-code size for individual translation units and yet still be
able to link all valid programs successfully into a well-formed program, four moving parts
have to be brought together correctly.

1. Each general template, C<T>, whose object code bloat is to be optimized must be
declared within some designated component’s header file, c.h.

2. The specific definition of each C<T> relevant to an explicit specialization being
optimized — including general, partial-specialization, and full-specialization defini-
tions — must appear in the header file prior to its corresponding explicit-instantiation
declaration.

3. Each explicit-instantiation declaration for each specialization of each separate top-
level — i.e., class, function, or variable — template must appear in the component’s
.h file after the corresponding general template declaration and the relevant general,
partial-specialization, or full-specialization definition, but, in practice, always after all
such definitions, not just the relevant one.

4. Each template specialization having an explicit-instantiation declaration in the header
file must have a corresponding explicit-instantiation definition in the component’s
implementation file, c.cpp.

Absent items (1) and (2), clients would have no way to safely separate out the usability and
inlineability of the template definitions yet consolidate the otherwise redundantly generated
object-level definitions within just a single translation unit. Moreover, failing to provide the
relevant definition would mean that any clients using one of these specializations would either
fail to compile or, arguably worse, pick up the general definitions when a more specialized
definition was intended, likely resulting in an ill-formed program.
Failing item (3), the object code for that particular specialization of that template will be
generated locally in the client’s translation unit as usual, negating any benefits with respect
to local object-code size, irrespective of what is specified in the c.cpp file.
Finally, unless we provide a matching explicit-instantiation definition in the c.cpp file for
each and every corresponding explicit-instantiation declaration in the c.h file as in item (4),
our optimization attempts might well result in a library component that compiles, links, and
even passes some unit tests but, when released to our clients, fails to link. Additionally, any
explicit-instantiation definition in the c.cpp file that is not accompanied by a corresponding

371

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 372 — #398

i
i

i
i

i
i

extern template Chapter 2 Conditionally Safe Features

explicit-instantiation declaration in the c.h file will inflate the size of the c.o file with no
possibility of reducing code bloat in client code:
// c.h:
#ifndef INCLUDED_C // internal include guard
#define INCLUDED_C

template <typename T> void f(T v) {/*...*/} // general template definition

extern template void f<int>(int v); // OK, matched in c.cpp
extern template void f<char>(char c); // Error, unmatched in .cpp file

#endif

// c.cpp:
#include <c.h> // incorporate own header first

template void f<int>(int v); // OK, matched in c.h
template void f<double>(double v); // Bug, unmatched in c.h file

// client.cpp:
#include <c.h>

void client()
{

int i = 1;
char c = 'a';
double d = 2.0;

f(i); // OK, matching explicitinstantiation directives
f(c); // LinkTime Error, no matching explicitinstantiation definition
f(d); // Bug, size increased due to no matching explicitinstantiation

// declaration.
}

In the example above, f(i) works as expected, with the linker finding the definition of
f<int> in c.o; f(c) fails to link because no definition of f<char> is guaranteed to be
found anywhere; and f(d) accidentally works by silently generating a redundant local copy
of f<double> in client.o, while another, identical definition is generated explicitly in
c.o. These extra instantiations do not result in multiply-defined symbols because they
still reside in their own sections and are marked as weak symbols. Importantly, note that
extern template has absolutely no effect on overload resolution because the call to f(c)
did not resolve to f<int>.

372

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 373 — #399

i
i

i
i

i
i

Section 2.1 C++11 extern template

Accidentally making matters worse

When making the decision to explicitly instantiate common specializations of popular tem-
plates within some designated object file, it is important to consider that not all programs
necessarily need every (or even any) such instantiation. Classes that have many member
functions but typically use only a few require special attention.
For such classes, it might be beneficial to explicitly instantiate individual member functions
instead of the entire class template. However, selecting which member functions to explic-
itly instantiate and with which template arguments they should be instantiated without
carefully measuring the effect on the overall object size might result in not only overall
pessimization, but also to an unnecessary maintenance burden. Finally, remember that one
might need to explicitly tell the linker to strip unused sections resulting, for example, from
forced instantiation of common template specializations, to avoid inadvertently bloating
executables, which could adversely affect load times.

Annoyances

No good place to put definitions for unrelated classes

When we consider the implications of physical dependency,5,6 determining in which com-
ponent to deposit the specialized definitions can be problematic. For example, consider a
codebase implementing a core library that provides both a nontemplated String class and
a Vector container class template. These fundamentally unrelated entities would ideally
live in separate physical components (i.e., .h/.cpp pairs), neither of which depends phys-
ically on the other. That is, an application using just one of these components could be
compiled, linked, tested, and deployed entirely independently of the other. Now, consider
a large codebase that makes heavy use of Vector<String>: In what component should the
object-code-level definitions for the Vector<String> specialization reside?7 There are two
obvious alternatives.

1. vector— In this case, vector.h would hold extern template class Vector<String>;
— the explicit-instantiation declaration. vector.cpp would hold
template class Vector<String>; — the explicit-instantiation definition. With this
approach, we would create a physical dependency of the vector component on string.
Any client program wanting to use a Vector would also depend on string regardless
of whether it was needed.

5See lakos96.
6See lakos20.
7Note that the problem of determining in which component to instantiate the object-level implementation

of a template for a user-defined type is similar to that of specializing an arbitrary user-defined trait for a
user-defined type.

373

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 374 — #400

i
i

i
i

i
i

extern template Chapter 2 Conditionally Safe Features

2. string — In this case, string.h and string.cpp would instead be modified so as to
depend on vector. Clients wanting to use a string would also be forced to depend
physically on vector at compile time.

Another possibility might be to create a third component, called stringvector, that itself
depends on both vector and string. By escalating8 the mutual dependency to a higher
level in the physical hierarchy, we avoid forcing any client to depend on more than what
is actually needed. The practical drawback to this approach is that only those clients that
proactively include the composite stringvector.h header would realize any benefit; fortu-
nately, in this case, there is no one-definition rule (ODR) violation if they don’t.
Finally, complex machinery could be added to both string.h and vector.h to condition-
ally include stringvector.h whenever both of the other headers are included; such heroic
efforts would, nonetheless, involve a cyclic physical dependency among all three of these
components. Circular intercomponent collaborations are best avoided.9

All members of an explicitly defined template class must be valid

In general, when using a class template, only those members that are actually used get
implicitly instantiated. This hallmark allows class templates to provide functionality for
parameter types having certain capabilities, e.g., default constructible, while also provid-
ing partial support for types lacking those same capabilities. When providing an explicit-
instantiation definition, however, all members of a class template are instantiated.
Consider a simple class template having a data member that can be either default-initialized
via the template’s default constructor or initialized with an instance of the member’s type
supplied at construction:
template <typename T>
class W
{

T d_t; // a data member of type T

public:
W() : d_t() {}

// Create an instance of W with a defaultconstructed T member.

W(const T& t) : d_t(t) {}
// Create an instance of W with a copy of the specified t.

void doStuff() { /* do stuff */ }
};

This class template can be used successfully with a type, such as U in the following code
snippet, that is not default constructible:

8lakos20, section 3.5.2, “Escalation,” pp. 604–614
9lakos20, section 3.4, “Avoiding Cyclic Link-Time Dependencies,” pp. 592–601

374

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 375 — #401

i
i

i
i

i
i

Section 2.1 C++11 extern template

struct U
{

U(int i) { /* construct from i */ }
// ...

};

void useWU()
{

W<U> wu1(U(17)); // OK, using copy constructor for U
wu1.doStuff();

}

As it stands, the code above is well formed even though W<U>::W() would fail to compile
if instantiated. Consequently, although providing an explicit-instantiation declaration for
W<U> is valid, a corresponding explicit-instantiation definition for W<U> fails to compile, as
would an implicit instantiation of W<U>::W():

extern template class W<U>; // Valid: Suppress implicit instantiation of W<U>.

template class W<U>; // Error, U::U() not available for W<U>::W()

void useWU0()
{

W<U> wu0; // Error, U::U() not available for W<U>::W()
}

Unfortunately, the only workaround to achieve a comparable reduction in code bloat is to
provide explicit-instantiation directives for each valid member function of W<U>, an approach
that would likely carry a significantly greater maintenance burden:

extern template W<U>::W(const U& u); // suppress individual member
extern template void W<U>::doStuff(); // " " "
// ... Repeat for all other functions in W except W<U>::W().

template W<U>::W(const U& u); // instantiate individual member
template void W<U>::doStuff(); // " " "
// ... Repeat for all other functions in W except W<U>::W().

The power and flexibility to make it all work — albeit annoyingly — are there nonetheless.

See Also

• “Variable Templates” (§1.2, p. 157) covers an extension of the template syntax for
defining a family of like-named variables or static data members that can be instanti-
ated explicitly.

375

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 376 — #402

i
i

i
i

i
i

extern template Chapter 2 Conditionally Safe Features

Further Reading

• For a different perspective on this feature, see lakos20, section 1.3.16, “extern Tem-
plates,” pp. 183–185.

• For a more complete discussion of how compilers and linkers work with respect to
C++, see lakos20, Chapter 1, “Compilers, Linkers, and Components,” pp. 123–268.

376

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1055 — #1081

i
i

i
i

i
i

Section 3.1 C++11 inline namespace

Transparently Nested Namespaces

An inline namespace is a nested namespace whose member entities closely behave as if
they were declared directly within the enclosing namespace.

Description

To a first approximation, an inline namespace (e.g., v2 in the code snippet below) acts a
lot like a conventional nested namespace (e.g., v1) followed by a using directive for that
namespace in its enclosing namespace1:
// example.cpp:
namespace n
{

namespace v1 // conventional nested namespace followed by using directive
{

struct T { }; // nested type declaration (identified as ::n::v1::T)
int d; // ::n::v1::d at, e.g., 0x01a64e90

}

using namespace v1; // Import names T and d into namespace n.
}

namespace n
{

inline namespace v2 // similar to being followed by using namespace v2
{

struct T { }; // nested type declaration (identified as ::n::v2::T)
int d; // ::n::v2::d at, e.g., 0x01a64e94

}

// using namespace v2; // redundant when used with an inline namespace
}

1C++17 allows developers to concisely declare nested namespaces with shorthand notation:

namespace a::b { /*...*/ }
// is the same as
namespace a { namespace b { /*...*/ } }

C++20 expands on the above syntax by allowing the insertion of the inline keyword in front of any of the
namespaces, except the first one:

namespace a::inline b::inline c { /*...*/ }
// is the same as
namespace a { inline namespace b { inline namespace c { /*...*/ } } }

inline namespace a::b { } // Error, cannot start with inline for compound namespace names
namespace inline a::b { } // Error, inline at front of sequence explicitly disallowed

1055

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1056 — #1082

i
i

i
i

i
i

inline namespace Chapter 3 Unsafe Features

Four subtle details distinguish these approaches.

1. Name collisions with existing names behave differently due to differing name-lookup
rules.

2. Argument-dependent lookup (ADL) gives special treatment to inline name-
spaces.

3. Template specializations can refer to the primary template in an inline namespace
even if written in the enclosing namespace.

4. Reopening namespaces might reopen an inline namespace.

One important aspect that all forms of namespaces share, however, is that (1) nested sym-
bolic names (e.g., n::v1::T) at the API level, (2) mangled names (e.g., _ZN1n2v11dE,
_ZN1n2v21dE), and (3) assigned relocatable addresses (e.g., 0x01a64e90, 0x01a64e94) at the
ABI level remain unaffected by the use of either inline or using or both. To be precise,
source files containing, alternately, namespace n { inline namespace v { int d; } } and
namespace n { namespace v { int d; } using namespace v; }, will produce identical assem-
bly.2 Note that a using directive immediately following an inline namespace is superfluous;
name lookup will always consider names in inline namespaces before those imported by
a using directive. Such a directive can, however, be used to import the contents of an
inline namespace to some other namespace, albeit only in the conventional, using direc-
tive sense; see Annoyances — Only one namespace can contain any given inline namespace
on page 1082.
More generally, each namespace has what is called its inline namespace set, which is the
transitive closure of all inline namespaces within the namespace. All names in the inline
namespace set are roughly intended to behave as if they are defined in the enclosing name-
space. Conversely, each inline namespace has an enclosing namespace set that comprises
all enclosing namespaces up to and including the first noninline namespace.

Loss of access to duplicate names in enclosing namespace

When both a type and a variable are declared with the same name in the same scope, the
variable name hides the type name — such behavior can be demonstrated by using the form
of sizeof that accepts a nonparenthesized expression (recall that the form of sizeof that
accepts a type as its argument requires parentheses):
struct A { double d; }; static_assert(sizeof(A) == 8, ""); // type

// static_assert(sizeof A == 8, ""); // Error

int A; static_assert(sizeof(A) == 4, ""); // data
static_assert(sizeof A == 4, ""); // OK

2These mangled names can be seen with GCC by running g++ S <file>.cpp and viewing the contents
of the generated <file>.s. Note that Compiler Explorer is another valuable tool for learning about what
comes out the other end of a C++ compiler: see https://godbolt.org/.

1056

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1057 — #1083

i
i

i
i

i
i

Section 3.1 C++11 inline namespace

Unless both type and variable entities are declared within the same scope, no preference is
given to variable names; the name of an entity in an inner scope hides a like-named entity
in an enclosing scope:
void f()
{

double B; static_assert(sizeof(B) == 8, ""); // variable
{ static_assert(sizeof(B) == 8, ""); // variable

struct B { int d; }; static_assert(sizeof(B) == 4, ""); // type
} static_assert(sizeof(B) == 8, ""); // variable

}

When an entity is declared in an enclosing namespace and another entity having the same
name hides it in a lexically nested scope, then (apart from inline namespaces) access to a
hidden element can generally be recovered by using scope resolution:
struct C { double d; }; static_assert(sizeof(C) == 8, "");

void g()
{ static_assert(sizeof(C) == 8, ""); // type

int C; static_assert(sizeof(C) == 4, ""); // variable
static_assert(sizeof(::C) == 8, ""); // type

} static_assert(sizeof(C) == 8, ""); // type

A conventional nested namespace behaves as one might expect:
namespace outer
{

struct D { double d; }; static_assert(sizeof(D) == 8, ""); // type

namespace inner
{ static_assert(sizeof(D) == 8, ""); // type

int D; static_assert(sizeof(D) == 4, ""); // var
} static_assert(sizeof(D) == 8, ""); // type

static_assert(sizeof(inner::D) == 4, ""); // var
static_assert(sizeof(outer::D) == 8, ""); // type

using namespace inner;//static_assert(sizeof(D) == 0, ""); // Error
static_assert(sizeof(inner::D) == 4, ""); // var
static_assert(sizeof(outer::D) == 8, ""); // type

} static_assert(sizeof(outer::D) == 8, ""); // type

In the example above, the inner variable name, D, hides the outer type with the same
name, starting from the point of D’s declaration in inner until inner is closed, after which
the unqualified name D reverts to the type in the outer namespace. Then, right after the
subsequent using namespace inner; directive, the meaning of the unqualified name D in
outer becomes ambiguous, shown here with a static_assert that is commented out; any
attempt to refer to an unqualified D from here to the end of the scope of outer will fail
to compile. The type entity declared as D in the outer namespace can, however, still be

1057

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1058 — #1084

i
i

i
i

i
i

inline namespace Chapter 3 Unsafe Features

accessed — from inside or outside of the outer namespace, as shown in the example — via
its qualified name, outer::D.
If an inline namespace were used instead of a nested namespace followed by a using direc-
tive, however, the ability to recover by name the hidden entity in the enclosing namespace
is lost. Unqualified name lookup considers the inline namespace set and the used namespace
set simultaneously. Qualified name lookup first considers the inline namespace set and
then goes on to look into used namespaces. These lookup rules mean we can still refer to
outer::D in the example above, but doing so would still be ambiguous if inner were an
inline namespace. This subtle difference in behavior is a byproduct of the highly specific use
case that motivated this feature and for which it was explicitly designed; see Use Cases —
Link-safe ABI versioning on page 1067.

Argument-dependent–lookup interoperability across
inline namespace boundaries

Another important aspect of inline namespaces is that they allow ADL to work seam-
lessly across inline namespace boundaries. Whenever unqualified function names are being
resolved, a list of associated namespaces is built for each argument of the function. This list
of associated namespaces comprises the namespace of the argument, its enclosing namespace
set, plus the inline namespace set.
Consider the case of a type, U, defined in an outer namespace, and a function, f(U), declared
in an inner namespace nested within outer. A second type, V, is defined in the inner
namespace, and a function, g, is declared, after the close of inner, in the outer namespace:
namespace outer
{

struct U { };

// inline // Uncommenting this line fixes the problem.
namespace inner
{

void f(U) { }
struct V { };

}

using namespace inner; // If we inline inner, we don't need this line.

void g(V) { }
}

void client()
{

f(outer::U()); // Error, f is not declared in this scope.
g(outer::inner::V()); // Error, g is not declared in this scope.

}

1058

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1059 — #1085

i
i

i
i

i
i

Section 3.1 C++11 inline namespace

In the example above, a client invoking f with an object of type outer::U fails to compile
because f(outer::U) is declared in the nested inner namespace, which is not the same as
declaring it in outer. Because ADL does not look into namespaces added with the using
directive, ADL does not find the needed outer::inner::f function. Similarly, the type V,
defined in namespace outer::inner, is not declared in the same namespace as the function
g that operates on it. Hence, when g is invoked from within client on an object of type
outer::inner::V, ADL again does not find the needed function outer::g(outer::V).
Simply making the inner namespace inline solves both of these ADL-related problems.
All transitively nested inline namespaces — up to and including the most proximate non-
inline enclosing namespace — are treated as one with respect to ADL.

The ability to specialize templates declared in a nested inline namespace

The third property that distinguishes inline namespaces from conventional ones, even when
followed by a using directive, is the ability to specialize a class template defined within an
inline namespace from within an enclosing one; this ability holds transitively up to and
including the most proximate noninline namespace:
namespace out // proximate noninline outer namespace
{

inline namespace in1 // firstlevel nested inline namespace
{

inline namespace in2 // secondlevel nested inline namespace
{

template <typename T> // primary class template general definition
struct S { };

template <> // class template full specialization
struct S<char> { };

}

template <> // class template full specialization
struct S<short> { };

}

template <> // class template full specialization
struct S<int> { };

}

using namespace out; // conventional using directive

template <>
struct S<int> { }; // Error, cannot specialize from this scope

Note that the conventional nested namespace out followed by a using directive in the
enclosing namespace does not admit specialization from that outermost namespace, whereas

1059

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1060 — #1086

i
i

i
i

i
i

inline namespace Chapter 3 Unsafe Features

all of the inline namespaces do. Function templates behave similarly except that — unlike
class templates, whose definitions must reside entirely within the namespace in which they
are declared — a function template can be declared within a nested namespace and then be
defined from anywhere via a qualified name:
namespace out // proximate noninline outer namespace
{

inline namespace in1 // firstlevel nested inline namespace
{

template <typename T> // function template declaration
void f();

template <> // function template (full) specialization
void f<short>() { }

}

template <> // function template (full) specialization
void f<int>() { }

}

template <typename T> // function template general definition
void out::in1::f() { }

An important takeaway from the examples above is that every template entity — be it class
or function — must be declared in exactly one place within the collection of namespaces
that comprise the inline namespace set. In particular, declaring a class template in a
nested inline namespace and then subsequently defining it in a containing namespace is
not possible because, unlike a function definition, a type definition cannot be placed into a
namespace via name qualification alone:
namespace outer
{

inline namespace inner
{

template <typename T> // class template declaration
struct Z; // (if defined, must be within same namespace)

template <> // class template full specialization
struct Z<float> { };

}

template <typename T> // inconsistent declaration (and definition)
struct Z { }; // Z is now ambiguous in namespace outer.

const int i = sizeof(Z<int>); // Error, reference to Z is ambiguous.

template <> // attempted class template full specialization

1060

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1061 — #1087

i
i

i
i

i
i

Section 3.1 C++11 inline namespace

struct Z<double> { }; // Error, outer::Z or outer::inner::Z?
}

Reopening namespaces can reopen nested inline ones

Another subtlety specific to inline namespaces is related to reopening namespaces. Consider
a namespace outer that declares a nested namespace outer::m and an inline namespace
inner that, in turn, declares a nested namespace outer:inner::m. In this case, subsequent
attempts to reopen namespace m cause an ambiguity error:
namespace outer
{

namespace m { } // opens and closes ::outer::m

inline namespace inner
{

namespace n { } // opens and closes ::outer::inner::n
namespace m { } // opens and closes ::outer::inner::m

}

namespace n // OK, reopens ::outer::inner::n
{

struct S { }; // defines ::outer::inner::n::S
}

namespace m // Error, namespace m is ambiguous.
{

struct T { }; // with clang defines ::outer::m::T
}

}

static_assert(std::is_same<outer::n::S, outer::inner::n::S>::value, "");

In the code snippet above, no issue occurs with reopening outer::inner::n and no issue
would have occurred with reopening outer::m but for the inner namespaces having been
declared inline. When a new namespace declaration is encountered, a lookup determines
if a matching namespace having that name appears anywhere in the inline namespace
set of the current namespace. If the namespace is ambiguous, as is the case with m in the
example above, one can get the surprising error shown.3 If a matching namespace is found

3Note that reopening already declared namespaces, such as m and n in the inner and outer example,
is handled incorrectly on several popular platforms. Clang, for example, performs a name lookup when
encountering a new namespace declaration and give preference to the outermost namespace found, causing
the last declaration of m to reopen ::outer::m instead of being ambiguous. GCC, prior to 8.1 (c. 2018), does
not perform name lookup and will place any nested namespace declarations directly within their enclosing
namespace. This defect causes the last declaration of m to reopen ::outer::m instead of ::outer::inner::m
and the last declaration of n to open a new namespace, ::outer::n, instead of reopening ::outer::inner::n.

1061

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1062 — #1088

i
i

i
i

i
i

inline namespace Chapter 3 Unsafe Features

unambiguously inside an inline namespace, n in this case, then it is that nested namespace
that is reopened — here, ::outer::inner::n. The inner namespace is reopened even though
the last declaration of n is not lexically scoped within inner. Notice that the definition of
S is perhaps surprisingly defining ::outer::inner::n::S, not ::outer::n::S. For more
on what is not supported by this feature, see Annoyances — Inability to redeclare across
namespaces impedes code factoring on page 1079.

Use Cases

Facilitating API migration

Getting a large codebase to promptly upgrade to a new version of a library in any sort of
timely fashion can be challenging. As a simplistic illustration, imagine that we have just
developed a new library, parselib, comprising a class template, Parser, and a function
template, analyze, that takes a Parser object as its only argument:
namespace parselib
{

template <typename T>
class Parser
{

// ...

public:
Parser();
int parse(T* result, const char* input);

// Load result from nullterminated input; return 0 (on
// success) or nonzero (with no effect on result).

};

template <typename T>
double analyze(const Parser<T>& parser);

}

To use our library, clients will need to specialize our Parser class directly within the
parselib namespace:
struct MyClass { /*...*/ }; // enduserdefined type

namespace parselib // necessary to specialize Parser
{

template <> // Create full specialization of class
class Parser<MyClass> // Parser for usertype MyClass.
{

// ...

