

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information
or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases and special
sales. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the United States, please contact:
International Sales
(317) 581-3793
international@pearsontechgroup.com
Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Hohmann, Luke.
Beyond software architecture: creating and sustaining winning

solutions / Luke Hohmann.
p. cm.

ISBN 0-201-77594-8 (pbk. : alk. paper)

1. Computer software. 2. Computer architecture. I. Title.
QA76.754.H65 2003
005.1—dc21 2002152562

Copyright © 2003 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

For information on obtaining permission for use of material from this work, please submit a
written request to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

Printing9th May 2008
Text printed in the United States on recycled paper at RR Donnelley Crawfordsville in Crawfordsville, Indiana.
ISBN 0-201-77594-8

www.awprofessional.com

xi

Contents

Foreword by Martin Fowler xxi
Foreword by Guy Kawasaki xxiii
Preface xxv

Chapter 1 Software Architecture 1
Defining Software Architecture 1
Alternative Thoughts on Software Architecture 2

Subsystems Are Designed to Manage Dependencies 2
Subsystems Are Designed According to Human Motivations and Desires 2
Give in to Great Architectures 3
Beauty Is in the Eye of the Beholder! 4

Why Software Architecture Matters 4
Longevity 4
Stability 4
Degree and Nature of Change 5
Profitability 5
Social Structure 5
Boundaries Defined 7
Sustainable, Unfair Advantage 7

Creating an Architecture 7
Patterns and Architecture 9
Architectural Evolution and Maturation: Features versus Capabilities 9
Architectural Care and Feeding 16

Technological Currency 16
Technological Debt 16
Known Bugs 17
License Compliance 17

xii Contents

Principles First, Second, and Third 17
Encapsulation 18
Interfaces 18
Loose Coupling 18
Appropriate Granularity 19
High Cohesion 19
Parameterization 19
Deferral 19

Creating Architectural Understanding 20
The Team 21
Chapter Summary 22
Check This 23
Try This 23

Chapter 2 Product Development Primer 25
What Is Product Management? 25
Why Product Management Matters 26
Product Development Processes: Creating Release 1.0 26

Concept Proposal 28
Product Proposal/Business Plan 28
Development Plan 28
Development 30
Final Quality Assurance 30
Prelaunch 32
Launch 33

It Isn’t Like That 33
It Is a Waterfall Process and Those Don’t Work 33
It Presents All Stages as If They Were of Equal Importance 33
It Doesn’t Detail Any Time 34
Where Is the Iteration? 34
It Doesn’t Prescribe a Development Process 35
It Doesn’t Identify the Level of Collaboration Between Groups within Stages 35

The Business Plan 35
Product Development Processes: Creating Release n.n.n 37
Augmenting the Product Development Process 37

Successive Freezing 38
Change Management Protocols 38
Recycle Bin 40

Crucial Product Management Concepts 40
The Four Ps of Marketing 40
Total Available Market, Total Addressable Market, and Market Segmentation 41
The S-Shaped Curve of Adoption 42
The Whole Product 44
Technical versus Market Superiority 45
Position and Positioning 45

Contents xiii

Brand 47
The Main Message 47

Chapter Summary 48
Check This 49
Try This 49

Chapter 3 The Difference between Marketecture and Tarchitecture 51
Who Is Responsible for What? 51
Early Forces in Solution Development 53
Creating Results in the Short Run while Working in the Long Run 57
Projecting the Future 58
Harnessing Feedback 59
Generating Clarity 60
Working in Unison 62

Reaching Agreements 63
Making Data Available 63

Context Diagrams and Target Products 64
Chapter Summary 65
Check This 65
Try This 66

Chapter 4 Business and License Model Symbiosis 67
Common Software Business Models 69

Time-Based Access or Usage 71
Transaction 74
Metering 76
Hardware 78
Services 79
Revenue Obtained/Costs Saved 79

Rights Associated with Business Models 81
Tarchitectural Support for the Business Model 82

General Issues 83
Time-Based Access or Usage 84
Transaction 85
Metering 86
Hardware 87

Enforcing Licensing Models 87
The Honor System 88
Home-Grown License Managers 88
Third-Party or Professional License Managers 89
The Client 89

Market Maturity Influences on the Business Model 93
Choosing a Business Model 93

Chapter Summary 94

xiv Contents

Check This 95
Try This 95

Chapter 5 Technology In-Licensing 97
Licensing Risks/Rewards 98
Contracts—Where the Action Is 101

Contract Basics 101
License Terms 102

When Business Models Collide, Negotiations Ensue 106
Honoring License Agreements 107
Managing In-Licensed Technology 108
Open-Source Licensing 108
License Fees 109
Licensing Economics 111
Chapter Summary 112
Check This 113
Try This 113