1062

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1063 — #1089

i
i

i
i

i
i

Section 3.1 C++11 inline namespace

public:
Parser();
int parse(MyClass* result, const char* input);

// The contract for a specialization typically remains the same.
};

double analyze(const Parser<MyClass>& parser);
}

Typical client code will also look for the Parser class directly within the parselib name-
space:
void client()
{

MyClass result;
parselib::Parser<MyClass> parser;

int status = parser.parse(&result, "...(MyClass value)...");
if (status != 0)
{

return;
}

double value = analyze(parser);
// ...

}

Note that invoking analyze on objects of some instantiated type of the Parser class template
will rely on ADL to find the corresponding overload.
We anticipate that our library’s API will evolve over time, so we want to enhance the
design of parselib accordingly. One of our goals is to somehow encourage clients to move
essentially all at once, yet also to accommodate both the early adopters and the inevitable
stragglers that make up a typical adoption curve. Our approach will be to create, within
our outer parselib namespace, a nested inline namespace, v1, which will hold the current
implementation of our library software:
namespace parselib
{

inline namespace v1 // Note our use of inline namespace here.
{

template <typename T>
class Parser
{

// ...

1063

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1064 — #1090

i
i

i
i

i
i

inline namespace Chapter 3 Unsafe Features

public:
Parser();
int parse(T* result, const char* input);

// Load result from nullterminated input; return 0 (on
// success) or nonzero (with no effect on result).

};

template <typename T>
double analyze(const Parser<T>& parser);

}
}

As suggested by the name v1, this namespace serves primarily as a mechanism to sup-
port library evolution through API and ABI versioning (see Link-safe ABI versioning on
page 1067 and Build modes and ABI link safety on page 1071). The need to specialize
class Parser and, independently, the reliance on ADL to find the free function template
analyze require the use of inline namespaces, as opposed to a conventional namespace
followed by a using directive.
Note that, whenever a subsystem starts out directly in a first-level namespace and is subse-
quently moved to a second-level nested namespace for the purpose of versioning, declaring
the inner namespace inline is the most reliable way to avoid inadvertently destabilizing
existing clients; see also Enabling selective using directives for short-named entities on
page 1074.
Now suppose we decide to enhance parselib in a non–backwards-compatible manner, such
that the signature of parse takes a second argument size of type std::size_t to allow
parsing of non–null-terminated strings and to reduce the risk of buffer overruns. Instead of
unilaterally removing all support for the previous version in the new release, we can create
a second namespace, v2, containing the new implementation and then, at some point, make
v2 the inline namespace instead of v1:
#include <cstddef> // std::size_t

namespace parselib
{

namespace v1 // Notice that v1 is now just a nested namespace.
{

template <typename T>
class Parser
{

// ...

public:
Parser();
int parse(T* result, const char* input);

1064

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1065 — #1091

i
i

i
i

i
i

Section 3.1 C++11 inline namespace

// Load result from nullterminated input; return 0 (on
// success) or nonzero (with no effect on result).

};

template <typename T>
double analyze(const Parser<T>& parser);

}

inline namespace v2 // Notice that use of inline keyword has moved here.
{

template <typename T>
class Parser
{

// ...

public: // Note incompatible change to Parser's essential API.
Parser();
int parse(T* result, const char* input, std::size_t size);

// Load result from input of specified size; return 0
// on success) or nonzero (with no effect on result).

};

template <typename T>
double analyze(const Parser<T>& parser);

}
}

When we release this new version with v2 made inline, all existing clients that rely on the
version supported directly in parselib will, by design, break when they recompile. At that
point, each client will have two options. The first one is to upgrade the code immediately by
passing in the size of the input string (e.g., 23) along with the address of its first character:
void client()
{

// ...
int status = parser.parse(&result, "...(MyClass value)...", 23);
// ... ^^^^ Look here!

}

The second option is to change all references to parselib to refer to the original version in
v1 explicitly:
namespace parselib
{

namespace v1 // specializations moved to nested namespace
{

1065

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1066 — #1092

i
i

i
i

i
i

inline namespace Chapter 3 Unsafe Features

template <>
class Parser<MyClass>
{

// ...

public:
Parser();
int parse(MyClass* result, const char* input);

};

double analyze(const Parser<MyClass>& parser);
}

}

void client1()
{

MyClass result;
parselib::v1::Parser<MyClass> parser; // reference nested namespace v1

int status = parser.parse(&result, "...(MyClass value)...");
if (status != 0)
{

return;
}

double value = analyze(parser);
// ...

}

Providing the updated version in a new inline namespace v2 provides a more flexible migra-
tion path — especially for a large population of independent client programs — compared
to manual targeted changes in client code.
Although new users would pick up the latest version automatically either way, existing
users of parselib will have the option of converting immediately by making a few small
syntactic changes or opting to remain with the original version for a while longer by making
all references to the library namespace refer explicitly to the desired version. If the library is
released before the inline keyword is moved, early adopters will have the option of opting
in by referring to v2 explicitly until it becomes the default. Those who have no need for
enhancements can achieve stability by referring to a particular version in perpetuity or until
it is physically removed from the library source.
Although this same functionality can sometimes be realized without using inline
namespaces (i.e., by adding a using namespace directive at the end of the parselib name-
space), any benefit of ADL and the ability to specialize templates from within the enclosing
parselib namespace itself would be lost. Note that, because specialization doesn’t kick
in until overload resolution is completed, specializing overloaded functions is dubious at

1066

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1067 — #1093

i
i

i
i

i
i

Section 3.1 C++11 inline namespace

best; see Potential Pitfalls — Relying on inline namespaces to solve library evolution on
page 1077.
Providing separate namespaces for each successive version has an additional advantage in
an entirely separate dimension: avoiding inadvertent, difficult-to-diagnose, latent linkage
defects. Though not demonstrated by this specific example, cases do arise where simply
changing which of the version namespaces is declared inline might lead to an ill formed,
no-diagnostic required (IFNDR) program. This issue might ensue when one or more of
its translation units that use the library are not recompiled before the program is relinked
to the new static or dynamic library containing the updated version of the library software;
see Link-safe ABI versioning below.
For distinct nested namespaces to guard effectively against accidental link-time errors, the
symbols involved have to (1) reside in object code (e.g., a header-only library would fail
this requirement) and (2) have the same name mangling (i.e., linker symbol) in both
versions. In this particular instance, however, the signature of the parse member function
of parser did change, and its mangled name will consequently change as well; hence the
same undefined symbol link error would result either way.

Link-safe ABI versioning

inline namespaces are not intended as a mechanism for source-code versioning; instead,
they prevent programs from being ill formed due to linking some version of a library with
client code compiled using some other, typically older version of the same library. Below, we
present two examples: a simple pedagogical example to illustrate the principle followed by a
more real-world example. Suppose we have a library component my_thing that implements
an example type, Thing, which wraps an int and initializes it with some value in its default
constructor defined out-of-line in the cpp file:
struct Thing // version 1 of class Thing
{

int i; // integer data member (size is 4)
Thing(); // original noninline constructor (defined in .cpp file)

};

Compiling a source file with this version of the header included might produce an object file
that can be incompatible yet linkable with an object file resulting from compiling a different
source file with a different version of this header included:
struct Thing // version 2 of class Thing
{

double d; // doubleprecision floatingpoint data member (size is 8)
Thing(); // updated noninline constructor (defined in .cpp file)

};

To make the problem that we are illustrating concrete, let’s represent the client as a main
program that does nothing but create a Thing and print the value of its only data member, i.

1067

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1068 — #1094

i
i

i
i

i
i

inline namespace Chapter 3 Unsafe Features

// main.cpp:
#include <my_thing.h> // my::Thing (version 1)
#include <iostream> // std::cout

int main()
{

my::Thing t;
std::cout << t.i << '\n';

}

If we compile this program, a reference to a locally undefined linker symbol, such as
_ZN2my7impl_v15ThingC1Ev,4 which represents the my::Thing::Thing constructor, will be
generated in the main.o file:
$ g++ c main.cpp

Without explicit intervention, the spelling of this linker symbol would be unaffected by any
subsequent changes made to the implementation of my::Thing, such as its data members
or implementation of its default constructor, even after recompiling. The same, of course,
applies to its definition in a separate translation unit.
We now turn to the translation unit implementing type my::Thing. The my_thing compo-
nent consists of a .h/.cpp pair: my_thing.h and my_thing.cpp. The header file my_thing.h
provides the physical interface, such as the definition of the principal type, Thing, its member
and associated free function declarations, plus definitions for inline functions and function
templates, if any:
// my_thing.h:
#ifndef INCLUDED_MY_THING
#define INCLUDED_MY_THING

namespace my // outer namespace (used directly by clients)
{

inline namespace impl_v1 // inner namespace (for implementer use only)
{

struct Thing
{

int i; // original data member, size = 4
Thing(); // default constructor (defined in my_thing.cpp)

};
}

4On a Unix machine, typing nm main.o reveals the symbols used in the specified object file. A symbol
prefaced with a capital U represents an undefined symbol that must be resolved by the linker. Note that
the linker symbol shown here incorporates an intervening inline namespace, impl_v1, as will be explained
shortly.

1068

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1069 — #1095

i
i

i
i

i
i

Section 3.1 C++11 inline namespace

}

#endif

The implementation file my_thing.cpp contains all of the noninline function bodies that
will be translated separately into the my_thing.o file:
// my_thing.cpp:
#include <my_thing.h>

namespace my // outer namespace (used directly by clients)
{

inline namespace impl_v1 // inner namespace (for implementer use only)
{

Thing::Thing() : i(0) // Load a 4byte value into Thing's data member.
{
}

}
}

Observing common good practice, we include the header file of the component as the first
substantive line of code to ensure that — irrespective of anything else — the header always
compiles in isolation, thereby avoiding insidious include-order dependencies.5 When we com-
pile the source file my_thing.cpp, we produce an object file my_thing.o containing the
definition of the same linker symbol, such as _ZN2my7impl_v15ThingC1Ev, for the default
constructor of my::Thing needed by the client:
$ g++ c my_thing.cpp

We can then link main.o and my_thing.o into an executable and run it:
$ g++ o prog main.o my_thing.o
$./prog

0

Now, suppose we were to change the definition of my::Thing to hold a double instead of an
int, recompile my_thing.cpp, and then relink with the original main.o without recompiling
main.cpp first. None of the relevant linker symbols would change, and the code would
recompile and link just fine, but the resulting binary prog would be IFNDR: the client
would be trying to print a 4-byte, int data member, i, in main.o that was loaded by the
library component as an 8-byte, double into d in my_thing.o. We can resolve this problem
by changing — or, if we didn’t think of it in advance, by adding — a new inline namespace
and making that change there:

5See lakos20, section 1.6.1, “Component Property 1,” pp. 210–212.

1069

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1070 — #1096

i
i

i
i

i
i

inline namespace Chapter 3 Unsafe Features

// my_thing.cpp:
#include <my_thing.h>

namespace my // outer namespace (used directly by clients)
{

inline namespace impl_v2 // inner namespace (for implementer use only)
{

Thing::Thing() : d(0.0) // Load 8byte value into Thing's data member.
{
}

}
}

Now clients that attempt to link against the new library will not find the linker symbol,
such as _Z...impl_v1...v, and the link stage will fail. Once clients recompile, however,
the undefined linker symbol will match the one available in the new my_thing.o, such as
_Z...impl_v2...v, the link stage will succeed, and the program will again work as expected.
What’s more, we have the option of keeping the original implementation. In that case,
existing clients that have not as yet recompiled will continue to link against the old version
until it is eventually removed after some suitable deprecation period.
As a more realistic second example of using inline namespaces to guard against linking
incompatible versions, suppose we have two versions of a Key class in a security library in
the enclosing namespace, auth — the original version in a regular nested namespace v1,
and the new current version in an inline nested namespace v2:
#include <cstdint> // std::uint32_t, std::unit64_t

namespace auth // outer namespace (used directly by clients)
{

namespace v1 // inner namespace (optionally used by clients)
{

class Key
{
private:

std::uint32_t d_key;
// sizeof(Key) is 4 bytes.

public:
std::uint32_t key() const; // stable interface function

// ...
};

}

inline namespace v2 // inner namespace (default current version)
{

class Key

1070

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1071 — #1097

i
i

i
i

i
i

Section 3.1 C++11 inline namespace

{
private:

std::uint64_t d_securityHash;
std::uint32_t d_key;

// sizeof(Key) is 16 bytes.

public:
std::uint32_t key() const; // stable interface function

// ...
};

}
}

Attempting to link together older binary artifacts built against version 1 with binary artifacts
built against version 2 will result in a link-time error rather than allowing an ill formed
program to be created. Note, however, that this approach works only if functionality essential
to typical use is defined out of line in a .cpp file. For example, it would add absolutely no
value for libraries that are shipped entirely as header files, since the versioning offered here
occurs strictly at the binary level (i.e., between object files) during the link stage.

Build modes and ABI link safety

In certain scenarios, a class might have two different memory layouts depending on com-
pilation flags. For instance, consider a low-level ManualBuffer class template in which an
additional data member is added for debugging purposes:
template <typename T>
struct ManualBuffer
{
private:

alignas(T) char d_data[sizeof(T)]; // aligned and big enough to hold a T

#ifndef NDEBUG
bool d_engaged; // tracks whether buffer is full (debug builds only)

#endif

public:
void construct(const T& obj);

// Emplace obj. (Engage the buffer.) The behavior is undefined unless
// the buffer was not previously engaged.

void destroy();
// Destroy the current obj. (Disengage the buffer.) The behavior is
// undefined unless the buffer was previously engaged.

// ...
};

1071

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1072 — #1098

i
i

i
i

i
i

inline namespace Chapter 3 Unsafe Features

Note that we have employed the C++11 alignas attribute (see Section 2.1.“alignas” on
page 168) here because it is exactly what’s needed for this usage example.
The d_engaged flag in the example above serves as a way to detect misuse of the ManualBuffer
class but only in debug builds. The extra space and run time required to maintain this
Boolean flag is undesirable in a release build because ManualBuffer is intended to be an effi-
cient, lightweight abstraction over the direct use of placement new and explicit destruction.
The linker symbol names generated for the methods of ManualBuffer are the same irrespec-
tive of the chosen build mode. If the same program links together two object files where
ManualBuffer is used — one built in debug mode and one built in release mode — the
one-definition rule (ODR) will be violated, and the program will again be IFNDR.
Prior to inline namespaces, it was possible to control the ABI-level name of linked symbols
by creating separate template instantiations on a per-build-mode basis:
#ifndef NDEBUG
enum { is_debug_build = 1 };
#else
enum { is_debug_build = 0 };
#endif

template <typename T, bool Debug = is_debug_build>
struct ManualBuffer { /*...*/ };

While the code above changes the interface of ManualBuffer to accept an additional template
parameter, it also allows debug and release versions of the same class to coexist in the same
program, which might prove useful, e.g., for testing.
Another way of avoiding incompatibilities at link time is to introduce two inline name-
spaces, the entire purpose of which is to change the ABI-level names of the linker symbols
associated with ManualBuffer depending on the build mode:
#ifndef NDEBUG // perhaps a BAD IDEA
inline namespace release
#else
inline namespace debug
#endif
{

template <typename T>
struct ManualBuffer
{

// ... (same as above)
};

}

The approach demonstrated in this example tries to ensure that a linker error will occur
if any attempt is made to link objects built with a build mode different from that of

1072

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1073 — #1099

i
i

i
i

i
i

Section 3.1 C++11 inline namespace

manualbuffer.o. Tying it to the NDEBUG flag, however, might have unintended consequences;
we might introduce unwanted restrictions in what we callmixed-mode builds. Most mod-
ern platforms support the notion of linking a collection of object files irrespective of their
optimization levels. The same is certainly true for whether or not C-style assert is enabled.
In other words, we might want to have a mixed-mode build where we link object files that dif-
fer in their optimization and assertion options, as long as they are binary compatible — i.e.,
in this case, they all must be uniform with respect to the implementation of ManualBuffer.
Hence, a more general, albeit more complicated and manual, approach would be to tie the
noninteroperable behavior associated with this “safe” or “defensive” build mode to a dif-
ferent switch entirely. Another consideration would be to avoid ever inlining a namespace
into the global namespace since no method is available to recover a symbol when there is a
collision:
namespace buflib // GOOD IDEA: enclosing namespace for nested inline namespace
{
#ifdef SAFE_MODE // GOOD IDEA: separate control of noninteroperable versions

inline namespace safe_build_mode
#else

inline namespace normal_build_mode
#endif

{
template <typename T>
struct ManualBuffer
{
private:

alignas(T) char d_data[sizeof(T)]; // aligned/sized to hold a T

#ifdef SAFE_MODE
bool d_engaged; // tracks whether buffer is full (safe mode only)

#endif

public:
void construct(const T& obj); // sets d_engaged (safe mode only)
void destroy(); // sets d_engaged (safe mode only)
// ...

};
}

}

And, of course, the appropriate conditional compilation within the function bodies would
need to be in the corresponding .cpp file.
Finally, if we have two implementations of a particular entity that are sufficiently distinct, we
might choose to represent them in their entirety, controlled by their own bespoke conditional-
compilation switches, as illustrated here using the my::VersionedThing type (see Link-safe
ABI versioning on page 1067):

1073

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1074 — #1100

i
i

i
i

i
i

inline namespace Chapter 3 Unsafe Features

// my_versionedthing.h:
#ifndef INCLUDED_MY_VERSIONEDTHING
#define INCLUDED_MY_VERSIONEDTHING

namespace my
{
#ifdef MY_THING_VERSION_1 // bespoke switch for this component version

inline
#endif

namespace v1
{

struct VersionedThing
{

int d_i;
VersionedThing();

};
}

#ifdef MY_THING_VERSION_2 // bespoke switch for this component version
inline

#endif
namespace v2
{

struct VersionedThing
{

double d_i;
VersionedThing();

};
}

}
#endif

However, see Potential Pitfalls—inline-namespace–based versioning doesn’t scale on
page 1076.

Enabling selective using directives for short-named entities

Introducing a large number of small names into client code that doesn’t follow rigorous
nomenclature can be problematic. Hoisting these names into one or more nested namespaces
so that they are easier to identify as a unit and can be used more selectively by clients, such
as through explicit qualification or using directives, can sometimes be an effective way of
organizing shared codebases. For example, std::literals and its nested namespaces, such
as chrono_literals, were introduced as inline namespaces in C++14. As it turns out,
clients of these nested namespaces have no need to specialize any templates defined in these
namespaces nor do they define types that must be found through ADL, but one can at least
imagine special circumstances in which such tiny-named entities are either templates that

1074

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1075 — #1101

i
i

i
i

i
i

Section 3.1 C++11 inline namespace

require specialization or operator-like functions, such as swap, defined for local types within
those nested namespaces. In those cases, inline namespaces would be required to preserve
the desired “as if” properties.
Even without either of these two needs, another property of an inline namespace differen-
tiates it from a noninline one followed by a using directive. Recall from Description —
Loss of access to duplicate names in enclosing namespace on page 1056 that a name in an
outer namespace will hide a duplicate name imported via a using directive, whereas any
access to that duplicate name within the enclosing namespace would be ambiguous when
that symbol is installed by way of an inline namespace. To see why this more forceful
clobbering behavior might be preferred over hiding, suppose we have a communal name-
space abc that is shared across multiple disparate headers. The first header, abc_header1.h,
represents a collection of logically related small functions declared directly in abc:
// abc_header1.h:
namespace abc
{

int i();
int am();
int smart();

}

A second header, abc_header2.h, creates a suite of many functions having tiny function
names. In a perhaps misguided effort to avoid clobbering other symbols within the abc name-
space having the same name, all of these tiny functions are sequestered within a nested
namespace:
// abc_header2.h:
namespace abc
{

namespace nested // Should this namespace have been inline instead?
{

int a(); // lots of functions with tiny names
int b();
int c();
// ...
int h();
int i(); // might collide with another name declared in abc
// ...
int z();

}

using namespace nested; // becomes superfluous if nested is made inline
}

Now suppose that a client application includes both of these headers to accomplish some
task:

1075

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1076 — #1102

i
i

i
i

i
i

inline namespace Chapter 3 Unsafe Features

// client.cpp:
#include <abc_header1.h>
#include <abc_header2.h>

int function()
{

if (abc::smart() < 0) { return 1; } // uses smart() from abc_header1.h
return abc::z() + abc::i() + abc::a() + abc::h() + abc::c(); // Oops!

// Bug, silently uses the abc::i() defined in abc_header1.h
}

In trying to cede control to the client as to whether the declared or imported abc::i()
function is to be used, we have, in effect, invited the defect illustrated in the above exam-
ple whereby the client was expecting the abc::i() from abc_header2.h and yet picked
up the one from abc_header1.h by default. Had the nested namespace in abc_header2.h
been declared inline, the qualified name abc::i() would have automatically been ren-
dered ambiguous in namespace abc, the translation would have failed safely, and the defect
would have been exposed at compile time. The downside, however, is that no method would
be available to recover nominal access to the abc::i() defined in abc_header1.h once
abc_header2.h is included, even though the two functions (e.g., including their mangled
names at the ABI level) remain distinct.

Potential Pitfalls

inline-namespace–based versioning doesn’t scale

The problem with using inline namespaces for ABI link safety is that the protection they
offer is only partial; in a few major places, critical problems can linger until run time instead
of being caught at compile time.
Controlling which namespace is inline using macros, such as was done in the
my::VersionedThing example in Use Cases — Link-safe ABI versioning on page 1067, will
result in code that directly uses the unversioned name, my::VersionedThing being bound
directly to the versioned name my::v1::VersionedThing or my::v2::VersionedThing, along
with the class layout of that particular entity. Sometimes details of using the inline name-
space member are not resolved by the linker, such as the object layout when we use types
from that namespace as member variables in other objects:
// my_thingaggregate.h:

// ...
#include <my_versionedthing.h>
// ...

namespace my
{

1076

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1077 — #1103

i
i

i
i

i
i

Section 3.1 C++11 inline namespace

struct ThingAggregate
{

// ...
VersionedThing d_thing;
// ...

};
}

This new ThingAggregate type does not have the versioned inline namespace as part
of its mangled name; it does, however, have a completely different layout if built with
MY_THING_VERSION_1 defined versus MY_THING_VERSION_2 defined. Linking a program
with mixed versions of these flags will result in runtime failures that are decidedly diffi-
cult to diagnose.
This same sort of problem will arise for functions taking arguments of such types; calling a
function from code that is wrong about the layout of a particular type will result in stack
corruption and other undefined and unpredictable behavior. This macro-induced problem
will also arise in cases where an old object file is linked against new code that changes which
namespace is inlined but still provides the definitions for the old version namespace. The
old object file for the client can still link, but new object files using the headers for the old
objects might attempt to manipulate those objects using the new namespace.
The only viable workaround for this approach is to propagate the inline namespace
hierarchy through the entire software stack. Every object or function that uses
my::VersionedThing needs to also be in a namespace that differs based on the same control
macro. In the case of ThingAggregate, one could just use the same my::v1 and my::v2
namespaces, but higher-level libraries would need their own my-specific nested namespaces.
Even worse, for higher-level libraries, every lower-level library having a versioning scheme of
this nature would need to be considered, resulting in having to provide the full cross-product
of nested namespaces to get link-time protection against mixed-mode builds.
This need for layers above a library to be aware of and to integrate into their own structure
the same namespaces the library has removes all or most of the benefits of using inline
namespaces for versioning. For an authentic real-world case study of heroic industrial use
— and eventual disuse — of inline-namespaces for versioning, see Appendix — Case study
of using inline namespaces for versioning on page 1083.

Relying on inline namespaces to solve library evolution

Inline namespaces might be misperceived as a complete solution for the owner of a library to
evolve its API. As an especially relevant example, consider the C++ Standard Library, which
itself does not use inline namespaces for versioning. Instead, to allow for its anticipated
essential evolution, the Standard Library imposes certain special restrictions on what is
permitted to occur within its own std namespace by dint of deeming certain problematic
uses as either ill formed or otherwise engendering undefined behavior.

1077

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1078 — #1104

i
i

i
i

i
i

inline namespace Chapter 3 Unsafe Features

Since C++11, several restrictions related to the Standard Library were put in place.

• Users may not add any new declarations within namespace std, meaning that users
cannot add new functions, overloads, types, or templates to std. This restriction gives
the Standard Library freedom to add new names in future versions of the Standard.

• Users may not specialize member functions, member function templates, or member
class templates. Specializing any of those entities might significantly inhibit a Standard
Library vendor’s ability to maintain its otherwise encapsulated implementation details.

• Users may add specializations of top-level Standard Library templates only if the
declaration depends on the name of a nonstandard user-defined type and only if that
user-defined type meets all requirements of the original template. Specialization of
function templates is allowed but generally discouraged because this practice doesn’t
scale since function templates cannot be partially specialized. Specializing of standard
class templates when the specialization names a nonstandard user-defined type, such as
std::vector<MyType*>, is allowed but also problematic when not explicitly supported.
While certain specific types, such as std::hash, are designed for user specialization,
steering clear of the practice for any other type helps to avoid surprises.

Several other good practices facilitate smooth evolution for the Standard Library.6

• Avoid specializing variable templates, even if dependent on user-defined types, except
for those variable templates where specialization is explicitly allowed.7

• Other than a few specific exceptions, avoiding the forming of pointers to Standard
Library functions — either explicitly or implicitly — allows the library to add over-
loads, either as part of the Standard or as an implementation detail for a particular
Standard Library, without breaking user code.8

• Overloads of Standard Library functions that depend on user-defined types are per-
mitted, but, as with specializing Standard Library templates, users must still meet the
requirements of the Standard Library function. Some functions, such as std::swap, are
designed to be customization points via overloading, but leaving functions not specifi-
cally designed for this purpose to vendor implementations only helps to avoid surprises.

Finally, upon reading about this inline namespace feature, one might think that all names
in namespace std could be made available at a global scope simply by inserting an

6These restrictions are normative in C++20, having finally formalized what were long identified as best
practices. Though these restrictions might not be codified in the Standard for pre-C++20 software, they
have been recognized best practices for as long as the Standard Library has existed and adherence to them
will materially improve the ability of software to migrate to future language standards irrespective of what
version of the language standard is being targeted.

7C++20 limits the specialization of variable templates to only those instances where specialization is
explicitly allowed and does so only for the mathematical constants in <numbers>.

8C++20 identifies these functions as addressable and gives that property to only iostream manipula-
tors since those are the only functions in the Standard Library for which taking their address is part of
normal usage.

1078

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1079 — #1105

i
i

i
i

i
i

Section 3.1 C++11 inline namespace

inline namespace std {} before including any standard headers. This practice is, however,
explicitly called out as ill-formed within the C++11 Standard. Although not uniformly
diagnosed as an error by all compilers, attempting this forbidden practice is apt to lead to
surprising problems even if not diagnosed as an error immediately.

Inconsistent use of inline keyword is ill formed, no diagnostic required

It is an ODR violation, IFNDR, for a nested namespace to be inline in one translation
unit and noninline in another. And yet, the motivating use case of this feature relies on
the linker to actively complain whenever different, incompatible versions — nested within
different, possibly inline-inconsistent, namespaces of an ABI — are used within a single
executable. Because declaring a nested namespace inline does not, by design, affect linker-
level symbols, developers must take appropriate care, such as effective use of header files,
to defend against such preventable inconsistencies.

Annoyances

Inability to redeclare across namespaces impedes code factoring

An essential feature of an inline namespace is the ability to declare a template within a
nested inline namespace and then specialize it within its enclosing namespace. For example,
we can declare

• a type template, S0

• a couple of function templates, f0 and g0

• and a member function template h0, which is similar to f0

in an inline namespace, inner, and specialize each of them, such as for int, in the enclosing
namespace, outer:
namespace outer // enclosing namespace
{

inline namespace inner // nested namespace
{

template<typename T> struct S0; // declarations of
template<typename T> void f0(); // various class
template<typename T> void g0(T v); // and function
struct A0 { template <typename T> void h0(); }; // templates

}

template<> struct S0<int> { }; // specializations
template<> void f0<int>() { } // of the various
void g0(int) { } /* overload not specialization */ // class and function
template<> void A0::h0<int>() { } // declarations above

} // in outer namespace

1079

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1080 — #1106

i
i

i
i

i
i

inline namespace Chapter 3 Unsafe Features

Note that, in the case of g0 in this example, the “specialization” void g0(int) is a non-
template overload of the function template g0 rather than a specialization of it. We cannot,
however, portably9 declare these templates within the outer namespace and then specialize
them within the inner one, even though the inner namespace is inline:
namespace outer // enclosing namespace
{

template<typename T> struct S1; // class template
template<typename T> void f1(); // function template
template<typename T> void g1(T v); // function template

struct A1 { template <typename T> void h1(); }; // member function template

inline namespace inner // nested namespace
{ // BAD IDEA

template<> struct S1<int> { }; // Error, S1 not a template
template<> void f1<int>() { } // Error, f1 not a template
void g1(int) { } // OK, overloaded function
template<> void A1::h1<int>() { } // Error, h1 not a template

}
}

Attempting to declare a template in the outer namespace and then define, effectively rede-
claring, it in an inline inner one causes the name to be inaccessible within the outer
namespace:
namespace outer // enclosing namespace
{ // BAD IDEA

template<typename T> struct S2; // declarations of
template<typename T> void f2(); // various class and
template<typename T> void g2(T v); // function templates

inline namespace inner // nested namespace
{

template<typename T> struct S2 { }; // definitions of
template<typename T> void f2() { } // unrelated class and
template<typename T> void g2(T v) { } // function templates

}

template<> struct S2<int> { }; // Error, S2 is ambiguous in outer.
template<> void f2<int>() { } // Error, f2 is ambiguous in outer.
void g2(int) { } // OK, g2 is an overload definition.

}

9GCC provides the fpermissive flag, which allows the example containing specializations within the
inner namespace to compile with warnings. Note again that g1(int), being an overload and not a special-
ization, wasn’t an error and, therefore, isn’t a warning either.

1080

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1081 — #1107

i
i

i
i

i
i

Section 3.1 C++11 inline namespace

Finally, declaring a template in the nested inline namespace inner in the example above
and then subsequently defining it in the enclosing outer namespace has the same effect of
making declared symbols ambiguous in the outer namespace:
namespace outer // enclosing namespace
{ // BAD IDEA

inline namespace inner // nested namespace
{

template<typename T> struct S3; // declarations of
template<typename T> void f3(); // various class
template<typename T> void g3(T v); // and function
struct A3 { template <typename T> void h3(); }; // templates

}

template<typename T> struct S3 { }; // definitions of
template<typename T> void f3() { } // unrelated class
template<typename T> void g3(T v) { } // and function
template<typename T> void A3::h3() { } // templates

template<> struct S3<int> { }; // Error, S3 is ambiguous in outer.
template<> void f3<int>() { } // Error, f3 is ambiguous in outer.
void g3(int) { } // OK, g3 is an overload definition.
template<> void A3::h3<int>() { } // Error, h2 is ambiguous in outer.

}

Note that, although the definition for a member function template must be located directly
within the namespace in which it is declared, a class or function template, once declared,
may instead be defined in a different scope by using an appropriate name qualification:
template <typename T> struct outer::S3 { }; // OK, enclosing namespace
template <typename T> void outer::inner::f3() { } // OK, nested namespace
template <typename T> void outer::g3(T v) { } // OK, enclosing namespace
template <typename T> void outer::A3::h3<T>() { } // Error, illformed

namespace outer
{

inline namespace inner
{

template <typename T> void A3::h3() { } // OK, within same namespace
}

}

Also note that, as ever, the corresponding definition of the declared template must have
been seen before it can be used in a context requiring a complete type. The importance of
ensuring that all specializations of a template have been seen before it is used substantively
(i.e., ODR-used) cannot be overstated, giving rise to the only limerick, which is actually
part of the normative text, in the C++ Language Standard10:

10See iso11a, section 14.7.3, “Explicit specialization,” paragraph 7, pp. 375–376, specifically p. 376.

1081

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1082 — #1108

i
i

i
i

i
i

inline namespace Chapter 3 Unsafe Features

When writing a specialization,
be careful about its location;
or to make it compile
will be such a trial
as to kindle its self-immolation.

Only one namespace can contain any given inline namespace

Unlike conventional using directives, which can be used to generate arbitrary many-to-
many relationships between different namespaces, inline namespaces can be used only to
contribute names to the sequence of enclosing namespaces up to the first noninline one. In
cases in which the names from a namespace are desired in multiple other namespaces, the
classical using directive must be used, with the subtle differences between the two modes
properly addressed.
As an example, the C++14 Standard Library provides a hierarchy of nested inline name-
spaces for literals of different sorts within namespace std.

• std::literals::complex_literals

• std::literals::chrono_literals

• std::literals::string_literals

• std::literals::string_view_literals

These namespaces can be imported to a local scope in one shot via a using std::literals
or instead, more selectively, by using the nested namespaces directly. This separation of
the types used with user-defined literals, which are all in namespace std, from the user-
defined literals that can be used to create those types led to some frustration; those who
had a using namespace std; could reasonably have expected to get the user-defined literals
associated with their std types. However, the types in the nested namespace std::chrono
did not meet this expectation.11

Eventually both solutions for incorporating literal namespaces, inline from
std::literals and noninline from std::chrono, were pressed into service when, in C++17,
a using namespace literals::chrono_literals; was added to the std::chrono name-
space. The Standard does not, however, benefit in any objective way from any of these
namespaces being inline since the artifacts in the literals namespace neither depend on
ADL nor are templates in need of user-defined specializations; hence, having all noninline
namespaces with appropriate using declarations would have been functionally indistinguish-
able from the bifurcated approach taken.

11CWG issue 2278; hinnant17

1082

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1083 — #1109

i
i

i
i

i
i

Section 3.1 C++11 inline namespace

See Also

• “alignas” (§2.1, p. 168) provides properly aligned storage for an object of arbitrary
type T in the example in Use Cases — Build modes and ABI link safety on page 1071.

Further Reading

• sutter14a uses inline namespaces as part of a proposal for a portable ABI across
compilers.

• lopez-gomez20 uses inline namespaces as part of a solution to avoid ODR violation
in an interpreter.

Appendix

Case study of using inline namespaces for versioning

By Niall Douglas

Let me tell you what I (don’t) use them for. It is not a conventional opinion.
At a previous well-regarded company, they were shipping no less than forty-three copies
of Boost in their application. Boost was not on the approved libraries list, but the great
thing about header-only libraries is that they don’t obviously appear in final binaries, unless
you look for them. So each individual team was including bits of Boost quietly and with-
out telling their legal department. Why? Because it saved time. (This was C++98, and
boost::shared_ptr and boost::function are both extremely attractive facilities.)
Here’s the really interesting part: Most of these copies of Boost were not the same version.
They were varying over a five-year release period. And, unfortunately, Boost makes no API
or ABI guarantees. So, theoretically, you could get two different incompatible versions of
Boost appearing in the same program binary, and BOOM! there goes memory corruption.
I advocated to Boost that a simple solution would be for Boost to wrap up their implemen-
tation into an internal inline namespace. That inline namespace ought to mean something.

• lib::v1 is the stable, version-1 ABI, which is guaranteed to be compatible with all
past and future lib::v1 ABIs, forever, as determined by the ABI-compliance-check
tool that runs on CI. The same goes for v2, v3, and so on.

• lib::v2_a7fe42d is the unstable, version-2 ABI, which may be incompatible with any
other lib::* ABI; hence, the seven hex chars after the underscore are the git short
SHA, permuted by every commit to the git repository but, in practice, per CMake
configure, because nobody wants to rebuild everything per commit. This ensures that
no symbols from any revision of lib will ever silently collide or otherwise interfere
with any other revision of lib, when combined into a single binary by a dumb linker.

1083

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1084 — #1110

i
i

i
i

i
i

inline namespace Chapter 3 Unsafe Features

I have been steadily making progress on getting Boost to avoid putting anything in the
global namespace, so a straightforward find-and-replace can let you “fix” on a particular
version of Boost.
That’s all the same as the pitch for inline namespaces. You’ll see the same technique used
in libstdc++ and many other major modern C++ codebases.
But I’ll tell you now, I don’t use inline namespaces anymore. Now what I do is use a macro
defined to a uniquely named namespace. My build system uses the git SHA to synthesize
namespace macros for my namespace name, beginning the namespace and ending the name-
space. Finally, in the documentation, I teach people to always use a namespace alias to a
macro to denote the namespace:
namespace output = OUTCOME_V2_NAMESPACE;

That macro expands to something like ::outcome_v2_ee9abc2; that is, I don’t use inline
namespaces anymore.
Why?
Well, for existing libraries that don’t want to break backward source compatibility, I think
inline namespaces serve a need. For new libraries, I think a macro-defined namespace is
clearer.

• It causes users to publicly commit to “I know what you’re doing here, what it means,
and what its consequences are.”

• It declares to other users that something unusual (i.e., go read the documentation) is
happening here, instead of silent magic behind the scenes.

• It prevents accidents that interfere with ADL and other customization points, which
induce surprise, such as accidentally injecting a customization point into lib, not into
lib::v2.

• Using macros to denote namespace lets us reuse the preprocessor machinery to generate
C++ modules using the exact same codebase; C++ modules are used if the compiler
supports them, else we fall back to inclusion.

Finally, and here’s the real rub, because we now have namespace aliases, if I were tempted
to use an inline namespace, nowadays I probably would instead use a uniquely named
namespace instead, and, in the include file, I’d alias a user-friendly name to that uniquely
named namespace. I think that approach is less likely to induce surprise in the typical
developer’s likely use cases than inline namespaces, such as injecting customization points
into the wrong namespace.
So now I hope you’ve got a good handle on inline namespaces: I was once keen on them,
but after some years of experience, I’ve gone off them in favor of better-in-my-opinion
alternatives. Unfortunately, if your type x::S has members of type a::T and macros decide
if that is a::v1::T or a::v2::T, then no linker protects the higher-level types from ODR
bugs, unless you also version x.

1084

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1305 — #1331

i
i

i
i

i
i

Index

Symbols
{ } (braced-initialization syntax)

annoyances, 247–255
allowing narrowing conversions, 247–248
auto deduction, 253–254
broken macro-invocation syntax, 248–249
copy list initialization in member initial-

izer lists, lack of, 249–250
explicit constructors passed multiple

arguments, 250–252
narrowing aggregate initialization, 247
obfuscation with opaque usage, 252–253
operator acceptance, 254–255

C++03 aggregate initialization, 219–222
C++03 initialization syntax, 215–219
C++11 aggregate initialization, 224–225
copy initialization and scalars, 235–236
copy list initialization, 226–228
default member initialization and, 233
description of, 215
direct list initialization, 228–231
further reading for, 256
list initialization, 233–234
potential pitfalls, 242–247

aggregates with deleted constructors, 247
inadvertently calling initializer-list con-

structors, 242–244
NRVO and implicit moves disabled, 244–

246
restrictions on narrowing conversions, 222–

224
support for, 562–564
type name omissions, 234
use cases, 236–242

avoiding the most vexing parse, 237–238
defining value-initialized variables, 236–

237
uniform initialization in factory func-

tions, 239–241
uniform initialization in generic code,

238–239
uniform member initialization in generic

code, 241–242
variables in conditional expressions, 235

, (comma) operator, 268, 928, 955n25
constexpr functions, 265
rvalue references, 816

>> (consecutive right-angle brackets)
description of, 21
further reading for, 24
potential pitfalls with, 22–24
use cases, 22

= default syntax. See also deleted functions;
rvalue references; static_assert

annoyances, 42–43
description of, 33–36
first declaration of special member function,

34–35
further reading for, 44
implementation of user-provided special

member function, 35–36
implicit generation of special member func-

tions, 44–45
potential pitfalls, 41–42
use cases, 36–41

making explicit class APIs with no run-
time cost, 38–39

physically decoupling interface from
implementation, 40–41

preserving type triviality, 39–40
restoring generation of suppressed special

member function, 36–37
= delete syntax. See also defaulted functions;

rvalue references
annoyances, 58–59
description of, 53
further reading for, 60
use cases, 53–57

hiding structural base class member func-
tions, 56–57

preventing implicit conversion, 55–56
suppressing special member function gen-

eration, 53–55
' (digit separator). See also binary literals

description of, 152–153
further reading for, 154
loss of precision in floating-point literals,

154–156
use cases, 153

(()) (double parentheses) notation, 25, 30
> (greater-than) operator, 21–22

1305

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1306 — #1332

i
i

i
i

i
i

Index

|| (logical or) operator, 265
() (parentheses), with decltype operands, 25, 30
&& (rvalue references)

annoyances, 804–812
destructive move, lack of, 811–812
evolution of value categories, 807
moved-from object requirements overly

strict, 807–811
RVO and NRVO require declared

copy/move constructors, 804–805
std::move does not move, 805–806
visual similarity to forwarding references,

806–807
decltype results as, 26
description of, 710–741
in expressions, 730–731
extended value categories in C++11/14,

716–723
further reading for, 813
lvalue references, comparison, 710–711
modifiable, 820–821
motivation for, 715–716
move operations, 714–715
moves in return statements, 734–740
necessity of, 824
overload resolution, 713
overloading on reference types, 727–730
potential pitfalls, 782–804

disabling NRVO, 783–784
failure to std::move named rvalue refer-

ences, 784–785
implementing move-only types without

std::unique_ptr, 791–794
inconsistent expectations on moved-from

objects, 794–803
making noncopyable type movable with-

out just cause, 788–791
move operations that throw, 787
repeatedly calling std::move on named

rvalue references, 785–786
requiring owned resources to be valid,

803–804
returning const rvalues pessimizes per-

formance, 786–787
sink arguments require copying, 782–783
some moves equivalent to copies, 788

special member functions, 732–733
std::move, 731–732
use cases, 741–781

identifying value categories, 779–781
move operations as optimizations of copy-

ing, 741–767
move-only types, 768–771

passing around resource-owning objects
by value, 771–775

sink arguments, 775–779
value category evolution, 813–828
xvalues, 712–713

[[]] (square brackets), 12
0b prefix. See also digit separator (')

description of, 142–143
further reading for, 146
use cases, 144–146

bit masking and bitwise operations, 144–
145

replicating constant binary data, 145–146

A
ABI link safety, build modes and, 1071–1074
ABI versioning

exception specification incompatibility,
1148–1149

link-safe, 1067–1071
abstract classes, 1008, 1009

extracting, 1018
final contextual keyword, 1008–1009
VShape as, 440

abstract interfaces, 1048, 1200
deduced return types and, 1200
pure, 540, 1020, 1021

abstract machine, 1118
abstract-syntax-tree (AST), 1054
access levels, 421, 489, 549–551, 550n5
access specifiers, 34, 35, 439, 537, 550n5, 884
accessible (from a context), 410
accessible copy constructor, 641, 644
accidental terminate, 1124–1128
acquire/release memory barrier, 80n7
active members, 406
adapter requirements in range-based for loops,

706
aggregate class, 415
aggregate initialization. See also default member

initializers
annoyances, 140–141
in C++03, 219–222
in C++11, 224–225, 241
constexpr functions, 273–274
default member initializers, 330
with deleted constructors, 247
description of, 138–139
narrowing, 247
potential pitfalls, 140
rvalue references, 752
of scalar members, 463
use cases, 139

aggregate types, 138, 1087
direct list initialization, 230

1306

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1307 — #1333

i
i

i
i

i
i

Index

generalized PODs, 410
as literal types, 279–280

aggregates, 877
default member initializers, 330
POD types, 402

algebra, 961
algorithm selection, 947
algorithms. See also functions

configuring via lambda expressions, 86–87
conflating optimization with code-size re-

duction, 1143–1144
constexpr functions in, 294n19
divide and conquer, 297
nonrecursive constexpr algorithms, 961–962
optimized C++11 example algorithms, 965–

967
optimized metaprogramming algorithms, 963–

964
alias templates, 887
aliases. See also inheriting constructors; trailing

return
creating with using declarations, 133–137
description of, 133–134
use cases, 134–137

binding arguments to template parame-
ters, 135–136

simplified typedef declarations, 134–135
type trait notation, 136–137

aliasing, 638–639
alignas specifier

description of, 168–172
memory allocation, 181–183
natural alignment, 179–181
pack expansion, 921–922
potential pitfalls, 176–179

ill-formed, no-diagnostic required
(IFNDR), 176–177

misleading applications to user-defined
types (UDTs), 177–178

overlooking alternatives to avoiding false
sharing, 178–179

underspecifying alignment, 176
strengthening alignment

of data members, 170–171
of particular objects, 169–170
of user-defined types (UDTs), 171

supported alignments, 168–169
type identifier as argument, 172
use cases, 172–176

false sharing, avoiding, 174–176
proper alignment for architecture-specific

instructions, 173–174
sufficiently aligned object buffers, 172–

173

alignment. See also alignas specifier; alignof
operator

for architecture-specific instructions,
173–174

incompatibly specified, 176–177
maximal fundamental, 193
natural, 179–181, 193
strengthening, 168

of data members, 170–171
of particular objects, 169–170
of user-defined types (UDTs), 171

supported, 168–169
underspecifying, 176

alignment requirements, 168, 184
alignof operator. See also alignas specifier;

decltype
annoyances, 193–194
description of, 184
fundamental types, 184
use cases, 186–193

monotonic memory allocation, 190–193
probing alignment of type during devel-

opment, 186–187
sufficiently aligned buffers, 187–190

user-defined types, 185–186
allocating objects, 634
almost trivially destructible, 464–470
amortized constant time (of a repeated operation),

636
annotations. See attribute support; attributes
anonymous function objects. See closure objects;

lambda expressions
API migration, facilitating, 1062–1067
Application Binary Interface (ABI)

build modes and link safety, 1071–1074
changes in future C++ versions, 1089n5,

1114, 1114n24, 1148–1149
inline namespaces, 1056, 1064, 1083
link-safe ABI versioning, 1067–1071
POD types, 402

Application Programming Interface (API), 402, 445
arbitrary values, conflating with indeterminate

values, 493–497
architecture-specific instructions, alignment for,

173–174
argument-dependent lookup (ADL), 472, 1056,

1058
inline namespaces, 1056, 1058–1059
range-based for loops, 681, 707–709
user-defined literals (UDLs), 841

arguments
passing multiple to explicit constructors,

250–252
of same type, 564–565
template, local/unnamed types, 83–88

1307

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1308 — #1334

i
i

i
i

i
i

Index

value initialization, avoiding the most vex-
ing parse, 237–238

arithmetic operators, braced lists and, 254–255
arithmetic types

enum class, 334, 337–339
implicit conversion, avoiding, 337–339

array types
alignof operator, 184
as literal types, 280
as standard-layout types, 417
as trivial types, 425

arrays
built-in, deducing, 211–212
initialization with std::initializer_list

annoyances, 567–571
description of, 553–561
further reading for, 571
potential pitfalls, 566–567
range-based for loops, 571–572
use cases, 561–566

size deduction, lack of, 330
traversing with range-based for loops, 683–

684
array-to-pointer decay, 220, 222
ASCII

basic source character set, 130
Unicode string literals, 129

as if, 307
assert, 656
assert statements in dependency chain, 1002
assignable (type), 486
assignment operator, 521–522

braced lists and, 254–255
lvalue references, 816

atomic (operation), 80–82
attribute lists, 922
attribute support. See also attributes

description of
attribute placement, 13
attribute syntax, 12–13
standardized compiler-specific attributes,