Chapter 6 Portability 115
The Perceived Advantages of Portability 115
The Business Case for Portability 116
Creating Portable Applications 119

Use an Interpreted Language 119
Use Standards-Based Persistent Storage 120
Make Business Logic Portable 120
Closer to the User Means Less Portability 120
Use XML for Standardized, Interoperable Communications

between Subsystems 120
Avoid Hiding The Power of a Specific Platform in the Name of Portability 121

The Matrix of Pain 121
Step 1: Remove Configurations 122
Step 2: Rank-Order Configurations 123
Step 3: Make the Final Cut 123

Beware the Promises You Make 126
Chapter Summary 126
Check This 127
Try This 127

Chapter 7 Deployment Architecture 129
Deployment Choices 130

Customer Site 130
Application Service Provider 130
Managed Service Provider 130
Transactional (Web Service) 131

Contents xv

Customer Influences on Deployment Architectures 132
Control and Integration 132
Data Security/Privacy and Peak Loads 133
Costs and Vendor Confidence 133
Customer Skills and Experiences and Geographic Distribution 134

Corporate Influences on Deployment Architecture 136
Sales Cycle 136
Infrastructure Investment 136
Cash Flow 137
Flexibility 137
Geographic Distribution 137
Service, Not Price 138

Choosing a Software Deployment Architecture 138
Deployment Architectures and the Distribution of Work 138
The Information Appliance 140
Deployment Choice Influences on Software Architecture 140

Flexible, Parameterized, or No Integration Options 141
Upgrade Policies 141
Data Protection and Access 141
Migration Options 141

The Future of Consumer Software 142
Chapter Summary 142
Check This 143
Try This 143

Chapter 8 Integration and Extension 145
Customer Control—The Driving Force 145

Motivations for Integration/Extension 145
Layered Business Architectures: Logical Structures 147

The User Interface Layer 147
The Services Layer 149
The Domain Model Layer 149
The Persistent Data Layer 150
Variations on a Theme 151

Creating Layered Business Architectures 151
Integration and Extension at the Business Logic Layers 154

Technologies and Locus of Control 155
Integration through APIs 155
Extension through Registration 158

Integration and Extension of Persistent Data 159
Views 159
User Fields 160
Hook Tables 161
Spreadsheet Pivot Tables 162

xvi Contents

Extract, Transform, and Load Scripts 162
Tell Them What’s Going On 163

Business Ramifications 163
Professional Services 164
Training Programs 165
Certification 166
User Community 167
License Agreements 168

Managing APIs Over Multiple Releases 169
Techniques 170

Chapter Summary 170
Check This 171
Try This 172

Chapter 9 Brand and Brand Elements 173
Brand Elements 173

Names 173
Graphics, Slogans, and Other Brand Elements 177
When to Use the Trademark (TM) Symbol 177

Managing In-License Brands 178
Brand Element Customizations 179
Changing Brand Elements 179

Product Areas to Change 180
QA and Change 181

Chapter Summary 181
Check This 181
Try This 182

Chapter 10 Usability 183
Usability Is about Money 183
Mental Models, Metaphors, and Usability 185
Tarchitectural Influences on User Interface Design 187

Areas of Influence 187
The Need for Speed 193

Let’s Be Clear on What We’re Talking About 193
What a Marketect Really Wants with Respect to Performance 195
Responding to the User 197
Performance And Tarchitectural Impact 198

Chapter Summary 201
Check This 201
Try This 202

Contents xvii

Chapter 11 Installation 203
The Out of Box Experience 203
Ouch! That Might Hurt 205

Customer Fears 205
Installation and Architecture 206

Forces and Choices 206
How to Install 209

Installation Data Collection and Precondition Verification 209
Installation 210
Postinstallation Confirmation 212

Finishing Touches 212
They Don’t Read the Manual 212
Test the Install and Uninstall 213

Chapter Summary 214
Check This 214
Try This 215

Chapter 12 Upgrade 217
Like Installation, Only Worse 217

Upgrade Fears 217
Making Upgrades Less Painful 221

Choices for Painless Upgrades 221
Market Maturity and Upgrades 224
Chapter Summary 225
Check This 225
Try This 225

Chapter 13 Configuration 227
Configurability—An Element of Usability 227
The System Context 228

Contextual Information 228
Initialization versus Execution 230
Setting the Value 230
Setting the Right Value 231
Configuration Parameter Heuristics 232
Chapter Summary 233
Check This 234
Try This 234