13–14
potential pitfalls

undefined behavior, 19
unrecognized attributes, 18–19

use cases
control of external static analysis, 17–18
hints for additional optimization oppor-

tunities, 15–16
prompting of compiler diagnostics, 14–15
statement of explicit assumptions, 16–17
statements of semantic properties, 18

attributes. See also attribute support
[[carries_dependency]]

description of, 998–1000

further reading for, 1006
potential pitfalls, 1005
use cases, 1000–1005

[[clang::no_sanitize]], 14
definition of, 12
[[deprecated]], 14

description of, 147–148
potential pitfalls, 150
use cases, 148–150

[[gnu::cold]], 15
[[gnu::const]], 16–17, 19
[[gnu::pure]], 14, 16
[[gnu::warn_unused_result]], 14–15, 15n7
[[gsl::suppress]], 17–18
[[noreturn]], 13

description of, 95
further reading for, 98
potential pitfalls, 97–98
use cases, 95–97

auto variables
annoyances, 212–213

nonstatic data members, not allowed, 212
template argument deductions, not all

allowed, 212–213
braced initialization and, 253–254
decltype(auto) placeholder

annoyances, 1213
description of, 1205–1210
potential pitfalls, 1212–1213
use cases, 1210–1212

description of, 195–199
further reading for, 214
idioms for, 1213
potential pitfalls, 204–212

compromised readability, 204
deducing built-in arrays, 211–212
deduction for list initialization, 210–211
hidden properties of fundamental types,

209–210
interface restrictions, lack of, 208–209
unexpected conversions, 206–208
unintentional copies, 204–206

return-type deduction
annoyances, 1201–1203
description of, 1182–1194
potential pitfalls, 1200
use cases, 1194–1200

use cases, 200–203
deeply nested variable types, 202–203
ensuring variable initialization, 200
implementation-defined or compiler-

synthesized variable types, 202
preventing unexpected implicit conver-

sions, 201

1308

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1309 — #1335

i
i

i
i

i
i

Index

redundant type name repetition, avoid-
ing, 200–201

resilience to library code changes, 203
auto&&, 383–384
automatic objects, 69
automatic storage duration, 68, 195, 582, 731, 735,

740n16
automatic variables, 526–527, 735–737
auxiliary variables, creating with decltype, 28

B
backward compatibility, 1113
barriers, 80n7
base classes, hiding member functions, 56–57
base name (of a component), 667n5
base specifier list, 883, 884, 915–917, 925
base-class constructors. See constructors
basic exception-safety guarantee, 644, 651
basic source character set, 110, 130
behavior, undefined. See undefined behavior
benchmark tests, 114
big-endian float layouts, 531–534
binary literals. See also digit separator (')

description of, 142–143
further reading for, 146
use cases, 144–146

bit masking and bitwise operations, 144–
145

replicating constant binary data, 145–146
binary searches, 292, 294, 944–946
binary trees, 1050–1054
bind function, 14
bit fields, 329n4, 526
bit flags, 347–348
bit masking, 144–145
bit representation of PODs, 530–534
bitwise copies of PODs, exporting, 479–480
bitwise operations, 21–24, 144–145
block scope, 587
boilerplate code

aliases, 136–137
default member initializers, 322
enum class, 333
implementation inheritance, avoiding with,

540–541
repetition, avoiding, 323–325
structural inheritance, avoiding with, 540
variable templates, 161

Boost, 1083–1084
boost::variant, 1180n2
brace elision, 140, 220
braced initialization

annoyances, 247–255
allowing narrowing conversions, 247–248

auto deduction, 253–254
broken macro-invocation syntax, 248–249
copy list initialization in member initial-

izer lists, lack of, 249–250
explicit constructors passed multiple

arguments, 250–252
narrowing aggregate initialization, 247
obfuscation with opaque usage, 252–253
operator acceptance, 254–255

C++03 aggregate initialization, 219–222
C++03 initialization syntax, 215–219
C++11 aggregate initialization, 224–225
copy initialization and scalars, 235–236
copy list initialization, 226–228
default member initialization and, 233
description of, 215
direct list initialization, 228–231
further reading for, 256
list initialization, 233–234
potential pitfalls, 242–247

aggregates with deleted constructors, 247
inadvertently calling initializer-list con-

structors, 242–244
NRVO and implicit moves disabled, 244–

246
range-based for loops, 684
restrictions on narrowing conversions, 222–

224
support for, 562–564
type name omissions, 234
use cases, 236–242

avoiding the most vexing parse, 237–238
defining value-initialized variables, 236–

237
uniform initialization in factory func-

tions, 239–241
uniform initialization in generic code,

238–239
uniform member initialization in generic

code, 241–242
variables in conditional expressions, 235
variadic templates, 926

braced initialized, 752
braced initializer lists, 554–557, 912–914
brackets ([]), 12
buffers

creating with sufficient alignment, 172–173
sufficiently aligned, 187–190

build modes, ABI link safety and, 1071–1074
builder classes, optimizing, 1167–1170
built-in arrays, deducing, 211–212
bytes, 153, 286–287, 503–505, 533–534, 748, 1107

1309

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1310 — #1336

i
i

i
i

i
i

Index

C
C linkage, 403–404
C Standard Library, noexcept operator and, 631–

632
C++ Language Standard, limerick in, 1081–1082
The C++ Programming Language (Stroustrup),

4
C++03

aggregate initialization, 219–222, 247
double-checked-lock pattern, 81–82
dynamic exception specifications, 1089
explicit-instantiation directives, 353n1
initialization syntax, 215–219
nested templated types, 22
passing multiple arguments to explicit con-

structors, 250–252
POD types, 412–415
right-shift operator (>>), 22–24
unscoped enumerators, workarounds for,

332–333
user-declared, 413n6
weakly typed enumerators, drawbacks to,

333–335
C++11

aggregate initialization, 224–225, 241
conditionally safe features

alignas specifier, 168–183
alignof operator, 184–194
auto variables, 195–214
constexpr functions, 257–301
constexpr variables, 302–317
default member initializers, 318–331
enum class, 332–352
extern template, 353–376
forwarding references, 377–400
generalized plain old data types (PODs),

401–534
inheriting constructors, 535–552
lambda expressions, 573–614
noexcept operator, 615–659
opaque enumerations, 660–678
range-based for loops, 679–709
rvalue references, 26, 710–828
std::initializer_list, 553–572
underlying types (UTs), 829–834
user-defined literals (UDLs), 835–872
variadic templates, 873–958

interface test, 275
lvalue references, 717–720
lvalue-reference declarations prior to, 815–

818
memory allocation, 763n25
new keywords in, 1023
optimized example algorithms, 965–967
POD types. See POD types

prvalues, 720–721
safe features

attribute support, 12–20
consecutive right-angle brackets (>>), 21–

24
decltype, 25–32
defaulted functions, 33–45
delegating constructors, 46–52
deleted functions, 53–60
explicit conversion operators, 61–67
local/unnamed types, 83–88
long long integral type, 89–94
[[noreturn]] attribute, 13
[[noreturn]] attribute in, 95–98
nullptr keyword, 99–103
override member-function specifier, 5,

104–107
raw string literals, 108–114
static_assert, 115–123
thread-safe function-scope static vari-

ables, 68–82
trailing return, 28. See also decltype;

deduced return type
trailing return types, 124–128
type/template aliases, 133–137
Unicode string literals, 129–132

scoped enumerations, 335–336
std::unique_ptr<T>, 42n3
unsafe features

[[carries_dependency]] attribute, 998–
1006

final contextual keyword, 1007–1030
friend declarations, 1031–1054
inline namespaces, 1055–1084
noexcept exception specification, 1085–

1152
ref-qualifiers, 1153–1173
union type, 1174–1181

user-provided, 413n6
value categories prior to, 814–815
xvalues, 721–723

C++14
capturing *this by copy, 612
conditionally safe features

constexpr functions, 959–967
generic lambdas, 968–985
lambda-capture expressions, 986–995

lvalue references, 717–720
new keywords in, 1023n7
prvalues, 720–721
safe features

aggregate initialization, 138–141
binary literals, 142–146
[[deprecated]] attribute, 14, 147–151

1310

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1311 — #1337

i
i

i
i

i
i

Index

digit separator ('), 152–156
templated variable declarations, 157–166

std::index_sequence, 293
<type_traits> header, 1014
unsafe features

auto return-type deduction, 1182–1204
decltype(auto) placeholder, 1205–1214

user-defined literals (UDLs) in, 852–853
xvalues, 721–723

C++17
capturing *this by copy, 611n7
conditionally supported, 425n7
dynamic exception specifications, 1085n1
exception specifications and type system,

1089n5
false sharing, avoiding, 175n6
fold expressions, 955n25
guaranteed copy elision, 216n1, 648n11,

805n30, 827n54
if constexpr language feature, 641n10
nested namespaces, 1055n1
new keywords in, 1023n7
pmr allocators, 763n25
polymorphic memory resources, 190n3
range-based for loops, 681n2
sentinels, 707n12
std::any, 187n2
std::pmr::monotonic_resource, 468n27
std::pmr::unsynchronized_pool_resource,

468n27
std::string_view, 874n1
std::variant, 452n19, 1180n2
structured binding, 201n2, 685n3
trivial types, 425n7
type traits, 651n12

C++20
bit field initialization, 329n4
char-like object, 479n29
concepts, 122n5, 208n3, 480n30, 1201n5
constexpr functions as destructors, 463n25
constexpr functions in algorithms, 294n19
constinit keyword, 75n5, 304n1, 316n8
contracts, 467n26
deleted constructors, 247n8
designated initializers, 139n1
destructors, 407n3
encapsulation of helper types, 85n3
enumeration comparisons, 335n1
floating-point non-type template parame-

ters, 903n7
generic lambdas, explicit parameter types,

193–194
implicit conversion, 223n3
implicitly movable entities, 735n13
manifestly constant evaluated, 258n1

moves in return statements, 740n16
nested namespaces, 1055n1
new keywords in, 1023n7
[[no_unique_address]] attribute, 1029n15
Ranges Library, 686n4, 687n5
ranges library, 391–393
relaxed restrictions on constexpr functions,

960n1
reordering data members, 178n10
requires clause, 486n31
sentinels, 707n12
Standard Library–related restrictions,

1078n6
std::bit_cast, 514n41, 516n42
std::is_constant_evaluated(), 297n20
std::is_pod, 438n14
std::remove_cvref<T>, 399n6
terse concept notation syntax, 398n5
trivially destructible types, 430n9
typename disambiguator, 382n1
unscoped enumerated types, 833n2
user-declared constructors, 274n7

C++23
guaranteed copy elision, 805n30
reordering data members, 178n10

C++-only types, translating to C, 452–456
C99, flexible array members, 404n1
cache associativity, 182n11
cache hit, 181
cache lines, 174–175, 181–183, 459, 1142
cache miss, 182
call operators in functor classes, 574–575
callable objects, 70, 994
callback functions, 669. See also lambda expres-

sions
callbacks, event-driven, 603–604
capture default, 582–583, 600, 608
captured by copy, 582, 611–612, 990–992
captured by reference, 582
captured by value. See captured by copy
captured variables, 582–585, 590–591, 602, 609–

610, 990
[[carries_dependency]] attribute

description of, 998–1000
further reading for, 1006
potential pitfalls, 1005
use cases, 1000–1005

Carruth, Chandler, 1134
carry dependency, 999
cast, 345
character literals, 837, 844n1
char-like object, 479, 479n29
checkBalance function, 15
checksumLength function, 27, 28n1

1311

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1312 — #1338

i
i

i
i

i
i

Index

Clang
acquire/release memory barrier, 80n7
attribute support

[[gnu::cold]] attribute, 15
[[gnu::const]] attribute, 16–17, 19
[[gnu::warn_unused_result]] attribute,

14–15, 15n7
standardized compiler-specific attributes,

14
compiler warnings, 150
delegating constructors, 50n2
explicit expression of type-consistency, 28n1
incompatibly specified alignment, 177
indirect calls, 947n22
inline namespaces, 1061n3
namespace-qualified name support, 13n2
nonrecursive constexpr algorithms, 961n2,

962n3
pair mismatches, 699n8
reducing code size, 1104n16, 1110–1111
stack unwinding, 621n4
template instantiation with deduced return

type, 1192n3
trivial copy/move constructors, 528n62
underspecifying alignment, 176

[[clang::no_sanitize]] attribute, 14
class APIs, making explicit, 38–39
class keys, 414–415
class member functions. See functions
class template specialization, 1059–1061
class templates, 892. See also variadic class tem-

plates
preventing misuse of, 118–119
std::initializer_list usage, 555–558

class types, 405
classes. See also constructors; templates

constraints in hierarchies, 655–658
enum

annoyances, 351
description of, 332–337
further reading for, 352
potential pitfalls, 344–350
use cases, 337–344

Packet, 27–28
variadic class templates, 878–880

member functions, 892–894
non-type template parameter packs, 901–

903
specialization of, 884–887
type template parameter packs, 880–884

class-specific memory management, 1088n4
clients

API migration, facilitating, 1063
inline namespaces, 1059

closure objects, 974, 978, 986. See also lambda
expressions; lambda-capture expres-
sions

deduced return types and, 1197–1198
forwarding variables into, 992–993
identity, 968
moving objects into, 988–989
mutable state, 989–990

closure types, 87, 578–581, 968–970, 1197
code bloat, 1054

extern template, 353, 364–365, 371–372, 375
reducing in object files, 365–369

code duplication, 48–50, 1144–1147
code elision, 1136, 1139
code factoring, impeding with inline namespaces,

1079–1082
code motion, 1136, 1137
code point, 129, 131
code size, reducing, 1101–1111, 1143–1144
code units, 131, 476
cold path, 1103, 1104n16, 1134–1135
Collatz conjecture, 313
Collatz function, 313
Collatz length, 313
Collatz sequence, 313
collisions, 109–111
comma (,) operator, 268, 928, 955n25

constexpr functions, 265
rvalue references, 816

common initial member sequence (CIMS), 406, 421–
423, 447

common type, 1186
compilation errors, forcing with = delete syntax.

See defaulted functions; rvalue refer-
ences

compiler diagnostics, prompting, 14–15
Compiler Explorer, 1110
compiler warnings, 150
compiler-generated special member functions,

621–626
compiler-synthesized types, 202
compile-time accessible variables. See constexpr

variables
compile-time assertions with static_assert

annoyances, 123
description of, 115–118
evaluation in templates, 116–118
further reading for, 123
potential pitfalls, 120–122

misuse to restrict overload sets, 121–122
unintended compilation failures, 120–121

syntax and semantics, 115–116

1312

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1313 — #1339

i
i

i
i

i
i

Index

use cases, 118–119
preventing misuse of class and function

templates, 118–119
verifying assumptions about target plat-

form, 118
compile-time constants

as conditional expression, 615
in constant expressions, 838
constexpr functions, 260–262
enum class, 346–347
enumerators as, 164
pi, 160
POD types, 463
user-defined literals (UDLs), 862

compile-time constructible, literal types, 462–464
compile-time coupling, 6, 40–41, 663, 677n11, 1200
compile-time dispatch, 121
compile-time evaluation

of data tables, 291–295
diagnosing undefined behavior, 312–314
low compiler limits, 295
overhead costs of constexpr functions, 298–

299
penalizing run time for, 299–300
string traversal, 287–291

compile-time introspection, 947
compile-time invocable functions. See constexpr

functions
compile-time polymorphism, 1046–1050
compile-time visitation, 1050–1054
complete types, 184, 316, 832, 891, 1014, 1081

alignof operator, 184
default member initializers, 319
enum class, 350
opaque enumerations, 661
prvalues, 720
rvalue references, 720, 807

complete-class context, 319, 1086n2
component local, 664
components

extern template, 359–360
friend declarations, 1035–1036, 1041
link-safe ABI versioning, 1068
opaque enumerations, 665, 667

composite patterns, 1020
compound assignment operators, braced lists and,

254–255
compound expressions, noexcept operator and,

626–627
concepts, 122n5, 208n3, 480n30, 571, 1201n5
concrete classes, 56, 540

final contextual keyword, 1008–1009
mocking, 1017–1020
performance, 1015–1017

concrete monotonic allocators, 1022

concurrent initialization, 68–69
conditional compilation, 403, 469, 540, 1024n10,

1073
conditional exception specifications, 1091–1092
conditional expressions

compile-time constants as, 615
noexcept operator, 615
variables in, initialization, 235

conditional instantiation, 979–981
conditional noexcept specifications, 639, 644
conditionally compile, 469–470
conditionally safe features

alignas specifier
description of, 168–172
memory allocation, 181–183
natural alignment, 179–181
potential pitfalls, 176–179
use cases, 172–176

alignof operator
annoyances, 193–194
description of, 184
fundamental types, 184
use cases, 186–193
user-defined types, 185–186

auto variables
annoyances, 212–213
description of, 195–199
further reading for, 214
potential pitfalls, 204–212
use cases, 200–203

braced initialization
annoyances, 247–255
C++03 aggregate initialization, 219–222
C++03 initialization syntax, 215–219
C++11 aggregate initialization, 224–225
copy initialization and scalars, 235–236
copy list initialization, 226–228
default member initialization and, 233
description of, 215
direct list initialization, 228–231
further reading for, 256
list initialization, 233–234
potential pitfalls, 242–247
restrictions on narrowing conversions,

222–224
type name omissions, 234
use cases, 236–242
variables in conditional expressions, 235

constexpr functions
annoyances, 299–300
compile-time evaluation, 284–286
constructor constraints, 269–276
description of, 257–261, 959–960
further reading for, 301, 965
inlining and definition visibility, 262–265

1313

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1314 — #1340

i
i

i
i

i
i

Index

conditionally safe features (cont.)
constexpr functions (cont.)

literal types, 278–284
member functions, 266–268
optimized C++11 example algorithms,

965–967
parameter and return types, 277–278
as part of contract, 261–262
potential pitfalls, 295–299, 314
relaxed restrictions in C++14, 959–967
restrictions on, 268–269
templates, 276–277
type system and function pointers, 265–

266
use cases, 286–295, 961–964

constexpr variables
annoyances, 314–316
description of, 302–307
potential pitfalls, 314
use cases, 307–314

default member initializers, 6
annoyances, 328–330
description of, 318–321
potential pitfalls, 326–328
use cases, 322–325

definition of, 5–6
enum class

annoyances, 351
description of, 332–337
further reading for, 352
potential pitfalls, 344–350
use cases, 337–344

extern template
annoyances, 373–375
description of, 353–365
further reading for, 376
potential pitfalls, 371–373
use cases, 365–370

forwarding references
annoyances, 397–400
description of, 377–385
further reading for, 400
potential pitfalls, 394–397
use cases, 386–393

generalized plain old data types (PODs)
annoyances, 521–529
bit representation, 530–534
C++03 POD types, 412–415
C++11 POD types, 415–417
description of, 401–402
further reading for, 530
future direction, 438–439
potential pitfalls, 479–521
privileges, 402–412

standard-layout class special properties,
420–425

standard-layout types, 417–420
trivial subcategories, 429–436
trivial types, 425–429
type traits, 436–438
use cases, 439–479

generic lambdas
annoyances, 981–984
description of, 968–975
further reading for, 985
potential pitfalls, 981
use cases, 975–981

inheriting constructors
annoyances, 549–552
description of, 535–539
potential pitfalls, 546–549
use cases, 539–545

lambda expressions
annoyances, 611–614
description of, 573–597
further reading for, 614
potential pitfalls, 607–611
use cases, 597–607

lambda-capture expressions
annoyances, 993–994
description of, 986–988
further reading for, 995
potential pitfalls, 992–993
use cases, 988–992

noexcept operator
annoyances, 650–658
description of, 615–634
further reading for, 658
move operations, 658–659
potential pitfalls, 647–650
use cases, 634–647

opaque enumerations
annoyances, 677–678
description of, 660–663
further reading for, 678
potential pitfalls, 675–677
use cases, 663–675

range-based for loops
annoyances, 703–709
description of, 679–684
further reading for, 709
potential pitfalls, 691–703
use cases, 684–691

rvalue references
annoyances, 804–812
decltype results as, 26
description of, 710–741
further reading for, 813
potential pitfalls, 782–804

1314

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1315 — #1341

i
i

i
i

i
i

Index

use cases, 741–781
value category evolution, 813–828

std::initializer_list
annoyances, 567–571
description of, 553–561
further reading for, 571
potential pitfalls, 566–567
range-based for loops, 571–572
use cases, 561–566

underlying types (UTs)
description of, 829–830
further reading for, 834
potential pitfalls, 832–833
use cases, 830–832

user-defined literals (UDLs)
annoyances, 869–871
description of, 835–853
further reading for, 872
potential pitfalls, 867–869
use cases, 853–867

variadic templates
annoyances, 953–957
description of, 873–925
further reading for, 958
potential pitfalls, 952–953
use cases, 925–951

conditionally supported, 425n7
conditionally supported behavior, 13n2
configuration structs, 139
conforming implementations, 14n4, 171n2
consecutive right-angle brackets (>>)

description of, 21
further reading for, 24
potential pitfalls with, 22–24
use cases, 22

const data members
difficulty of synthesizing, 993–994
memcpy usage on, 489–493
returning as rvalues pessimizes perfor-

mance, 786–787
const default constructible, 218
const objects, representation by initializer lists,

570
const variables, capturing modifiable copy of,

990–992
constant binary data, replicating, 145–146
constant expressions, 115, 224, 257. See also

constexpr functions; constexpr vari-
ables

compile-time constants in, 838
conditional exception specifications, 1091
noexcept exception specifications, 1129
trivially destructible types, 431
user-defined literals (UDLs), 836

constant initialization, 75

constant time, 636, 823
constants, named, 346–347

const-default-constructible, 218
constexpr data structures, storing, 311–312

constexpr functions
in algorithms, 294n19
annoyances, 299–300

implicit const-qualification, 300
penalizing run time to enable compile

time, 299–300
compile-time evaluation, 284–286
constructor constraints, 269–276
description of, 257–261
destructors, 463n25
further reading for, 301
inlining and definition visibility, 262–265
literal types, 278–284
member functions, 266–268
noexcept operator and, 654–655
parameter and return types, 277–278
as part of contract, 261–262
potential pitfalls, 295–299, 314

implementation difficulties, 296–297
low compiler limits, 295
overhead costs, 298–299
overzealous usage, 298
premature commitment, 297–298

relaxed restrictions in C++14, 959–967
description of, 959–960
further reading for, 965
optimized C++11 example algorithms,

965–967
use cases, 961–964

relaxed restrictions on. See constexpr vari-
ables; variadic templates

restrictions on, 268–269
templates, 276–277
type system and function pointers, 265–266
use cases, 286–295

alternative to function-like macros, 286–
287

compile-time data table evaluation, 291–
295

compile-time string traversal, 287–291
user-defined literals (UDLs), 838–839

constexpr specifier, 28n1
constexpr variables

annoyances, 314–316
static constexpr member variables not

defined in own class, 316
static member variables require external

definitions, 314–315
description of, 302–307
initializer undefined behavior, 306–307
internal linkage, 307

1315

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1316 — #1342

i
i

i
i

i
i

Index

constexpr variables (cont.)
potential pitfalls, 314
use cases, 307–314

alternative to enumerated compile-time
integral constants, 307–310

diagnosing undefined behavior at compile
time, 312–314

nonintegral symbolic numeric constants,
310–311

storing constexpr data structures, 311–
312

constinit keyword, 75n5, 304n1, 316n8
const-qualified member functions, 300
constraining

deduced parameters, 970–973
multiple arguments, 983–984

constructors. See also copy constructors; move
constructors

boilerplate code repetition, avoiding, 323–
325

code duplication, avoiding, 48–50
delegating

description of, 46–48
potential pitfalls, 50–51
use cases, 48–50

deleted in aggregates, 247
explicit, passing multiple arguments, 250–

252
inheriting

annoyances, 549–552
description of, 535–539
potential pitfalls, 546–549
use cases, 539–545

restrictions on, 269–276
for std::initializer_list, inadvertently

calling, 242–244
as trivial, 437
user-declared, 274n7, 1087
value initializing arguments, avoiding the

most vexing parse, 237–238
containers

initialization, 561–562
iterating all elements, 684–685
nested, 22

contextual keywords, 1007. See also keywords
override

description of, 104–105
further reading for, 107
potential pitfalls, 106
use cases, 105–106

potential pitfalls, 1023
contextually convertible to bool, 63–65, 1129
continuous refactoring, 147

contract guarantees
nofail functions, 1117–1122
overly strong, 1112–1116

contract violations, 485
contracts, 467n26, 485

constexpr functions as part of, 261–262
new operator, 616
overly restrictive, 480–482
rvalue references, 714

control constructs
emulating, 599–600
in lambda expressions, 600–601

controlling constant expressions, 285
conventional string literals, 113
conversion operators

explicit
description of, 61–63
potential pitfalls, 66–67
use cases, 63–65

as placeholders, 1193–1194
converting constructors, 61
cooked UDL operators, 841, 843–845, 870
cookies, 669–675
copy assignable, 485–486
copy assignment, 485, 758
copy assignment operator

deleted functions, 54
rvalue references, 714
user-provided, 759
vertical encoding, 451

copy constructible, 455
copy construction, 489–492
copy constructors

declaring special member functions, 34
deleted functions, 54
hijacking with perfect-forwarding construc-

tor, 395–397
literal types and, 281
rvalue references, 714
RVO and NRVO requirements, 804–805
as trivial, 437
user-provided, 758–759
vertical encoding, 450

copy elision, 390
copy initialization, 215–216

in aggregate initialization, 221
in generic code, 239
for nonstatic data members, 318
scalar type, 235–236
unions, 506

copy list initialization, 226–228
direct list initialization, compared, 231–232
in factory functions, 240
in generic code, 239
in member initializer lists, 249–250

1316

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1317 — #1343

i
i

i
i

i
i

Index

for nonstatic data members, 318
std::initializer_list, 555

copy operations, 522, 627
deleted functions, 53
move operations as optimization of, 741–767
rvalue references, 715
sink arguments, 782–783
some equivalent to moves, 788

copy semantics, 54, 627, 742, 852
copy/direct, 215
copy/swap idiom, 636, 1097
core constant expression, 960n1
core language specification, 482
core traits, 482
.cpp files, 41n2
critical section, 71
C-style ellipsis, 952
C-style functions, 158
curiously recurring template pattern (CRTP), 1042–

1054
compile-time polymorphism, 1046–1050
compile-time visitation, 1050–1054
refactoring, 1042–1044
synthesizing equality, 1045–1046

currying, 597–598
cv-qualifiers, 1153–1154, 1157–1158, 1207–1208

forwarding references, 379
as literal types, 280
rvalue references, 724
as standard-layout types, 417
as trivial types, 425

cyclic physical dependency, 374
cyclically dependent, 75

D
d_engaged flag, 1072
dangling references, 566–567, 607–608, 1171, 1212
data dependency, 999
data dependency chains, 998–999, 1002
data members

const
difficulty of synthesizing, 993–994
memcpy usage on, 489–493
returning as rvalues pessimizes perfor-

mance, 786–787
reordering, 178n10
strengthening alignment, 168, 170–171

data races, 68–69
data structures, constexpr, 311–312
data tables, compile-time evaluation, 291–295
death tests, 656
debug build, 468
debugging lambda expressions, 611
decay (of a type), 815
decimal floating-point (DFP), 862

declarations, 121, 315, 879
friend

curiously recurring template pattern
(CRTP) use cases, 1042–1054

description of, 1031–1033
further reading for, 1042
potential pitfalls, 1041
use cases, 1033–1041

prior to C++11, 815–818
user-provided destructors, 1105

declarator operators, 889
declared interface, 987
declared type (of an object), 25
declaring

deleted functions, 58–59
function pointers, 127–128

decltype. See also auto variables; decltype(auto)
placeholder; rvalue references

annoyances, 31
description of

use with entities, 25
use with expressions, 25–26

potential pitfalls, 30
use cases

avoidance of explicit typenames, 26–27
creation of auxiliary variable of generic

type, 28
explicit expression of type-consistency,

27–28, 28n1
validation of generic expressions, 28–30

decltype(auto) placeholder
annoyances, 1213
description of, 1205–1210
in new expressions, 1210
potential pitfalls, 1212–1213
specification, 1206–1208
syntactic restrictions, 1208–1209
use cases, 1210–1212

declval function, 31
deduced parameters, constraints on, 970–973
deduced return types, 593–594, 1146

annoyances, 1201–1203
description of, 1182–1194
for lambda expressions, 1189–1190, 1197–

1198
potential pitfalls, 1200
use cases, 1194–1200

compiler-applied rules, 1197
complicated return types, 1194–1196
delaying return-type deduction, 1199–

1120
perfect returning wrapped functions,

1198
returning lambda expressions, 1197–1198

1317

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1318 — #1344

i
i

i
i

i
i

Index

deducing
built-in arrays, 211–212
list initialization, 210–211
pointer types, 197–198
reference types, 198

deeply nested variable types, 202–203
default constructed, 478, 752
default constructors, 754, 1136

declaring special member functions, 33–34
suppressed by std::initializer_list, 568–

570
as trivial, 437
user-provided, 755

default initialization, 216–219, 765
in aggregate initialization, 221
constexpr functions, 273
for nonstatic data members, 322–323

default initialized, 493, 752
default member initialization, 233
default member initializers

aggregate initialization with, 138–141
annoyances, 328–330

applicability limitations, 329
array size deduction, lack of, 330
loss of aggregate status, 330
loss of triviality, 329–330
parenthesized direct-initialization syn-

tax, lack of, 328–329
constexpr functions, 270
description of, 318–321
potential pitfalls, 326–328

inconsistent subobject intialization, 326–
328

loss of insulation, 326
safety of, 6
trivial types, 426
union interactions, 320–321
use cases, 322–325

boilerplate repetition, avoiding, 323–325
documentation of default values, 325
nonstatic data member initialization,

322–323
simple struct initialization, 322

default values, documentation of, 325
defaulted default constructors, exception specifi-

cations and, 1087
defaulted functions, 522, 649. See also deleted func-

tions; rvalue references; static_assert
annoyances, 42–43
description of, 33–36
exception specifications and, 1086
first declaration of special member function,

34–35
further reading for, 44

implementation of user-provided special
member function, 35–36

implicit generation of special member func-
tions, 44–45

potential pitfalls, 41–42
use cases, 36–41

making explicit class APIs with no run-
time cost, 38–39

physically decoupling interface from
implementation, 40–41

preserving type triviality, 39–40
restoring generation of suppressed special

member function, 36–37
defaulted special member functions. See defaulted

functions
defaulted template parameters, 31
default/value, 215
defect reports (DR), 432n10, 615n2, 722n8, 1086n2
defensive checks, 468, 744
defensive programming, 1024
defined behavior, 1112–1113
defining declarations, 729
definition (of objects), 68
definitions, 315, 879
delaying return-type deduction, 1199–1200
delegating constructors

description of, 46–48
potential pitfalls, 50–51

delegation cycles, 50–51
suboptimal factoring, 51

use cases, 48–50
delegation cycles, 50–51
deleted functions, 33–34, 757, 1086n2. See also

defaulted functions; rvalue references
annoyances, 58–59
description of, 53
further reading for, 60
as trivial, 523
use cases, 53–57

hiding structural base class member func-
tions, 56–57

preventing implicit conversion, 55–56
suppressing special member function gen-

eration, 53–55
dependency. See data dependency
dependent base classes. See inheriting construc-

tors
dependent types

generic lambdas, 981
inheriting constructors, 538

[[deprecated]] attribute, 14
description of, 147–148
potential pitfalls, 150
use cases, 148–150

1318

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1319 — #1345

i
i

i
i

i
i

Index

derived classes
compile-time visitation, 1050–1054
preventing with final contextual keyword,

1007, 1014–1015
design patterns, 669
designated initializers, 139n1
destructive move, lack of, 811–812
destructors

in C++20, 407n3
as constexpr functions, 463n25
declaring special member functions, 34
exception specifications and, 1086
final contextual keyword, 1008
noexcept by default, 653–654
rvalue references, 752
skippable, 464–470
user-provided, 755–757
vertical encoding, 450

devirtualize, 1011
diagnostics, compiler, 14–15
diffusion, 183n14
digit separator ('). See also binary literals

description of, 152–153
further reading for, 154
loss of precision in floating-point literals,

154–156
use cases, 153

dimensional unit types, 863–865
direct aggregate initialization, 493
direct braced initialized, 455
direct initialization, 215, 754

explicit conversion operators, 62
in factory functions, 240
in generic code, 239
of members, 241–242
for nonstatic data members, 318
syntax, 328–329

direct initialized, 230
direct list initialization, 228–231

copy list initialization, compared, 231–232
in factory functions, 240
in generic code, 239
of members, 241–242
for nonstatic data members, 318
std::initializer_list, 555

direct mapped, 182n11
disabling

implicit moves, 244–246
named return-value optimization (NRVO),

783–784
NRVO, 244–246

disambiguators, 28–30
discriminated unions, 937–948, 1177–1180
divide and conquer, 297
documentation of default values, 325

double-checked-lock pattern (C++03), 81–82
duck typing, 1052
dumb data, 668n7
duplicate names, loss of access in namespaces,

1056–1058
dynamic binding, 1015
dynamic dispatch, 1011
dynamic exception specifications, 618–619, 1085,

1089, 1090
compatibility with noexcept specifications,

621
noexcept exception specification, compared,

1101–1102
violating, 1093

dynamic types, 416

E
EBCDIC, 129n1
Effective C++ (Meyers), 3
elaborated type specifiers, 1031–1032
embedded development, 145
embedded systems, 1101
embedding code in C++ programs, 111–112
emplacement, 390–391
empty-base optimization (EBO), 185, 499, 607, 933,

1028–1030
encapsulation

of helper types, 85n3
of implementation details, 343–344
opaque enumerations, 663
types within functions, 84–85

encoding prefixes, 844
entities

decltype use with, 25–26
[[deprecated]] attribute, 147–150

enum class
annoyances, 351
description of, 332–337
further reading for, 352
potential pitfalls, 344–350

bit flags, 347–348
collections of named constants, 346–347
external use of opaque enumerators, 350
iteration, 348–350
strong typing can be counterproductive,

344–346
scoped enumerations, 335–336
underlying types (UTs) and, 337
unscoped C++03 enumerations, work-

arounds for, 332–333
use cases, 337–344

encapsulating implementation details,
343–344

implicit conversion to arithmetic types,
avoiding, 337–339

1319

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1320 — #1346

i
i

i
i

i
i

Index

enum class (cont.)
use cases (cont.)

namespace pollution, avoiding, 339–340
overloading disambiguation, 340–343

weakly typed C++03 enumerators, draw-
backs to, 333–335

enumerations. See also opaque enumerations
comparisons in C++20, 335n1
underlying types (UTs)

description of, 829–830
further reading for, 834
potential pitfalls, 832–833
use cases, 830–832

enumerators, as compile-time constants, 164
errors

compiler warnings as, 150
compile-time, 22

escalation, 374
essential behavior, 102
event-driven callbacks, 603–604
exception agnostic, 644, 1126
exception free path, 1134, 1136, 1143
exception safe, 644, 1126
exception specifications, 593. See also noexcept

exception specifications
conditional, 1091–1092
constraints in class hierarchies, 655–658
dynamic, 618–619
function types and, 1147–1148
text-segment size comparison, 1108
type system and, 1089n5
unconditional, 1085–1089
violating, 1093

exceptions, 615–618, 1104
excess N notation, 155
executable images, 1135
execution character sets, 844
expansion. See pack expansion
expiring objects, 741–742, 749
expiring value

rvalue references, 712–713
xvalues, 721–723

explicit class APIs, 38–39
explicit constructors, passing multiple arguments,

250–252
explicit conversion operators

description of, 61–63
potential pitfalls, 66–67
use cases, 63–65

explicit instantiation declarations
annoyances, 373–375

member validity, 374–375
unrelated class definitions, 373–374

description of, 353–365
further reading for, 376

illustrative example, 355–359
.o files, effect on, 359–365
potential pitfalls, 371–373

corresponding explicit-instantiation
declarations and definitions, 371–372

pessimization over optimization, 373
use cases, 365–370

insulation from client code, 369–370
reducing code bloat in object files, 365–

369
explicit instantiation definitions, 353–355, 358–359,

363, 370–375
explicit instantiation directives, 353n1, 354–355,

369, 375
explicit template argument specifications, 895
explicit typenames, 26–27
explicitly captured, 582–583
explicitly copied, 583
explicitly declaring special member functions, 33–

34
exporting bitwise copies of PODs, 479–480
expression alias, 1146–1147
expression SFINAE, 29n3, 122, 126
expression templates, 202–203
expressions. See also lambda expressions

compound, noexcept operator and, 626–627
decltype use with, 25–26
decomposing complex, 391–393
rvalue references in, 730–731
validation of, 28–30

extended alignment, 168–170
extended friend declarations. See friend decla-

rations
extended typedef. See aliases
extern template

annoyances, 373–375
member validity, 374–375
unrelated class definitions, 373–374

description of, 353–365
further reading for, 376
illustrative example, 355–359
.o files, effect on, 359–365
potential pitfalls, 371–373

corresponding explicit-instantiation
declarations and definitions, 371–372

pessimization over optimization, 373
use cases, 365–370

insulation from client code, 369–370
reducing code bloat in object files, 365–

369
external definitions for static member variables,

314–315
external linkages, 307
external static analysis, control of, 17–18

1320

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1321 — #1347

i
i

i
i

i
i

Index

F
factory functions, 239–241, 929–930

perfect forwarding, 388–389
rvalue references, 790, 804–805
sink arguments, 778–779
uniform initialization in, 239–241
user-defined literals (UDLs), 836–838, 851
wrapping initialization in, 389–390

factory operator, 837
fallible, 1118
fallible implementation, 1120
false sharing, 174–179, 182
fault tolerant, 1123
fault-tolerant nofail guarantee, 1123
fences, 82
Feynman, Richard, 1
file extensions, 667n5
final contextual keyword

annoyances, 1028–1030
description of, 1007–1014
further reading for, 1030
override member-function specifier, inter-

actions with, 1007, 1009–1011
potential pitfalls, 1023–1027

as contextual keyword, 1023
hiding nonvirtual functions, 1026–1027
systemic lost reusability, 1023–1026

with pure virtual functions, 1008–1009
as unsafe, 6
use cases, 1014–1023

performance of concrete classes, 1015–
1017

protocol hierarchy performance improve-
ments, 1020–1023

restoration of performance lost to mock-
ing, 1017–1020

suppressed derivation for portability,
1014–1015

with user-defined types (UDTs), 1011–1014
with virtual destructors, 1008
virtual keyword, interactions with, 1009–

1011
with virtual member functions, 1007–1008

fixed-capacity strings, 470–479
flexible array members, 404n1
floating-point literals, 154–156, 837, 869–870
floating-point non-type template parameters,

903n7
floating-point types, 223

big-endian and little-endian layouts, 531–
534

IEEE 754, 530–534
precision of, 155
user-defined literals (UDLs), 862

floating-point-to-integer conversion, 843

flow of control, 68
fold expressions, 955n25
footprint, 1114

extern template, 357
POD types, 452, 475
rvalue references, 734, 747

for loops, range-based, 571–572
annoyances, 703–709
description of, 679–684
further reading for, 709
potential pitfalls, 691–703
use cases, 684–691

for range declaration, 681–682
forward class declarations, 675
forward declarations, 662
forward declared, 664–665
forwarding references

annoyances, 397–400
metafunction requirements in con-

straints, 398–400
similarity to rvalue references, 397–398

auto return-type deduction, 1184
auto&&, 383–384
description of, 377–385
function template argument type deduction,

379–380
further reading for, 400
generic lambdas, 971
identifying, 382–383
lambda-capture expressions, 992
not forwarding, 384–385
potential pitfalls, 394–397

hijacking copy constructor, 395–397
std::forward<T>, enabling move opera-

tions, 395
template instantiations with string liter-

als, 394–395
range-based for loops, 680
reference collapsing, 380–382
rvalue references, 732, 806–807
std::forward<T>, 385
use cases, 386–393

decomposing complex expressions, 391–
393

emplacement, 390–391
forwarding expressions to downstream

consumers, 386
multiple parameter handling, 386–388
perfect forwarding for generic factory

functions, 388–389
wrapping initialization in generic factory

functions, 389–390
fpermissive flag, 1080n9
fragmentation, 183n14

1321

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1322 — #1348

i
i

i
i

i
i

Index

free functions, 442
declaring, 58
overloading, 570–571
range-based for loops, 571–572, 707–709
std::initializer_list, 558

free operators, 839
freestanding, 570
friend declarations

description of, 1031–1033
further reading for, 1042
potential pitfalls, 1041
use cases, 1033–1041

curiously recurring template pattern
(CRTP), 1041–1054

declaring previously declared type as
friend, 1033–1034

enforcing initiatlization with PassKey id-
iom, 1036–1038

special type access, 1038–1041
type aliases as customization point,

1034–1036
full expressions, 693
full specialization, 355–357, 1059–1062
fully associative, 182n11
fully constructed, 47
function call argument list, 912–914
function calls, hooking, 930–931
function declarations. See also functions

[[carries_dependency]] attribute, 1000
[[noreturn]] attribute in

description of, 95
further reading for, 98
potential pitfalls, 97–98
use cases, 95–97

override keyword in
description of, 104–105
further reading for, 107
potential pitfalls, 106
use cases, 105–106

trailing return types
description of, 124–126
further reading for, 128
use cases, 126–128

virtual, override, final keywords, 1009–
1011

function definitions, reducing code size, 1105
function designators, 815
function objects, 328, 574, 990
function parameter packs, 879, 888–892

pack expansion, 911–912
Rule of Fair Matching, 898–899

function pointers
calls through, 574
generic lambda conversion to, 974–975
noexcept and, 1089–1091

[[noreturn]] attribute misuse, 98
readability of declarations, 127–128
type system and, 265–266

function prototypes, 733
function references, noexcept and, 1089–1091
function template argument matching, 900–901
function template argument type deduction, 195,

379–380
function templates

instantiation and specialization, 1190–1192
preventing misuse of, 118–119
return type dependent on parameter type,

126
functions. See also constexpr functions; construc-

tors; defaulted functions; deleted func-
tions; destructors; factory functions;
special member functions

arguments of same type, 564–565
auto return-type deduction

annoyances, 1201–1203
description of, 1182–1194
potential pitfalls, 1200
use cases, 1194–1200

bind, 14
checkBalance, 15
checksumLength, 27, 28n1
declval, 31
dynamic exception specifications, 618–619
encapsulating types within, 84–85
generic variadic functions, 925–926
hereticalFunction, 17–18
linearInterpolation, 16–17
loggedSum, 28, 31
myRandom, 19
noexcept exception specifications, 619–621
overloading, 1089n6
preconditions, 18
pure, 16
ref-qualifiers

annoyances, 1171–1172
description of, 1153–1160
further reading for, 1173
potential pitfalls, 1170–1171
use cases, 1160–1170

reportError, 15
sortRange, 28–30
sortRangeImpl, 28–30
start, 14
std::kill_dependency, 999–1000
unusable in variadic templates, 953–954
variadic function templates, 888

function parameter packs, 888–892
function template argument matching,

900–901
template argument deductions, 894–896

1322

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1323 — #1349

i
i

i
i

i
i

Index

variadic member functions, 892–894
vectorLerp, 16–17

function-scope static variables
annoyances, 80
C++03 double-checked-lock pattern, 81–82
concurrent initialization, 68–69
description of, 68–71
destruction, 69
further reading for, 81
logger example, 69–70
multithreaded contexts, 70–71
potential pitfalls, 75–80

dangerous recursive initialization, 77
dependence on order-of-destruction of lo-

cal objects, 78–80
initialization not guaranteed, 75–77
recursion subtleties, 77–78

use cases, 71–75
function-try-block, 268
functor classes, 574–575
functor types, 573
functors, 573
fundamental alignment, 168
fundamental integral types

historical perspective on, 93–94
long long

description of, 89
further reading for, 92
potential pitfalls, 91–92
use cases, 89–91

fundamental types, 803, 1014
alignof operator, 184
hidden properties of, 209–210
union membership and, 1174

G
GCC

acquire/release memory barrier, 80n7
ambiguity errors, 340n2
attribute support

[[gnu::cold]] attribute, 15
[[gnu::const]] attribute, 16–17, 19
[[gnu::warn_unused_result]] attribute,

14–15, 15n7
[[gsl::suppress]] attribute, 17–18
standardized compiler-specific attributes,

14
auto redeclaration, 1209
binary literals, 142n1
compiler warnings, 150
deduced parameters, 972n1
default initialization, 218
delegating constructors, 50n2
explicit expression of type-consistency in,

28n1

fpermissive flag, 1080n9
incompatibly specified alignment, 177
indirect calls, 947n22
inline namespaces, 1061n3
namespace-qualified name support, 13n2
nonrecursive constexpr algorithms, 962n3
pointer compatibility, 1090n7
reducing code size, 1104n16, 1110
stack unwinding, 621n4
template instantiation with deduced return

type, 1192n3
trivial copy/move constructors, 528n62
underspecifying alignment, 176

generalized attribute support. See attribute sup-
port

generalized plain old data types (PODs)
annoyances, 521–529

C++ Standard not stabilized, 521–527
standard type traits unreliable, 527–528
std::pair and std:tuple of PODs are not

PODs, 528–529
bit representation, 530–534
C++03 POD types, 412–415
C++11 POD types, 415–417
description of, 401–402
further reading for, 530
future direction, 438–439
potential pitfalls, 479–521

abuse of reinterpret_cast, 506–519
aggressive use of offsetof, 520–521
conflating arbitrary and indeterminate

values, 493–497
exporting bitwise copies of PODs, 479–

480
ineligible use of std::memcpy, 497–501
memcpy usage on const or reference sub-

objects, 489–493
misuse of unions, 505–506
naive copying other than std::memcpy,

501–505
requiring PODs or trivial types, 480–482
sloppy terminology, 488–489
wrong type traits, 482–488

privileges, 402–412
bitwise copyability, 409–410
contiguous storage, 405
object lifetime begins at allocation, 407–