Chapter 14 Logs 235
I Want to Know What’s Happening 236
Not Just the Facts 237

xviii Contents

Log Format and Management 239
Log Format 239
Log Management 241
Logging Standards and Libraries 242

Postprocessing Log Data 243
Logging Services 243
Chapter Summary 244
Check This 245
Try This 245

Chapter 15 Release Management 247
Yes, You Really Need This 247
Establishing a Baseline 248
Release Management 249

What You’re Releasing 249
Who You’re Targeting 250
Why They Want It 250

Release Identification 251
Full or Complete Releases 251
Partial Releases 252
Patch Releases 253
Variations 255

SKUs and Serial Numbers 256
SKU Management 256
Serial Numbers, Registration, and Activation 258

Release Management Influences on Tarchitecture 259
Chapter Summary 261
Check This 261
Try This 262

Chapter 16 Security 263
Viruses, Hackers, and Pirates 264

Managing Risk 265
See No Evil, Speak No Evil 265

Digital Identity Management 266
Authorization—Defining Who Can Do What 266
Authentication—Proof of Identity 266

Transaction Security 269
Auditability—Proof of Activity 269
Integrity—Preventing Tampering and Alteration of Data 269
Confidentiality—Keeping Data Away from Those Not Entitled to It 270
Accountability—Holding People Responsible for Their Actions 270

Contents xix

Software Security 271
Software Security Techniques 271
Software Security Costs/Benefits 273

Information Security 273
Secret Algorithms or Secret Keys? 274
Back Doors 275
Security and Marketecture 276

Areas of Interaction 276
Chapter Summary 278
Check This 279
Try This 280

Appendix A Release Checklist 281

Appendix B A Pattern Language for Strategic Product Management 285
Applying The Patterns 286
Capturing the Result 287
Market Map 288
Market Events/Market Rhythms 289
Feature/Benefit Map 291
The Tarchitecture Roadmap 292

References 295

Bibliography 297

About the Author 301

Index 303

This page intentionally left blank

xxi

Foreword by Martin Fowler

Architecture has become a very slippery word in the software business. It’s hard to
come up with any solid definition of what it means. I see it as a fundamentally subjec-
tive term—when people describe their software architecture they select the important
parts of their systems, how these parts fit together, and the key decisions they made in
designing their systems. Architecture is also seen as a technical issue, with the impli-
cation that the key decisions that need to be made are technical decisions.

In talking with Luke over the last few years I’ve really enjoyed the fact that he
talks about the kinds of things that are often sadly omitted from most architectural dis-
cussions—yet are every bit as important. Such things as the marketing view of a system,
licensing terms, branding, deployment, billing. All of these issues have important
technical and business implications. Senior technical people need to think about this stuff,
or otherwise a technically capable system could fail to be good business decision.

Many of these issues matter most to people who sell software to other entities.
But even if you’re an architect of an in-house IS shop these issues are just as likely to
trip you up. Licensing agreements with your vendors can make a big difference to the
costs of the software you deploy, billing may become important if your business
decides it wants to introduce a charge-back scheme, branding helps affect your visi-
bility to the business side of your company.

Luke writes from the perspective of someone who has dealt with both the techni-
cal and business sides of software development. It’s a duality I find appealing because
it's led him to ponder issues that often don’t get talked about. He shows that it’s often
the things you don’t think to worry about that hurt you the most and in the process
provides the advice you need to deal with them. As a result this book is a much
needed compliment to the technical aspects of software design.

Martin Fowler,
Series Editor

This page intentionally left blank

xxiii

Foreword by Guy Kawasaki

First, you have to understand that I think writing software is more art than science.
How is it, then, that I would write a foreword for a book that is focused on the nuts
and bolts, instead of the creative?

The creative process of both art and software is highly overrated. Clear your mind
of visions of sitting around in a comfy chair as the software muse penetrates your
mind and thousands of lines of elegant code flow effortlessly from your brain. If
you’ve created software, you know it isn’t like this.

Art is hard. Debugging is even harder. This is a book that will help you and your
team become better artists. It is about discipline, teamwork, perspiration, and, yes,
inspiration. I hope you read it, and it enables you to create great art (a.k.a. software)
that changes the world.

Guy Kawasaki,
CEO
Garage Technology Ventures

This page intentionally left blank

xxv

Preface

Many excellent books have been written on software architecture. These books,
which, among other things, define, classify, and describe software architectures,
define notations for representing and communicating architectural choices, and pro-
vide guidance on making good architectural decisions, have enduring value. Unfortu-
nately, while these books may help you build a successful architecture, they fall short
of the goal of helping you create a winning solution. To create a winning solution, you
need to move beyond subsystems and interfaces, beyond architectural patterns such as
Front Controller or Pipes and Filters, and beyond creating third-normal-form rela-
tional databases. You need to move beyond software architecture and move toward
understanding and embracing the business issues that must be resolved in order to cre-
ate a winning solution.