409
offsetof macro usage, 410–412
predictable layout, 405–407

standard-layout class special properties,
420–425

standard-layout types, 417–420
trivial subcategories, 429–436
trivial types, 425–429

1323

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1324 — #1350

i
i

i
i

i
i

Index

generalized plain old data types (PODs) (cont.)
type traits, 436–438
use cases, 439–479

compile-time constructible, literal types,
462–464

fixed-capacity string elements, 476–479
fixed-capacity strings, 470–475
navigating compound objects with

offsetof, 456–460
secure buffers, 460–462
skippable destructors, 464–470
translating C++-only types to C, 452–

456
vertical encoding for non-trivial types,

448–452
vertical encoding within a union, 439–448

general-purpose machines, 93
generic code

member initialization in, 241–242
uniform initialization in, 238–239

generic expressions, validating with decltype, 28–
30

generic factory functions. See factory functions
generic lambdas

annoyances, 981–984
cannot use full power of template-

argument deduction, 981–982
difficulty constraining multiple argu-

ments, 983–984
constraints on deduced parameters, 970–973
conversion to function pointer, 974–975
description of, 968–975
explicit parameter types, 193–194
further reading for, 985
lambda captures, 969–970
mutable closures, 969–970
potential pitfalls, 981
use cases, 975–981

applying lambdas to tuple elements, 975–
976

conditional instantiation, 979–981
recursive lambdas, 977–979
reusable lambda expressions, 975
terse, robust lambdas, 976–977

variadic, 973–974
generic programming, 615
generic types, 28, 878
generic value-semantic types (VSTs), creating,

762–767
generic variadic functions, 925–926
glvalues, 717
GNU, nonstandard primitives, 956n27
[[gnu::cold]] attribute, 15
[[gnu::const]] attribute, 16–17, 19

[[gnu::pure]] attribute, 14, 16
[[gnu::warn_unused_result]] attribute, 14–15,

15n7
golden files, 114
greater-than operator (>), 21–22
grouping macros, 520
gsl::span type, 17
[[gsl::suppress]] attribute, 17–18
guaranteed copy elision, 216n1, 567n2, 648n11,

717n4, 790–791, 805n30, 807n31,
827n54, 1163n1

Guidelines Support Library, 17

H
handle types, 792
hard UB. See language undefined behavior
header files, 41n2, 663–665
header-only library, 1067
helper functions. See functions
helper types, encapsulation of, 85n3
hereticalFunction, 17–18
hidden friend idiom, 472
hidden properties of fundamental types, 209–210
hiding

member functions, 56–57
nonvirtual functions, 1026–1027

hierarchical reuse, 1012, 1023–1026
higher-order functions, 125
high-level value semantic types (VSTs), creating,

751–762
hooking function calls, 930–931
horizontal microcode, 445n17
hot paths, 1134–1136, 1139, 1142
Hyrum’s law, 85, 1012, 1014, 1036

I
ICC

incompatibly specified alignment, 177
underspecifying alignment, 176

identity closure objects, 968
identityInt, 968
id-expression, 25, 780
IEEE 754 floating-point types, 530–534
if constexpr language feature, 641n10
ill formed, 120, 1067, 1071, 1077, 1203
ill formed, no diagnostic required (IFNDR), 1000

constexpr functions, 262–263
delegating constructors, 50
enum class, 350
incompatibly specified alignment, 176–177
inline namespaces, 1067, 1072, 1079
[[noreturn]] attribute, 97
opaque enumerations, 666, 675–676, 832
static assertions in templates, 116–118
variadic templates, 900

1324

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1325 — #1351

i
i

i
i

i
i

Index

immutable types, optimizing, 1167–1170
imperative programming, 959
implementation defined, 1093

alignments, 168–169
NULL macro, 100
opaque enumerations, 660

implementation inheritance, avoiding boilerplate
code with, 540–541

implementation-defined behavior
enum class, 335
limits on, 295
unrecognized attributes, 12, 18–19

implementation-defined types, 202, 501
implicit const-qualification, 300
implicit constructors, inheriting, 546–549
implicit conversion, 66, 223n3

to arithmetic types, avoiding, 337–339
preventing, 55–56, 201

implicit generation of special member functions,
44–45

implicit moves
disabling, 244–246
in return statements, 735–737

implicitly captured, 582–583
implicitly declared, 522
implicitly declared default constructors, 568–570
implicitly movable entities, 735n13
in contract, 1122–1123
in place, 734
indentation of string literals, 112–113
indeterminate values, 435, 493–497
infallible, 1118
infallible implementation, 1118–1123
inheritance

improving concrete class performance,
1015–1017

preventing with final contextual keyword,
1008, 1012

inheriting constructors. See also default member
initializers; defaulted functions; delegat-
ing constructors; deleted functions; for-
warding references; override member-
function specifier; variadic templates

annoyances, 549–552
access levels same as in base class, 549–

551
cannot select individually, 549
flawed initial specification, 551–552

description of, 535–539
potential pitfalls, 546–549

implicit constructors, 546–549
new constructors in base class alters

behavior, 546

use cases, 539–545
implementation inheritance, avoiding

boilerplate code, 540–541
reusable functionality through mix-ins,

545
strong typedef implementation, 541–544
structural inheritance, avoiding boiler-

plate code, 540
init capture, 986
initialization. See also aggregate initialization;

braced initialization; copy initializa-
tion; copy list initialization; default
initialization; default member ini-
tializers; direct initialization; direct
list initialization; list initialization;
std::initializer_list; uniform ini-
tialization; value initialization

of bit fields, 329n4
concurrent, 68–69
constant, 75
enforcing with PassKey idiom, 1036–1038
recursive, 77–78, 163–165
of simple structs, 322
subobject, inconsistency in, 326–328
of subobjects, inconsistency in, 326–328
thread-safe function-scope static variables,

68–69
trivial default, 1087
of variables, 200
wrapping in factory functions, 389–390

initializer lists. See std::initializer_list
initializer_list. See std::initializer_list
initializers, undefined behavior with constexpr

variables, 306–307
inline namespace sets, 1056
inline namespaces. See also alignas specifier

annoyances, 1079–1082
code factoring, impeding, 1079–1082
one-to-one relationship with namespaces,

1082
argument-dependent lookup (ADL) interop-

erability, 1058–1059
class template specialization, 1059–1061
description of, 1055–1062
duplicate names, loss of access to, 1056–

1058
further reading for, 1083
potential pitfalls, 1076–1079

inconsistent use of inline keyword, 1079
lack of scalability, 1076–1077
library evolution, 1077–1079

reopening, 1061–1062

1325

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1326 — #1352

i
i

i
i

i
i

Index

inline namespaces (cont.)
use cases, 1062–1076

ABI link safety and build modes, 1071–
1074

API migration, facilitating, 1062–1067
link-safe ABI versioning, 1067–1071
selective using directives for short-named

entities, 1074–1076
versioning case study, 1083–1084

inline specifier, 262–265
in-process value-semantic type (VST), 1034
instantiation, conditional, 979–981
instantiation time, 120
instruction selection, 1136
insulate, 96, 299, 369, 665
insulation, 299, 1200

from client code, 369–370
loss of, 326
opaque enumerations, 663, 665

int type, relative size of, 91–92
integer literals, 837, 869–870. See also binary lit-

erals
integer types. See integral types
integer-to-floating-point conversion, 843
integral constant expressions. See also alignof

operator
alignas specifier, 169
alignof operator, 184
constexpr variables as alternative, 307–310
requirements, 303

integral constants, 223
integral promotion, 334, 726, 832–833
integral types. See also fundamental integral types

enumerations, 829
reinterpret_cast keyword, 510–512

interface inheritance, 541
interface test (C++11), 275
interface traits, 482–489
interface widening, 1021
interfaces. See also inheriting constructors

adaptation with lambda expressions, 597–
598

gsl::span in, 17n10
physically decoupling from implementation,

40–41
internal linkage, 307
intra-thread dependencies, 998
invocable, 482, 526, 986
ISO C++ Standards Committee, 4
iteration

enum class and, 348–350
lack of access to state, 703–706
over all container elements, 684–685
over fixed number of objects, 565–566

over simple values, 690–691
sentinels, lack of support, 706–707

iterators, vectors of, 26–27

K
keywords. See also functions; using declarations

adding new, 1023
auto

annoyances, 212–213
description of, 195–199
further reading for, 214
potential pitfalls, 204–212
use cases, 200–203

constinit, 75n5, 304n1, 316n8
decltype

annoyances, 31
description of, 25–26
potential pitfalls, 30
use cases, 26–30, 28n1

final
annoyances, 1028–1030
description of, 1007–1014
further reading for, 1030
potential pitfalls, 1023–1027
as unsafe, 6
use cases, 1014–1023

nullptr
description of, 99–100
further reading for, 103
use cases, 100–103

override
description of, 104–105
further reading for, 107
potential pitfalls, 106
safety of, 5
use cases, 105–106

register, 195n1
reinterpret_cast, 506–519
static_assert

annoyances, 123
description of, 115–118
further reading for, 123
potential pitfalls, 120–122
use cases, 118–119

L
L1 cache, 181–183
L2 cache, 181–183
L3 cache, 181–183
Lakos Rule, 1116
lambda body, 581, 595–597
lambda captures, 577, 581–591, 919, 969–970
lambda closure, 584
lambda declarators, 591–595

1326

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1327 — #1353

i
i

i
i

i
i

Index

lambda expressions
annoyances, 611–614

capturing *this by copy, 611–612
debugging, 611
mixing immediate and deferred-

execution code, 612–613
trailing punctuation, 613–614

configuring algorithms via, 86–87
decltype(auto) placeholders and, 1206
deduced return types for, 1189–1190, 1197–

1198
description of, 573–597
further reading for, 614
generic lambdas

annoyances, 981–984
description of, 968–975
further reading for, 985
potential pitfalls, 981
use cases, 975–981

local/unnamed types, 83–84
parts of, 577–578

closures, 578–581
lambda body, 595–597
lambda captures, 581–591
lambda declarators, 591–595
lambda introducers, 581–591

potential pitfalls, 607–611
dangling references, 607–608
local variables in unevaluated contexts,

610–611
mixing captured and noncaptured vari-

ables, 609
overuse, 609

use cases, 597–607
emulating local functions, 598–599
emulating user-defined control con-

structs, 599–600
event-driven callbacks, 603–604
interface adaptation, partial application,

currying, 597–598
recursion, 604–605
stateless lambdas, 605–607
with std::function, 601–603
variables and control constructs in

expressions, 600–601
lambda introducers, 581–591, 986
lambda-capture expressions. See also auto vari-

ables; braced initialization; forwarding
references; lambda expressions; rvalue
references

annoyances, 993–994
difficulty of synthesizing const data

members, 993–994
std::function supports only copyable

callable objects, 994

description of, 986–988
further reading for, 995
potential pitfalls, 992–993
use cases, 988–992

capturing modifiable copy of const vari-
able, 990–992

moving objects into closure, 988–989
providing mutable state for closure, 989–

990
lambda-capture list, 919–921
language undefined behavior, 1115
libraries

Guidelines Support Library, 17
Ranges Library, 391–393, 686n4, 687n5
resilience to code changes, 203

library undefined behaviors, 1115
lifetime extensions, 1162, 1213

prvalues, 720
range-based for loops, 680, 691–696
temporary objects, 819–820

limerick in C++ Language Standard, 1081–1082
linear search in variadic templates, 957
linearInterpolation function, 16–17
linkage, 83
link-safe ABI versioning, 1067–1071
link-time optimization, 1094, 1143
Liskov, Barbara, 1026, 1030
Liskov Substitution Principal (LSP), 1030
list initialization

braced initialization and, 215, 233–234
deducing, 210–211

list initialized literal types, 260
literal types, 278–284

aggregate types as, 279–280
array types as, 280
compile-time constructible, 462–464
in constant expressions, 260–261, 273, 277–

278
constexpr constructors and, 281
cv-qualifiers as, 280
identifying, 282–284
pointers as, 281
reference types as, 279
scalar types as, 278
std::initializer_list, 556
std::is_literal_type, 283n14
trivially destructible types as, 431
user-defined, 280
variable templates of, 302
void return type as, 280

literals
binary

description of, 142–143
further reading for, 146
use cases, 144–146

1327

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1328 — #1354

i
i

i
i

i
i

Index

literals (cont.)
digit separators (') in

description of, 152–153
further reading for, 154
loss of precision in floating-point literals,

154–156
use cases, 153

floating-point, 154–156, 837, 869–870
integer, 837, 869–870
raw string

description of, 108–111
potential pitfalls, 112–114
use cases, 111–112

Unicode
description of, 129–130
potential pitfalls, 130–132
use cases, 130

user-defined
annoyances, 869–871
description of, 835–853
further reading for, 872
potential pitfalls, 867–869
use cases, 853–867

little-endian float layouts, 531–534
local declarations, 662, 675–677
local functions, emulating, 598–599. See also

lambda expressions
local scope. See block scope
local variables in unevaluated contexts, 610–611
locality of reference, 181, 742, 773n26
local/unnamed types. See also decltype; lambda

expressions
description of, 83–84
use cases, 84–87

configuring algorithms via lambda
expressions, 86–87

encapsulating types within functions, 84–
85

instantiating templates with local func-
tion objects as type arguments, 85–86

loggedSum function, 28, 31
logical optimization, 365
logical or (||) operator, 265
long long integral type

description of, 89
further reading for, 92
potential pitfalls, 91–92
use cases, 89–91

long type, relative size of, 91–92
long-distance friendship, 1035–1036, 1041
loops. See range-based for loops
lossy conversions, restrictions on, 222–224
low-level value-semantic types (VSTs), creating,

742–751

lvalue references, 26, 716, 1118, 1133
in C++11/14, 717–720
declarations prior to C++11, 815–818
evolution of, 807, 813–828
forbidding operations on, 1165–1167
implicit moves in return statements, 735–

737
range-based for loops, 703
rvalue references, introduction to, 710–711

lvalue-to-rvalue conversion, 501

M
macro-defined namespaces, 1083–1084
macro-invocation syntax, 248–249
macros. See also functions

alternatives to, 286–287
offsetof

aggressive usage, 520–521
navigating compound objects, 456–460
POD type usage, 410–412
support for, 423–425

magic constants, 308
managed allocators, 1021–1022
mandatory RVO, 807n31
mangled names, 1056, 1114n24
manifestly constant evaluated, 258n1
mantissa, 155
materialization, 717
materialize, 1163n1
maximal fundamental alignment, 193
mebibyte conversion, 286–287
mechanisms, 51
member functions

constexpr as implicitly const-qualified, 300
hiding, 56–57
overriding, 105–106
variadic member functions, 892–894

member initialization lists, 230
member initializer lists

copy list initialization in, 249–250
delegating constructors, 46
nonstatic data member initialization, 318
pack expansion, 917–918

member initializers, default
annoyances, 328–330

applicability limitations, 329
array size deduction, lack of, 330
loss of aggregate status, 330
loss of triviality, 329–330
parenthesized direct-initialization syn-

tax, lack of, 328–329
description of, 318–321

1328

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1329 — #1355

i
i

i
i

i
i

Index

potential pitfalls, 326–328
inconsistent subobject intialization, 326–

328
loss of insulation, 326

safety of, 6
union interactions, 320–321
use cases, 322–325

boilerplate repetition, avoiding, 323–325
documentation of default values, 325
nonstatic data member initialization,

322–323
simple struct initialization, 322

memcpy. See std::memcpy
memory allocation, 75n4, 181–183

in C++11, 763n25
monotonic, 190–193, 1021–1022
secure buffers, 460–462

memory barriers, 80n7
memory diffusion, 628, 788
memory leak, 74
memory models, synchronization paradigms for,

998
memory_order_acquire, 1005n2
memory_order_consume, 1005n2
memoryfence instructions, 999–1000
metafunctions, 469, 963

forwarding references, 381
requirements in constraints, 398–400
std::remove_cvref<T>, 399n6

metaparameters, 948
metaprogramming, 876, 963–964
metaprograms, 257
Meyers, Scott, 3
Meyers singleton, 71–75
microbenchmarks, 1137–1141
mixed-mode builds, 1073
mix-ins, reusable functionality through, 545
mocking, 1017–1020
mocks, 1017–1020
modifiable rvalues, 820–821
modules, 85n3, 1041
monotonic allocators, 1021–1022
monotonic memory allocation, 190–193
Moore’s law, 93n5
most vexing parse, avoiding, 237–238
move assignable, 524
move assignment, 750, 756
move construction, 750
move constructors

literal types and, 281
noexcept operator and, 653–654
rvalue references, 710, 714, 732–733
RVO and NRVO requirements, 804–805
std::list, 1114

as trivial, 437
user-provided, 760

move operations
avoiding, 183n14
deleted functions, 53
destructive move, lack of, 811–812
enabling with std::forward<T>, 395
noexcept operator, 627–631, 658–659
on noncopyable types, 788–791
nonthrowing, 1094–1097
objects into closure, 988–989
as optimization of copying, 741–767
rvalue references, 710, 714–715
some equivalent to copies, 788
throwing in, 787
wrappers for noexcept, 1099–1101

move semantics
necessity of, 821–823
rvalue references, 710, 715–716

move-assignment operator
rvalue references, 710, 714, 733
user-provided, 760–761

moved-from objects
inconsistent expectations, 794–803
overly strict requirements, 807–811
rvalue references, 714–715, 788, 807–812

moved-from state, 789, 791–803
move-only types, 570, 641, 644

implementing without std::unique_ptr,
791–794

rvalue references, 716, 768–771, 790
moving iterators, return types of, 1211–1212
MSVC

auto redeclaration, 1209
compiler warnings, 150
deduced parameters, 972n1
incompatibly specified alignment, 177
reducing code size, 1104n16, 1111
stack unwinding, 621n4
standardized compiler-specific attributes,

14
trivial copy/move constructors, 528n62
underspecifying alignment, 176

multiple arguments
constraining, 983–984
passing to explicit constructors, 250–252

multiple parameters, handling, 386–388
multiple return statements, 1185–1187
multithreaded programs, avoiding false sharing,

174–175
multithreading context, 68, 70–71
mutable closures, 969–970
mutable state, providing for closure, 989–990
myRandom function, 19

1329

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1330 — #1356

i
i

i
i

i
i

Index

N
naked literals, 839–846, 849, 851, 861
name collisions, 870
name mangling, 1067, 1089n5, 1149
named constants, enum class for collections of,

346–347
named functions, 66–67
named return-value optimization (NRVO), 805n30

disabling, 244–245, 783–784
requires declared copy/move constructors,

804–805
rvalue references, 734, 736–739, 790, 804

namespace-qualified names, 13n2
namespaces

inline
annoyances, 1079–1082
description of, 1055–1062
further reading for, 1083
potential pitfalls, 1076–1079
use cases, 1062–1076
versioning case study, 1083–1084

pollution, avoiding, 339–340
NaN (Not a Number) representations, 530–534
narrow contracts, 715, 1021, 1112–1118, 1122
narrowing aggregate initialization, 247
narrowing conversions, 1091

allowing, 247–248
restrictions on, 222–224

narrowing the contract, 793
natural alignment, 179–181, 193, 831
negative testing, 794
nested containers, 22
nested namespaces. See inline namespaces
new expressions, decltype(auto) in, 1210
new handler, 193
new line encoding, 113–114
nibbles, 153–154
[[no_unique_address]] attribute, 1029n15
noexcept exception specifications, 619–621

annoyances, 1143–1150
ABI changes in future C++ versions,

1148–1149
code duplication, 1144–1147
exception specifications not part of func-

tion’s type, 1147–1148
optimization conflated with reducing

code size, 1143–1144
SFINAE triggering, 1149–1150

compatibility with dynamic specifications,
621

conditional exception specifications, 1091–
1092

constraints for virtual functions, 632–634
description of, 1085–1094
efficiencies with, 1093–1094

function pointers and references, 1089–1091
further reading for, 1151–1152
potential pitfalls, 1112–1143

accidental terminate, 1124–1128
conflating with nofail, 1116–1123
forgotten noexcept operator, 1129–1130
imprecise expressions, 1130–1134
overly strong contract guarantees, 1112–

1116
theoretical opportunities for performance

improvement, 1136–1143
unrealizable runtime performance bene-

fits, 1134–1136
unconditional exception specifications,

1085–1089
use cases, 1094–1111

noexcept swap definition, 1097–1099
nonthrowing move operations, 1094–1097
reduction of object-code size, 1101–1111
wrappers for noexcept move operations,

1099–1101
violating, 1093

noexcept operator
annoyances, 650–658

change in unspecified behavior when
std::vector grows, 652–653

destructors, not move constructors,
noexcept by default, 653–654

exception specification constraints in
class hierarchies, 655–658

older compilers invade constexpr func-
tion bodies, 654–655

sensitivity for direct usage, 650–651
strong exception-safety guarantee, 651–

652
C Standard Library functions and, 631–632
compatibility of dynamic and noexcept ex-

ception specifications, 621
compiler-generated special member func-

tions, 621–626
compound expressions and, 626–627
constraints for virtual functions, 632–634
description of, 615–634
dynamic exception specifications for func-

tions, 618–619
exception specifications with, 1092–1093
forgetting in noexcept exception specifica-

tions, 1129–1130
further reading for, 658
move operations, 627–631, 658–659
noexcept exception specifications for func-

tions, 619–621
operator-produced exceptions, 615–618

1330

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1331 — #1357

i
i

i
i

i
i

Index

potential pitfalls, 647–650
direct usage, 647–649
function bodies, lack of consideration,

649–650
use cases, 634–647

appending elements to std::vector, 634–
639

enforcing noexcept contract using
static_assert, 639–640

std::move_if_noexcept, 640–644
std::vector::push_back(T&&), 644–647

noexcept swap, defining, 1097–1099
nofail functions, 1116–1123
nofail guarantee, 1117, 1122–1123
noncaptured variables, mixing with captured, 609
noncopyable types, making movable, 788–791
nondefining declarations, 729
nonintegral symbolic numeric constants, 310–311
nonprimitive functionality, 67
nonrecursive constexpr algorithms, 961–962
nonreporting contracts, 1120–1122
nonreporting functions, 1119, 1122
nonstatic data members

auto not allowed, 212
constexpr variables, 305
initialization, 318, 322–323

nonthrowing move operations, 1094–1097
non-trivial, 1011
non-trivial constructors, union membership and,

1174
non-trivial destructors, 1101–1104, 1118, 1136
non-trivial special member functions, union type

and, 1174–1181
non-trivial types, vertical encoding for, 448–452
non-trivially destructible, 1102–1109, 1137
non-type parameters, 902
non-type template parameter packs, 901–903
non-type template parameters, 901–903, 903n7
nonvirtual functions, hiding, 1026–1027
[[noreturn]] attribute, 13. See also attribute sup-

port
description of, 95
further reading for, 98
potential pitfalls, 97–98

inadvertently break working programs,
97

misuse on function pointers, 98
use cases, 95–97

compiler diagnostics, 95–96
runtime performance, 96–97

normative wording, 808
NRVO. See named return-value optimization

(NRVO)
null address, 99–102
NULL macro, 100

null pointer value, 743
null statements, 268
null terminated strings, 743
null-pointer-literal. See nullptr keyword
nullptr keyword

description of, 99–100
further reading for, 103
use cases, 100–103

overload resolution, 101–102
overloading literal null pointer, 102–103
type safety, 100–101

numeric literals
digit separators (') in

description of, 152–153
further reading for, 154
loss of precision in floating-point literals,

154–156
use cases, 153

user-defined, 858–862

O
.o files

extern template, effect on, 359–365
reducing code bloat, 365–369

object factories, 929–930
object files

extern template, effect on, 359–365
reducing code bloat, 365–369

object invariants, 539, 742
object orientation, 1015
object representation

POD types, 405
reinterpret_cast keyword, 510, 515–516

object-oriented design, vertical encoding compar-
ison, 440–441

object-oriented programming, 1015
objects

creating, 516n42
iterating over fixed number, 565–566
moving into closure, 988–989
reducing code size, 1101–1111, 1143–1144
resource-owning, passing around, 771–775
std::initializer_list<E> initialization,

559
strengthening alignment, 169–170

obsolete entities, [[deprecated]] attribute for
description of, 147–148
potential pitfalls, 150
use cases, 148–150

ODR-used, 581–582, 590, 988n2, 1081
offsetof macro

aggressive usage, 520–521
navigating compound objects, 456–460
POD type usage, 410–412
support for, 423–425

1331

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1332 — #1358

i
i

i
i

i
i

Index

one-definition rule (ODR), 263, 1072, 1079
constexpr functions, 263
extern template, 374
violating, 1189

opaque declarations, 660–662
opaque enumerations

annoyances, 677–678
description of, 660–663
external usage, 350, 832
further reading for, 678
potential pitfalls, 675–677

inciting local enumeration declarations,
677

redeclaring externally defined enumera-
tion locally, 675–677

use cases, 663–675
cookies, 669–675
insulating some external clients from enu-

merator list, 665–668
within header files, 663–665

operands, for decltype
() versus (()) notation for, 30
entities, 25
expressions, 25–26

operators. See also keywords
|| (logical or), 265
alignof

annoyances, 193–194
description of, 184
fundamental types, 184
use cases, 186–193
user-defined types, 185–186

bitwise right-shift, 21–24
braced lists and, 254–255
decltype

annoyances, 31
description of, 25–26
potential pitfalls, 30
use cases, 26–30, 28n1

explicit
description of, 61–63
potential pitfalls, 66–67
use cases, 63–65

greater-than (>), 21–22
noexcept

annoyances, 650–658
description of, 615–634
further reading for, 658
move operations, 658–659
potential pitfalls, 647–650
use cases, 634–647

sequencing, 265
UDL operators, 840–842

cooked, 843–845
raw, 845–849

templates, 849–851
optimization

attributes for
hints for additional optimization oppor-

tunities, 15–16
statement of explicit assumptions, 16–17

builder classes, 1167–1170
conflating with reducing code size, 1143–

1144
immutable types, 1167–1170

optimized metaprogramming algorithms, 963–
964

ordered after, 998
ordinary character types, 501–505
out clause, 1118
out of contract, 744, 1117
outermost expressions, 820
over-aligned, 185
overhead costs, single-threaded applications, 80
overload resolution

deleted functions, 53
nullptr keyword, 101–102
priorities, 730
rvalue references, 713
std::initializer_list, 561
user-defined literals (UDLs), 841

overloading, 741
free functions, 570–571
functions, 1089n6
improving disambiguation, 340–343
null pointer, 102–103
reference types, 727–730

overloads, ref-qualified, 1171–1172
overly strong contract guarantees, 1112–1116
override member-function specifier

as contextual keyword, 1023
description of, 104–105
final contextual keyword, interactions

with, 1007, 1009–1011
further reading for, 107
potential pitfalls, 106
safety of, 5
use cases, 105–106

overriding, 539
member functions, 105–106
preventing with final contextual keyword,

1007
owned resources, 741, 803–804

P
pack expansion, 882, 908–911, 925, 964

alignas specifier, 921–922
attribute lists, 922
base specifier list, 915–917
braced initializer lists, 912–914

1332

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1333 — #1359

i
i

i
i

i
i

Index

cannot use unexpanded, 956
disallowed, 924
expansion is rigid and requires verbose sup-

port code, 957
function call argument list, 912–914
function parameter packs, 911–912
lambda-capture list, 919–921
limitations on contexts, 954–955
member initializer list, 917–918
sizeof... expressions, 923
template argument list, 914
template parameter list, 923–924

pack expansion context, 883, 929
Packet class, 27–28
Packet::checksumLength, 27, 28n1
padding bytes, 475
pages, 181–183
pair mismatches, 699n8
parameter count, 597
parameter declarations, 888, 1000
parameter pack expansion, 590
parameter packs, 879, 964

function parameter packs, 888–892
non-type template parameter packs, 901–

903
pack expansion, 908–911, 925

alignas specifier, 921–922
attribute lists, 922
base specifier list, 915–917
braced initializer lists, 912–914
cannot use unexpanded, 956
disallowed, 924
expansion is rigid and requires verbose

support code, 957
function call argument list, 912–914
function parameter packs, 911–912
lambda-capture list, 919–921
limitations on contexts, 954–955
member initializer list, 917–918
sizeof... expressions, 923
template argument list, 914
template parameter list, 923–924

Rule of Fair Matching, 898–899
Rule of Greedy Matching, 896–898
template template parameter packs, 903–

908
type template parameter packs, 880–884
variable templates, 159

parameter types, return types dependent on, 126
parameterized constants, 160–161
parameters

constexpr functions, 277–278
handling multiple, 386–388

parentheses with decltype operands, 25, 30
partial application, 597–598

partial class template specialization, 963
partial implementation, 1021
partial implementation classes, 540
partial ordering of class template specialization,

886
partial specialization, 529, 884–887
partially constructed, 47
passing resource-owning objects, 771–775
PassKey idiom

enforcing initialization with, 1036–1038
special type access with, 1039–1041

perfect forwarding, 807, 942, 1131, 1198
expressions to downstream consumers, 386
in factory functions, 240
hijacking copy constructors, 395–397
lambda-capture expressions, 992

perfectly forwarded, 992
performance

of concrete classes, 1015–1017
of protocol hierarchy, 1020–1023
theoretical opportunities for improvement,

1136–1143
unrealizable runtime benefits, 1134–1136

pessimization, returning const rvalues, 786–787
physical dependency, 374
physical design, 663
physical memory, 1135
physical optimization, 365
pi, 160
pipelined, 1137
placeholder types, 195
placeholders, 1182

conversion functions, 1193–1194
decltype(auto)

annoyances, 1213
description of, 1205–1210
potential pitfalls, 1212–1213
use cases, 1210–1212

in trailing return types, 1189
placement new, 452, 638, 940, 1175, 1180
placement of attributes, 13
plain old data (POD). See POD types
platonic values, 742
pmr allocators in C++17, 763n25
POD types

annoyances, 521–529
C++ Standard not stabilized, 521–527
standard type traits unreliable, 527–528
std::pair and std:tuple of PODs are not

PODs, 528–529
bit representation, 530–534
C++03 POD types, 412–415
C++11 POD types, 415–417
description of, 401–402
further reading for, 530

1333

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1334 — #1360

i
i

i
i

i
i

Index

POD types (cont.)
future direction, 438–439
potential pitfalls, 479–521

abuse of reinterpret_cast, 506–519
aggressive use of offsetof, 520–521
conflating arbitrary and indeterminate

values, 493–497
exporting bitwise copies of PODs, 479–

480
ineligible use of std::memcpy, 497–501
memcpy usage on const or reference sub-

objects, 489–493
misuse of unions, 505–506
naive copying other than std::memcpy,

501–505
requiring PODs or trivial types, 480–482
sloppy terminology, 488–489
wrong type traits, 482–488

privileges, 402–412
bitwise copyability, 409–410
contiguous storage, 405
object lifetime begins at allocation, 407–

409
offsetof macro usage, 410–412
predictable layout, 405–407

standard-layout class special properties,
420–425

standard-layout types, 417–420
trivial subcategories, 429–436
trivial types, 425–429
type traits, 436–438
use cases, 439–479

compile-time constructible, literal types,
462–464

fixed-capacity string elements, 476–479
fixed-capacity strings, 470–475
navigating compound objects with

offsetof, 456–460
secure buffers, 460–462
skippable destructors, 464–470
translating C++-only types to C, 452–

456
vertical encoding for non-trivial types,

448–452
vertical encoding within a union, 439–448

POD-struct, 405–407, 412–415
POD-union, 412–415
pointer semantics, 558–559
pointer types, deducing, 197–198
pointers. See also function pointers

as literal types, 281
noexcept and, 1089–1091
nullptr keyword

description of, 99–100

further reading for, 103
use cases, 100–103

reinterpret_cast keyword, 506–519
semantics, 558–559
smart pointers, 948–951

pointers to members, 456, 459, 509
polymorphic classes, 617
polymorphic memory resources, 190n3
polymorphic types, 616, 1011
polymorphism, compile-time, 1046–1050
portability with final contextual keyword, 1014–

1015
positive semidefinite, 655
POSIX epoch, 291
postconditions, 807–811
potentially evaluated, 615
preconditions, 18, 472
predicate functions, 86
predicate functors, 575
predicates, 575
preprocessor macros. See macros
primary declarations, 881
primary-class-template declarations, 881
private functions, 1038–1041
private inheritance, 1029
proctor classes, 646
proctors, 646, 1139
producer-consumer programming pattern, 1000–

1005
production build, 469
programmatically accessible, 1085, 1144
protocol hierarchy, performance of, 1020–1023
protocols, 440, 540, 1018, 1020
proxy iterators, return types of, 1211–1212
prvalues, 513, 716

in C++11/14, 720–721
evolution of, 807
passing to decltype, 25

publicly accessible, 489
pure abstract classes, extracting, 1018
pure abstract interfaces, 540, 1020, 1021
pure functions, 16
pure interfaces, 1020
pure virtual functions

final contextual keyword, 1008–1009
in protocol hierarchy, 1020

Q
qualified ids. See id-expression
qualified names, 127, 1060
qualifiers, 889
quality of implementation (QoI), 277, 529
quiet NaN (qNaN), 531

1334

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1335 — #1361

i
i

i
i

i
i

Index

R
range expressions

lifetime of temporary objects, 691–696
range-based for loops, 680

range generators, 687–690
range-based for loops, 571–572

annoyances, 703–709
adapter requirements, 706
argument-dependent lookup (ADL), 707–

709
sentinel iterator types, lack of support,

706–707
state of iteration, lack of access, 703–706

description of, 679–684
further reading for, 709
potential pitfalls, 691–703

differences in simple and reference-proxy
behaviors, 700–703

inadvertent element copying, 696–700
lifetime of temporary objects, 691–696

specification, 680–683
traversing arrays and initializer lists, 683–

684
use cases, 684–691

iterating all container elements, 684–685
iterating simple values, 690–691
range generators, 687–690
subranges, 686–687

Ranges Library, 391–393, 686n4, 687n5
raw string literals

collisions, 109–111
description of, 108–111
potential pitfalls, 112–114

encoding new lines and whitespace, 113–
114

unexpected indentation, 112–113
use cases, 111–112

raw UDL operators, 841, 845–849, 870
reachable, 712
reaching scope, 587–588
read-copy-update (RCU) synchronization mecha-

nism, 999
recursion, 604–605, 875
recursive initialization, 77–78, 163–165
recursive lambdas, 977–979
reducing code size, 1101–1111, 1143–1144
redundant check, 115
refactoring with curiously recurring template pat-

tern (CRTP), 1042–1044
reference collapsing, 380–382
reference related, 726
reference types

alignof operator, 184
deducing, 198
gsl::span, 17

as literal types, 279
memcpy usage on, 489–493
overloading, 727–730
union membership and, 1174

references, noexcept and, 1089–1091
reflection, 520n46
ref-qualified, 1154
ref-qualified overloads, 1171–1172
ref-qualifiers

annoyances, 1171–1172
description of, 1153–1160
forwarding references, 380
further reading for, 1173
potential pitfalls, 1170–1171
syntax and restrictions, 1157–1160
use cases, 1160–1170

forbidding lvalue operations, 1165–1167
forbidding rvalue-modifying operations,

1163–1165
optimizing immutable types and builder

classes, 1167–1170
returning rvalue subobjects, 1160–1163

register keyword, 195n1
regular types, 187n2, 751. See also types
reinterpret_cast keyword, 506–519
relaxed restrictions on constexpr functions, 959–

967. See also constexpr variables; vari-
adic templates

description of, 959–960
further reading for, 965
optimized C++11 example algorithms, 965–

967
use cases, 961–964

nonrecursive constexpr algorithms, 961–
962

optimized metaprogramming algorithms,
963–964

release-acquire synchronization paradigm, 998,
1000–1002, 1005

release-consume synchronization paradigm, 998–
999, 1002–1003, 1005

reopening inline namespaces, 1061–1062
reordering data members, 178n10
reportError function, 15
reporting contracts, 1120
representation, 480, 570
requires clause in C++20, 486n31
reserved identifiers, 840
Resource Acquisition is Initialization (RAII), 388
resource-owning objects, passing around, 771–775
return statements

disabling NRVO and implicit move, 244–246
moves in, 734–740
multiple, 1185–1187

1335

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1336 — #1362

i
i

i
i

i
i

Index

return types
auto deduction

annoyances, 1201–1203
description of, 1182–1194
potential pitfalls, 1200
use cases, 1194–1200

constexpr functions, 277–278
dependent on parameter type, 126
of moving iterators, 1211–1212
of proxy iterators, 1211–1212
qualified names in, 127
return by value, 774–775
trailing return

description of, 124–126
further reading for, 128
inferring type of, 28
use cases, 126–128

return value optimization (RVO), 390
requires declared copy/move constructors,

804–805
rvalue references, 734

return values, [[carries_dependency]] attribute,
1000

return-type deduction, delaying, 1199–1200
reusable lambda expressions, 975
reuse, lost with final contextual keyword, 1023–

1026
right-angle brackets (>>)

description of, 21
further reading for, 24
potential pitfalls with, 22–24
use cases, 22

risk-to-reward ratio. See safety of adoption
Rule of Fair Matching, 898–899
Rule of Greedy Matching, 896–898
rule of zero, 631, 788
runtime performance

overhead costs of constexpr functions, 298–
299

penalizing to enable compile time, 299–300
runtime type identification (RTTI), 617
rvalue references, 1133

annoyances, 804–812
destructive move, lack of, 811–812
evolution of value categories, 807
moved-from object requirements overly

strict, 807–811
RVO and NRVO require declared

copy/move constructors, 804–805
std::move does not move, 805–806
visual similarity to forwarding references,

806–807
decltype results as, 26
description of, 710–741
in expressions, 730–731

extended value categories in C++11/14,
716–723

forbidding modifying operations, 1163–
1165, 1170–1171

further reading for, 813
lvalue references, comparison, 710–711
modifiable, 820–821
motivation for, 715–716
move operations, 714–715
moves in return statements, 734–740
necessity of, 824
overload resolution, 713
overloading on reference types, 727–730
potential pitfalls, 782–804

disabling NRVO, 783–784
failure to std::move named rvalue refer-

ences, 784–785
implementing move-only types without

std::unique_ptr, 791–794
inconsistent expectations on moved-from

objects, 794–803
making noncopyable type movable with-

out just cause, 788–791
move operations that throw, 787
repeatedly calling std::move on named

rvalue references, 785–786
requiring owned resources to be valid,

803–804
returning const rvalues pessimizes per-

formance, 786–787
sink arguments require copying, 782–783
some moves equivalent to copies, 788

range-based for loops, 703
returning subobjects of, 1160–1163
similarity to forwarding references, 397–398
special member functions, 732–733
std::move, 731–732
use cases, 741–781

identifying value categories, 779–781
move operations as optimizations of copy-

ing, 741–767
move-only types, 768–771
passing around resource-owning objects

by value, 771–775
sink arguments, 775–779

value category evolution, 813–828
xvalues, 712–713

S
safe features

aggregate initialization
annoyances, 140–141
description of, 138–139
potential pitfalls, 140
use cases, 139

1336

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1337 — #1363

i
i

i
i

i
i

Index

attribute support
description of, 12–14
potential pitfalls with, 18–19
use cases, 14–18

binary literals
description of, 142–143
further reading for, 146
use cases, 144–146

consecutive right-angle brackets (>>)
description of, 21
further reading for, 24
potential pitfalls with, 22–24
use cases, 22

decltype
description of, 25–26
potential pitfalls, 30
use cases, 26–30

defaulted functions
annoyances, 42–43
description of, 33–36
further reading for, 44
implicit generation of special member

functions, 44–45
potential pitfalls, 41–42
use cases, 36–41

definition of, 5
delegating constructors

description of, 46–48
potential pitfalls, 50–51
use cases, 48–50

deleted functions
annoyances, 58–59
description of, 53
further reading for, 60
use cases, 53–57

[[deprecated]] attribute, 14
description of, 147–148
potential pitfalls, 150
use cases, 148–150

digit separator (')
description of, 152–153
further reading for, 154
loss of precision in floating-point literals,

154–156
use cases, 153

explicit conversion operators
description of, 61–63
potential pitfalls, 66–67
use cases, 63–65

local/unnamed types
description of, 83–84
use cases, 84–87

long long integral type
description of, 89
further reading for, 92

potential pitfalls, 91–92
use cases, 89–91

[[noreturn]] attribute, 13
description of, 95
further reading for, 98
potential pitfalls, 97–98
use cases, 95–97

nullptr keyword
description of, 99–100
further reading for, 103
use cases, 100–103

override member-function specifier, 5
description of, 104–105
further reading for, 107
potential pitfalls, 106
use cases, 105–106

raw string literals
description of, 108–111
potential pitfalls, 112–114
use cases, 111–112

static_assert
annoyances, 123
description of, 115–118
further reading for, 123
potential pitfalls, 120–122
use cases, 118–119

thread-safe function-scope static variables
annoyances, 80
C++03 double-checked-lock pattern, 81–

82
description of, 68–71
further reading for, 81
potential pitfalls, 75–80
use cases, 71–75

trailing return, 28
description of, 124–126
further reading for, 128
inferring type of, 28
use cases, 126–128

type/template aliases, creating with using
declarations, 133–137

variable templates
annoyances, 165
description of, 157–160
potential pitfalls, 163–165
use cases, 160–163

safe-bool idiom, 64
safety of adoption, 2, 4–5. See also conditionally

safe features; safe features; unsafe fea-
tures

salient values, 634, 830–832
sanitizers, 802
scalar types, 1207

aggregate initialization, 222
braced lists and, 254–255

1337

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1338 — #1364

i
i

i
i

i
i

Index

aggregate initialization (cont.)
in C++03, 414
copy initialization, 235–236
initialization, 217
as literal types, 278
as standard-layout types, 417
as trivial types, 425

scope
duplicate names, loss of access to, 1056–

1058
function-scope static variables

annoyances, 80
C++03 double-checked-lock pattern, 81–

82
description of, 68–71
further reading for, 81
potential pitfalls, 75–80
use cases, 71–75

scoped allocator model, 328n3
scoped enumerations, 335–336, 660
scoped guard, 645–646
sections, extern template, 361
secure buffers, 460–462
Secure Hash Algorithms (SHA), 1083–1084
selective using directives for short-named entities,

1074–1076
semantics, 12, 18, 558–559
sentinels, 1114

iterator types, lack of support, 706–707
rvalue references, 743

sequencing operator, 265. See also comma (,) oper-
ator

serial dates, 453
set associative, 182n11
SFINAE (substitution failure is not an error), 400,

1089
deduced return types and, 1201–1203
exception specifications and, 1149–1150
perfect forwarding, 397
template instantiation and specialization,

1190
SFINAE evaluation context

decltype with, 28–30
expression SFINAE, 29n3

shadowed, 987
short-named entities, using directives for, 1074–

1076
side effects, 16
signaling NaN (sNaN), 531
signals/signaling, 1120, 1213
signatures, 1052

inheriting constructors, 536
overloading functions, 1089
rvalue references, 729

signed integer overflow, 90

simple structs, initialization, 322
simple type specifiers, 1032
single-thread-aware objects, avoiding false shar-

ing, 175–176
single-threaded applications, overhead costs, 80
sink arguments, 775–779, 782–783
size constructors, 764
sizeof... expressions, 923
skippable destructors, 464–470
slicing, 539, 1025
SmallObjectBuffer, 118n4
smart pointers, 948–951
soft UB. See library undefined behaviors
sortRange function, 28–30
sortRangeImpl function, 28–30
space. See whitespace
special member functions. See also defaulted

functions; deleted functions; functions;
user-provided special member func-
tions

compiler-generated, 621–626
constexpr, 266–268
creating high-level value-semantic types

(VSTs), 751–762
declaring explicitly, 33–34
defaulting first declaration of, 34–35
exception specifications and, 1086
implicit generation of, 44–45
initializer lists, 553
non-trivial, union type and, 1174–1181
restoring suppressed, 36–37
rvalue references, 710, 714, 732–733
standard-layout types, 421
suppressing generation of, 53–55
as trivial, 1012
user-declared versus user-provided, 413n6

specialization of variadic class templates, 884–887
specifiers and arguments. See also exception spec-

ifications; keywords
alignas

description of, 168–172
memory allocation, 181–183
natural alignment, 179–181
potential pitfalls, 176–179
use cases, 172–176

inline, 262–265
square brackets ([[]]), 12
stable reuse, 1012
stack frame, 1101
stack unwinding, 621n4, 1135
standard conversion, 509

enum class, 334
user-defined literals (UDLs), 835

Standard Library–related restrictions, 1078
standardized compiler-specific attributes, 13–14

1338

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1339 — #1365

i
i

i
i

i
i

Index

standard-layout class types, special properties,
420–425

standard-layout classes, 422
standard-layout types, 178

accessing subobjects via reinterpret_cast,
517–519

alignof operator, 186
generalized PODs, 401, 416, 417–420
translating C++-only types to C, 452–456
vertical encoding for, 448–452

start function, 14
stateless lambdas, 605–607
static assertion declarations, 115
static data space, 165
static member variables

external definitions, 314–315
not defined in own class, 316

static storage duration, 68, 478
static variables, function-scope

annoyances, 80
C++03 double-checked-lock pattern, 81–82
description of, 68–71
further reading for, 81
potential pitfalls, 75–80
use cases, 71–75

static_assert. See also trailing return
annoyances, 123
description of, 115–118
enforcing noexcept contract, 639–640
evaluation in templates, 116–118
further reading for, 123
potential pitfalls, 120–122

misuse to restrict overload sets, 121–122
unintended compilation failures, 120–121

syntax and semantics, 115–116
use cases, 118–119

preventing misuse of class and function
templates, 118–119

verifying assumptions about target plat-
form, 118

static-analysis tools, control of external, 17–18
std::any, 187n2
std::bit_cast, 514n41, 516n42
std::declval, 31
std::enable_if, 486n31
std::forward. See forwarding references
std::forward<T>, 385, 395
std::function

lambda expressions with, 601–603
limitations, 994

std::index_sequence, 293
std::initializer_list, 233

annoyances, 567–571
constructor suppresses implicitly

declared default, 568–570

homogeneous initializer lists, 567
overloaded free function templates, 570–

571
representation of const objects, 570

class template usage, 555–558
description of, 553–561
further reading for, 571
inadvertently calling constructors, 242–244
overload resolution, 561
pointer semantics and temporary lifetimes,

558–559
potential pitfalls, 566–567
range-based for loops, 571–572
std::initializer_list<E> object initializa-

tion, 559
traversing with range-based for loops, 683–

684
type deduction, 559–561
use cases, 561–566

function arguments of same type, 564–
565

iterating over fixed number of objects,
565–566

population of standard containers, 561–
562

support for braced lists, 562–564
std::initializer_list<E> object initialization,