An example of one such business issue concerns technical support. It is inevitable
that some of your customers are going to have a problem with your software. The
choices you’ve made long ago in such areas as log file design, how the system is inte-
grated with other systems, how the system is configured, or how the system is
upgraded will determine how well you can solve their problems. Beyond Software
Architecture helps you move beyond software architecture and toward creating win-
ning solutions by discussing a wide range of business issues and their interrelation-
ship with architectural choices.

This book presents a unique perspective that is motivated and informed by my
experiences in creating single-user programs costing less than $50; software systems used
in academic research; utilities to diagnose and fix problems associated with internally
developed systems; and distributed, enterprise-class platforms costing millions of dol-
lars. Along the way, I’ve played a variety of roles. I’ve been an individual contributor,
a direct manager, and a senior member of the corporate executive staff. At various
times I’ve either worked in or led engineering, product marketing and management,

xxvi Preface

quality assurance, technical publications, and first- and second-line support organiza-
tions. I’ve managed teams and projects across multiple cities and continents.

The common thread tying all of this software together is that it was created to
provide value to some person. Research software, for example, serves the needs of the
researchers who are trying to understand some phenomena. Enterprise application
software, dealing with everything from customers to supply-chain management, is
designed to serve the needs of a well-defined set of users and the businesses that
license it in a sustainably profitable manner. Similar comments apply to every other
kind of software, from games to personal contact managers, inventory management
systems to graphic design tools.

The issues identified and discussed in this book affect every kind of software.
Their presentation and discussion occur most often in the context of enterprise appli-
cation software, where I have spent most of my professional career. While they have
no universally accepted definition, enterprise applications typically meet one or more
of the following characteristics:

• They are designed to support the needs of a business, at either a departmental or
larger organizational unit.

• They are relatively expensive to build or license ($50,000–$5,000,000 and up).

• They have complex deployment and operational requirements.

• They can be operated independently, but the needs of the business are often best
served when they are integrated with other enterprise applications.

Even if you’re not creating an enterprise application, you will find this book use-
ful. Creating sustainable software solutions—meeting customer needs over a long
period of time through multiple releases—is a challenging, enjoyable, and rewarding
endeavor, certainly not limited to the domain of enterprise applications!

Although I will often refer to software architecture and discuss technical matters,
my discussions won’t focus on such things as the best ways to diagram or document
your architecture or the deeper design principles associated with creating robust, dis-
tributed Web-based component systems. As I said earlier, there are plenty of books
that address these topics—in fact, almost too many, with the unfortunate side-effect
that many people become so focused on technical details that they lose sight of the
business value they’re trying to provide.

Instead of concentrating on purely technical choices, Beyond Software Architec-
ture helps you create and sustain truly winning solutions by focusing on the practical,
nuts-and-bolts choices that must be made by the development team in a wide variety
of areas. I have found that focusing on practical matters, such as how you should iden-
tify a release or integrate branding elements into your solution, reduces the often arti-
ficial barriers that can exist between developers and the business and marketing
people with whom they work.

These barriers prevent both groups from creating winning solutions. I cringe
when engineers take only a technology view without due consideration of business

Preface xxvii

issues, or when marketing people make “get-me-this-feature” demands without due
consideration of their underlying technical ramifications. When either side takes a
position without due consideration of its impact, the likelihood of creating and sus-
taining a winning solution drops dramatically.

What is especially troubling is that these arguments seem to be made in support
of the idea that technical issues can somehow be separated from business issues, or
that business issues can somehow be separated from technical issues. At best this is
simply wrong; at worst it can be a recipe for disaster. Developers are routinely asked
to endure the hardships of design extremes, such as a low-memory footprint, in order
to reduce total system cost. Entire companies are started to compete in existing mar-
kets because investors are convinced that one or more technological breakthroughs
will provide the competitive advantage necessary for success. Not surprisingly, inves-
tors are even more eager to invest when the technological breakthrough is accompa-
nied by a similar breakthrough in the business model being offered to customers.

Managing the interrelationship between technology and business will be a recur-
ring theme throughout this book. Handle only the former and you might have an inter-
esting technology or, perhaps, an elegant system,—but one that ultimately withers
because no one is using it. Handle only the latter and you’ll have a paper solution that
excites lots of people and may even get you funding—but one that doesn’t deliver any
sustainable value. Handle both and you’ll have a winning solution. While creating
new technologies or elegant systems can be fun, and designing sophisticated new soft-
ware applications or business models can be exciting, both pale in comparison to the
deep satisfaction that comes from creating winning solutions and sustaining them.