559
std::is_constant_evaluated(), 297n20
std::is_final, 1014
std::is_literal_type, 283n14
std::is_lvalue_reference, 378
std::is_pod, 438n14
std::kill_dependency function, 999–1000
std::list, move constructors, 1114
std::literals, 1082
std::memcpy, 484–485

const and reference subobject usage, 489–
493

ineligible usage, 497–501
std::move, 731–732

failure to use with named rvalue references,
784–785

lack of movement with, 805–806
repeatedly calling on named rvalue refer-

ences, 785–786
std::move_if_noexcept, 640–644
std::pair, 528–529
std::pmr, 190n3
std::pmr::monotonic_resource, 468n27
std::pmr::unsynchronized_pool_resource,

468n27
std::remove_cvref<T>, 399n6
std::set_terminate, 1104
std::string_view, 874n1

1339

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1340 — #1366

i
i

i
i

i
i

Index

std::terminate, 1104, 1109, 1124–1128
std::thread, 70
std::tr2::__bases, 956n27
std::tr2::__direct_bases, 956n27
std::tuple, 528–529
std::uint8_t value, 27
std::uint16_t, 27, 28n1
std::unique_ptr, implementing move-only types

without, 791–794
std::unique_ptr<T>, 42n3
std::unordered_map, 135n1
std::upper_bound, 294n19
std::variant, 452n19, 1180n2
std::vector, 1024–1026

appending elements, 634–639
change in unspecified behavior, 652–653

std::vector::push_back(T&&), 644–647
storage class specifiers, 195
storing constexpr data structures, 311–312
Streaming SIMD Extensions (SSE), 173–174
strengthening alignment, 168

of data members, 170–171
of particular objects, 169–170
of user-defined types (UDTs), 171

strict aliasing, 401
string literals, 837, 862–863, 870

compile-time traversal, 287–291
[[deprecated]] attribute, 148
raw

description of, 108–111
potential pitfalls, 112–114
use cases, 111–112

static_assert, 123
template instantiations with, 394–395
Unicode

description of, 129–130
potential pitfalls, 130–132
use cases, 130

strong exception-safety guarantee
noexcept operator, 634–639, 651–652, 658–

659, 1097
rvalue references, 750, 751, 762, 787

strong guarantee, 634, 746
strong typedef idiom, 73–74
strong typedef implementation, 541–544
strongly typed enumerations. See enum class
Stroustrup, Bjarne, 4

undefined behavior, avoiding, 1024n10
“unnecessary nannyism,” 1024n8

structs, initialization, 322
structural base classes, hiding member functions,

56–57
structural inheritance, 57, 180, 1025–1026

boilerplate code with, avoiding, 540

with mix-ins, 545
natural alignment, 180

structured binding, 201n2, 685n3
subobjects

initialization, inconsistency in, 326–328
of rvalues, returning, 1160–1163
value categories of, 722n8

subranges, 686–687
substitution failure is not an error. See SFINAE
sum type, 1177–1180
suppressed constructors by

std::initializer_list, 568–570
suppressed special member functions, restoring,

36–37
symbol demangler, 361n2
symbolic numeric constants, nonintegral, 310–311
synchronization paradigms, 998–999
syntax of direct initialization, 328–329
synthesizing equality with curiously recurring

template pattern (CRTP), 1045–1046

T
T&& (forwarding references)

annoyances, 397–400
metafunction requirements in con-

straints, 398–400
similarity to rvalue references, 397–398

auto&&, 383–384
description of, 377–385
function template argument type deduction,

379–380
further reading for, 400
identifying, 382–383
not forwarding, 384–385
potential pitfalls, 394–397

hijacking copy constructor, 395–397
std::forward<T>, enabling move opera-

tions, 395
template instantiations with string liter-

als, 394–395
reference collapsing, 380–382
std::forward<T>, 385
use cases, 386–393

decomposing complex expressions, 391–
393

emplacement, 390–391
forwarding expressions to downstream

consumers, 386
multiple parameter handling, 386–388
perfect forwarding for generic factory

functions, 388–389
wrapping initialization in generic factory

functions, 389–390

1340

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1341 — #1367

i
i

i
i

i
i

Index

template aliases. See also inheriting constructors;
trailing return

creating with using declarations, 133–137
description of, 133–134
use cases, 134–137

binding arguments to template parame-
ters, 135–136

simplified typedef declarations, 134–135
type trait notation, 136–137

template argument deductions, 212–213, 894–896
template argument list, 882, 914
template arguments, 899
template head, 157
template instantiation

forwarding references, 382
with string literals, 394–395

template instantiation time, 116, 120
template parameter list, 888, 923–924
template parameter packs, 437, 879–884, 896–898
template parameters, 135–136, 896
template template class parameters, 165
template template parameter packs, 903–908
template template parameters, 165, 902
template-argument expressions, 21–22
templated call operator. See generic lambdas
templated variable declarations. See also

constexpr variables
annoyances, 165
description of, 157–160
potential pitfalls, 163–165
use cases, 160–163

parameterized constants, 160–161
reducing verbosity of type traits, 161–163

templates
constexpr functions, 276–277
evaluation of static assertions in. See

static_assert
extern

annoyances, 373–375
description of, 353–365
further reading for, 376
potential pitfalls, 371–373
use cases, 365–370

instantiation and specialization, 1190–1192
local/unnamed types as arguments to

description of, 83–84
use cases, 84–87

preventing misuse of, 118–119
static assertion evaluation in, 116–118
std::initializer_list usage, 555–558
UDL operator templates, 841, 849–851
variable

annoyances, 165
description of, 157–160

potential pitfalls, 163–165
use cases, 160–163

variadic
annoyances, 953–957
description of, 873–925
further reading for, 958
potential pitfalls, 952–953
use cases, 925–951

temporary materialization, 717
temporary objects, 818–819

arrays, 555
lifetime extensions, 819–820
lifetime in range expressions, 691–696
modifiable rvalues, 820–821

temporary rvalue references, 724
ternary operator, 268, 615, 1186–1187
test drivers, 114, 866–867
*this, captured by copy, 611–612
thrashing, 183n14
thread pool, 989
thread-safe function-scope static variables

annoyances, 80
C++03 double-checked-lock pattern, 81–82
concurrent initialization, 68–69
description of, 68–71
destruction, 69
further reading for, 81
logger example, 69–70
multithreaded contexts, 70–71
potential pitfalls, 75–80

dangerous recursive initialization, 77
dependence on order-of-destruction of lo-

cal objects, 78–80
initialization not guaranteed, 75–77
recursion subtleties, 77–78

use cases, 71–75
top level const, 729
trailing punctuation in lambda expressions, 613–

614
trailing return. See also decltype; deduced return

type
description of, 124–126
further reading for, 128
inferring type of, 28
use cases, 126–128

function template whose return type
depends on parameter type, 126

qualifying names, avoiding redundantly
in return types, 127

readability of declarations with function
pointers, 127–128

trailing return types, 593–594, 1189

1341

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1342 — #1368

i
i

i
i

i
i

Index

translation unit (TU)
opaque enumerations, 660
thread-safe function-scope static variables,

71
translation-lookaside buffer (TLB), 182n13
transparently nested namespaces. See inline

namespaces
trivial, 38
trivial classes, 521
trivial constructors, 273–274, 408n4
trivial copy constructors, 470, 528n62
trivial copy operation, 483, 733, 812
trivial copy-assignment operator, 470
trivial default constructors, 461
trivial default initialization, 1087
trivial destructibility, 468–469
trivial destructors, 408n4
trivial move constructors, 484, 528n62
trivial move operation, 733
trivial operations, 33
trivial types

in C++17, 425n7
fixed-capacity string elements, 476–479
future direction of PODs, 438–439
generalized PODs, 401, 416–417, 425–429
preserving, 39–40
requiring, 480–482
special member functions and, 1012
subcategories, 429–436
union membership and, 1174

triviality, loss of, 329–330
trivially constructible, 80n7

POD types, 431–432
secure buffers, 460–462

trivially copy assignable, 486–487
trivially copy constructible, 488
trivially copyable, 39, 41–42

C++ Standard not stabilized, 521–527
fixed-capacity strings, 470–475
ineligible use of std::memcpy, 497–501
memcpy usage on const or reference subob-

jects, 489–493
naive copying other than std::memcpy, 501–

505
POD types, 401, 434–436
sloppy terminology, 488–489
wrong usage of type traits, 482–488

trivially copyable class, 521
trivially copyable types, 468
trivially default constructible, 401, 430–436
trivially destructible

compile-time constructible, literal types,
462–464

constexpr variables, 305
POD types, 402, 430–434

reducing code size, 1104
sloppy terminology, 488–489

trivially destructible types in C++20, 430n9
true sharing, 183n15
tuples, 932–937, 975–976
type aliases. See also inheriting constructors; trail-

ing return
befriending as customization point, 1034–

1036
creating with using declarations, 133–137
description of, 133–134
exception specifications and, 1090, 1147
use cases, 134–137

binding arguments to template parame-
ters, 135–136

simplified typedef declarations, 134–135
type trait notation, 136–137

type categories, 837, 843
type deduction

forwarding references, 379–380
of std::initializer_list, 559–561

type erasure, 602
type identifiers as alignas specifier argument, 172
type inference, 193
type lists, 963
type parameter packs, 903
type punning, 401
type safety, 100–101
type suffix, 837
type template parameter packs, 880–884
type template parameters, 902
type traits, 436–438

in C++17, 651n12
notation, 136–137
reducing verbosity, 161–163
static_assert, 119
std::is_lvalue_reference, 378
as unreliable, 527–528
wrong usage, 482–488

<type_traits> header, 1014
type-consistency, explicit expression of, 27–28,

28n1
typedef. See also aliases

capturing results of decltype expressions in,
31

in <cstdint>, 92
strong implementation, 541–544

typename disambiguator, 382n1
typename specifiers, 1032
typenames

explicit, 26–27
in friend declarations, 1033n1

1342

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1343 — #1369

i
i

i
i

i
i

Index

types. See also POD types; trivial types; type
aliases; type safety; type traits; user-
defined types (UDTs); value-semantic
types (VSTs)

as alignof argument, 193–194
function pointers and, 265–266
historical perspective on, 93–94
literal, 278–284
local/unnamed

description of, 83–84
use cases, 84–87

long long
description of, 89
further reading for, 92
potential pitfalls, 91–92
use cases, 89–91

redundant repetition, avoiding, 200–201
relative sizes of, 91–92
scalar

aggregate initialization, 222
copy initialization, 235–236
initialization, 217

trailing return. See also decltype; deduced
return type

description of, 124–126
further reading for, 128
inferring type of, 28
use cases, 126–128

underlying types (UTs)
description of, 829–830
further reading for, 834
potential pitfalls, 832–833
use cases, 830–832

union
description of, 1174–1177
further reading for, 1181
potential pitfalls, 1180
use cases, 1177–1180

variant, 937–948

U
UDL operator templates, 841, 849–851, 870
UDL operators, 840–842

cooked, 843–845
raw, 845–849
templates, 849–851

UDL suffix, 837
UDL type categories, 843
UDTs. See user-defined types (UDTs)
unconditional exception specifications, 1085–1089
undefined behavior (UB), 1024n10, 1077, 1104,

1175
attributes and, 18–19
auto return-type deduction, 1187
constexpr variable initializers, 306–307

contract guarantees, 1115
delegating constructors, 50n2
diagnosing at compile time, 312–314
friend declarations, 1049
generalized PODs, 401
long long integral type, 90
[[noreturn]] attribute, 97
range-based for loops, 692
rvalue references, 715
thread-safe function-scope static variables,

70
uninitialized values, 218
union type and, 1180

undefined symbol links, 1068n4
undefined symbols, 363
underlying types (UTs)

constexpr variables, 308–309
description of, 829–830
enum class, 337
enumerations, 333–334
further reading for, 834
opaque enumerations, 660
potential pitfalls, 832–833
Unicode string literals, 131
use cases, 830–832

underspecifying alignment, 176
unevaluated contexts, std::declval used in, 31,

1132
unevaluated operands, 615
Unicode string literals

description of, 129–130
potential pitfalls, 130–132

embedding Unicode graphemes, 130–131
library support, lack of, 131
UTF-8, problematic treatment of, 131–

132
use cases, 130

unification, 901
uniform initialization, 215

in factory functions, 239–241
in generic code, 238–239
member initialization in generic code, 241–

242
union type

description of, 1174–1177
discriminated unions, 937–948
further reading for, 1181
misuse of, 505–506
potential pitfalls, 1180
use cases, 1177–1180
vertical encoding within, 439–448

unions
default member initializers and, 320–321
final contextual keyword in, 1013

unique object address, 418

1343

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1344 — #1370

i
i

i
i

i
i

Index

unique ownership, 768
unique-object-address requirement, 418
unit conversions, 863–865
universally unique identifier (UUID), 862–863
unnamed namespaces, 77
unprocessed string contents, syntax for. See raw

string literals
unqualified name lookup, 841
unreachable rvalue references, 712
unrecognized attributes, implementation-defined

behavior of, 18–19
unrelated types, 507
unsafe features

auto return-type deduction
annoyances, 1201–1203
description of, 1182–1194
potential pitfalls, 1200
use cases, 1194–1200

[[carries_dependency]] attribute
description of, 998–1000
further reading for, 1006
potential pitfalls, 1005
use cases, 1000–1005

decltype(auto) placeholder
annoyances, 1213
description of, 1205–1210
potential pitfalls, 1212–1213
use cases, 1210–1212

definition of, 6
final contextual keyword, 6

annoyances, 1028–1030
description of, 1007–1014
further reading for, 1030
potential pitfalls, 1023–1027
use cases, 1014–1023

friend declarations
curiously recurring template pattern

(CRTP) use cases, 1042–1054
description of, 1031–1033
further reading for, 1042
potential pitfalls, 1041
use cases, 1033–1041

inline namespaces
annoyances, 1079–1082
description of, 1055–1062
further reading for, 1083
potential pitfalls, 1076–1079
use cases, 1062–1076
versioning case study, 1083–1084

noexcept exception specification
annoyances, 1143–1150
description of, 1085–1094
further reading for, 1151–1152
potential pitfalls, 1112–1143
use cases, 1094–1111

ref-qualifiers
annoyances, 1171–1172
description of, 1153–1160

ref-qualifiers (cont.)
further reading for, 1173
potential pitfalls, 1170–1171
use cases, 1160–1170

union type
description of, 1174–1177
further reading for, 1181
potential pitfalls, 1180
use cases, 1177–1180

unscoped C++03 enumerations, workarounds for,
332–333

unsigned long long type
description of, 89
further reading for, 92
potential pitfalls, 91–92
use cases, 89–91

unsigned ordinary character types, 515
unspecified rvalue references, 715
unwinding logic, 1103
usable literal types, 282–284
user declared, 413n6, 1105
user provided

defaulted functions, 33–36
generalized PODs, 466–472, 477–478
replacement for user declared, 413n6
rvalue references, 742, 794

user-declared constructors, 274n7
user-declared default constructors, 1087
user-declared special member functions, 1086
user-defined control constructs, 599–600
user-defined conversion, 61, 580
user-defined literals (UDLs), 462

annoyances, 869–871
confusing raw and string operators, 870
floating-point to integer, lack of conver-

sion, 869–870
parsing problems, 870–871
potential suffix-name collisions, 870
UDL operator templates for string liter-

als, lack of, 870
in C++14 Standard Library, 852–853
description of, 835–853
further reading for, 872
operators, 840–842

cooked, 843–845
raw, 845–849
templates, 849–851

potential pitfalls, 867–869
overuse, 868–869
preprocessor surprises, 869
unexpected characters yield bad values,

867–868

1344

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1345 — #1371

i
i

i
i

i
i

Index

restrictions on, 839–840
use cases, 853–867

test drivers, 866–867
unit conversions and dimensional units,

863–865
user-defined numeric types, 858–862
user-defined types with string represen-

tations, 862–863
wrappers, 853–857

user-defined types (UDTs), 835
alignas specifier, misleading application of,

177–178
alignof operator, 185–186
compile-time constructible, literal types,

462
creating high-level value-semantic types

(VSTs), 751–762
default initialization, 322
delegating constructors, 46
final contextual keyword in, 1007, 1011–

1015
friend declarations

curiously recurring template pattern
(CRTP) use cases, 1042–1054

description of, 1031–1033
further reading for, 1042
potential pitfalls, 1041
use cases, 1033–1041

initializer lists, 553
as literal types, 280
noexcept operator, 622
numeric literals, 858–862
strengthening alignment, 168, 171
with string representations, 862–863

user-provided copy assignment operator, 759
user-provided copy constructors, 758–759
user-provided default constructors, 80, 217–219,

755, 1087
exception specifications and, 1087
initialization, 217–218

user-provided destructors, 755–756
declaration of, 1105
exception specifications and, 1088

user-provided functions, exception specifications
and, 1088

user-provided move constructors, 760
user-provided move-assignment operator, 760–

761
user-provided special member functions, 33, 751–

753, 1012, 1088
defaulting implementation of, 35–36
exception specifications and, 1088
rvalue references, 753, 755

user-provided value constructors, 753–755

using declarations, 535
alias creation with, 133–137
constexpr functions, 268
with inline namespaces, 1055–1056

using directives, 842
constexpr functions, 268
for short-named entities, 1074–1076

using-namespace directives, 1066
UTF-8, 129–131, 844
UTF-16, 129–131, 844
UTF-32, 129–131, 844

V
valid but unspecified, 715, 801
value categories, 25, 26, 30, 590, 710, 1145. See also

lvalue references; prvalues; rvalue refer-
ences; xvalues

auto return-type deduction, 1184, 1186
evolution of, 807, 813–828
exact capture with decltype(auto), 1210–

1211
extended categories in C++11/14, 716–723
forwarding references, 377
generic lambdas, 972
identifying, 779–781
lambda-capture expressions, 992
prior to C++11, 814–815
range-based for loops, 680
ref-qualifiers, 1153, 1155, 1159–1160, 1172
of subobjects, 722n8

value constructors, 37, 942
user-defined literals (UDLs), 836
user-provided, 753–755
vertical encoding, 450

value initialization, 216–219, 764
constexpr functions, 273–274
of constructor arguments, avoiding the most

vexing parse, 237–238
value initialize, 493
value representation, 405, 409, 452, 500, 503,

517n43
value semantics, 627, 811
value-initialized variables, defining, 236–237
values, 51, 741
value-semantic classes, 36, 48n1, 187–188, 743
value-semantic mechanisms, 663
value-semantic types (VSTs), 51, 1034

forwarding references, 386
generic, creating, 762–767
high-level, creating, 751–762
lambda-capture expressions, 992
low-level, creating, 742–751
POD types, 452
in-process, 1034
rvalue references, 742, 751–752, 761

1345

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1346 — #1372

i
i

i
i

i
i

Index

variable templates. See also constexpr variables
annoyances, 165
description of, 157–160
of literal type, 302
potential pitfalls, 163–165
specialization of, 1078n7
use cases, 160–163

parameterized constants, 160–161
reducing verbosity of type traits, 161–163

variables. See also auto variables; constexpr vari-
ables; function-scope static variables

auxiliary, 28
in conditional expressions, initialization,

235
const, capturing modifiable copy of, 990–

992
forwarding into closure, 992–993
initialization, 200
in lambda expressions, 600–601
local, in unevaluated contexts, 610–611
mixing captured and noncaptured, 609
strengthening alignment, 168
value-initialized, defining, 236–237

variadic alias templates, 887
variadic class templates, 875, 878–880

member functions, 892–894
non-type template parameter packs, 901–

903
specialization of, 884–887
type template parameter packs, 880–884

variadic function templates, 878, 912, 926
function parameter packs, 888–892
function template argument matching, 900–

901
generic lambdas, 978
lambda expressions, 590
template argument deductions, 894–896

variadic generic lambdas, 973–974
variadic macros, 249, 781
variadic member function templates, 892
variadic member functions, 892–894
variadic templates. See also variadic class tem-

plates; variadic function templates
annoyances, 953–957

expansion is rigid and requires verbose
support code, 957

limitations on expansion contexts, 954–
955

linear search, 957
parameter packs cannot be used unex-

panded, 956
unusable functions, 953–954

description of, 873–925
further reading for, 958

pack expansion, 908–911, 925
alignas specifier, 921–922
attribute lists, 922
base specifier list, 915–917
braced initializer lists, 912–914
disallowed, 924
function call argument list, 912–914
function parameter packs, 911–912
lambda-capture list, 919–921
member initializer list, 917–918
sizeof... expressions, 923
template argument list, 914
template parameter list, 923–924

potential pitfalls, 952–953
accidental use of C-style ellipsis, 952
compiler limits on number of arguments,

953
undiagnosed errors, 952–953

Rule of Fair Matching, 898–899
Rule of Greedy Matching, 896–898
template template parameter packs, 903–

908
use cases, 925–951

advanced traits, 948–951
generic variadic functions, 925–926
hooking function calls, 930–931
object factories, 929–930
processing variadic arguments in order,

926–929
tuples, 932–937
variant types, 937–948

variadic alias templates, 887
variadic member functions, 892–894

variant types, 937–948
vectorization, 1137
vectorLerp function, 16–17
vectors of iterators, 26–27. See also std::vector
verbosity of type traits, reducing, 161–163
versioning

with inline namespaces, 1083–1084
lack of scalability, 1076–1077

vertical encoding, 439–452
for non-trivial types, 448–452
within a union, 439–448
Xlib library, 445–448

vertical microcode, 445n17
virtual base pointers, 409, 416–417, 426
virtual destructors, 1008
virtual dispatch, 202, 1015–1017, 1023
virtual functions, 632–634
virtual keyword, with final contextual keyword,

1009–1011
virtual member functions, 1007–1008

overriding
description of, 104–105

1346

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/23 — 15:22 — page 1347 — #1373

i
i

i
i

i
i

Index

further reading for, 107
potential pitfalls, 106
use cases, 105–106

virtual memory, 181–183
virtual-function tables (vtables), 441, 617
vocabulary types, 91, 94, 131
void return type

deducing, 1184–1185
as literal types, 280

vtable pointers, 409, 416–417, 426, 441–442, 1011

W
Wall (GCC), 28n1
weakly typed C++03 enumerators, drawbacks to,

333–335
well-formed programs, 147n1, 169, 276n8, 355, 371
Wextra (GCC), 28n1
whitespace, 22, 113–114
wide contracts

final contextual keyword, 1021
noexcept operator, 1112–1113
rvalue references, 750

widgetIterators, 26–27

Wing, Jeanette, 1030
witness arguments, 283–284
witnesses, 284
working sets, 182–183, 183n14, 628, 1139
Wpedantic (GCC), 28n1
wrappers, 853–857

for noexcept move operations, 1099–1101
perfect returning, 1198

X
Xlib library, 445–448
xvalues, 712–713, 717

in C++11/14, 721–723
evolution of, 807, 825–828

Y
y combinators, 605, 978, 979n4

Z
zero cost, 1101n11, 1136
zero initialized, 75, 77n6, 218, 222, 493
zero-cost exception model, 1134–1136
zero-overhead exception model, 1101

1347

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Foreword
	Acknowledgments
	About the Authors
	Chapter 0: Introduction
	Section 1.1: override
	Section 1.2: depracated
	Section 2.1: extern template
	Section 3.1: inline namespace
	Index