Acknowledgments

Thanks to all of the people that have helped me create this book. I am especially
indebted to Don Olsen, Haim Kilov, Rebecca Wirfs-Brock, Myron Ahn, Rob Purser,
Ron Lunde, Scott Ambler and Dave Smith for their detailed reviews. Steve Sweeting,
Craig Larman, Todd Girvin, Erik Petersen, Sandra Carrico, Adam Jackson, Tony Nav-
arette, Chris Reavis, Elisabeth Hendrickson, James Bach and Alan Shalloway all pro-
vided detailed reviews of one or more chapters. Some of you were especially critical,
and the book is better for it.

A very special thanks goes to Bob Glass for working with me to create the title.
Once again a phone call was better than a lot of e-mail.

Ron, I imagined that writing a chapter with you would be fun. It was!
Steve Dodds, Lee Sigler, and a host of students and colleagues have provided me

with inspiration and friendship as I undertook this project.
Special thanks to my good friend and original publisher Paul Becker, who

patiently waited for me to complete it. Paul, it has been a few years since I completed
my first book. Thanks for your willingness to wait until I had something to say.

xxviii Preface

I am deeply indebted to the superb professionalism and hard work of the Addi-
son-Wesley production and marketing organization. They took a raw manuscript and
helped shape it into a book. Thanks to Mary O’Brien, Elizabeth Ryan, Marilyn Rash,
Chris Guzikowski, and Dianne Wood.

I have undoubtedly forgotten to mention one or more individuals who have
helped in the creation of this book. This was, by no means, intentional. I’m also cer-
tain that there are several areas in which the book can be improved based on your
experience. Tell me what I’ve missed, or how I can improve the book—and I will.

Luke Hohmann
luke@lukehohmann.com

51

Chapter 3
The Difference between Marketecture
and Tarchitecture

Chapter 1 presented an overview of software architecture. Chapter 2 followed with a
discussion of product management. This chapter returns to architecture and clarifies
how the marketing and technical aspects of the system work together to achieve busi-
ness objectives.

Who Is Responsible for What?

Software systems can be divided architecturally along two broad dimensions. The first
is the marketecture, or the “marketing architecture.” The second is the tarchitecture,
or the “technical architecture.” I refer to the traditional software architect or chief
technologist as the tarchitect and the product marketing manager, business manager,
or program manager responsible for the system as the marketect.

The tarchitecture is the dominant frame of reference when developers think of a
system’s architecture. For software systems it encompasses subsystems, interfaces,
distribution of processing responsibilities among processing elements, threading mod-
els, and so forth. As discussed in Chapter 1, in recent years several authors have docu-
mented distinct styles or patterns of tarchitecture. These include client/server,
pipeline, embedded systems, and blackboards, to name a few. Some descriptions offer
examples of where these systems are most appropriately applied.

Marketecture is the business perspective of the system’s architecture. It embodies
the complete business model, including the licensing and selling models, value propo-
sitions, technical details relevant to the customer, data sheets, competitive differentiation,
brand elements, the mental model marketing is attempting to create for the customer,

52

The Difference between Marketecture and Tarchitecture

and the system’s specific business objectives. Marketecture includes—as a necessary
component for shared collaboration between the marketects, tarchitects, and develop-
ers—descriptions of functionality that are commonly included in marketing require-
ments documents (MRDs), use cases, and so forth. Many times the term

whole
product

 is used to mean marketecture.

The $50,000 Boolean Flag

One “heavy client” client/server architecture I helped create had a marketing
requirement for “modular” extension of system functionality. Its primary objec-
tive was that each module be separately priced and licensed to customers.
The business model was that, for each desired option, customers purchase a
module for the server that provided the necessary core functionality. Each cli-
ent would then install a separately licensed plug-in to access this functionality.
In this manner, “modules” resided at both the server and client level. One
example was the “extended reporting module”—a set of reports, views, and
related database extract code that a customer could license for an additional
fee. In terms of our pricing schedule, modules were sold as separate line
items.

Instead of creating a true module on the server, we simply built all of the
code into the server and enabled/disabled various "modules” with simple
Boolean flags. Product management was happy because the group could
“install” and “uninstall” the module in a manner consistent with their goals and
objectives for the overall business model. Engineering was happy because
building one product with Boolean flags is considerably simpler than building
two products and dealing with the issues that would inevitably arise regarding
the installation, operation, maintenance, and upgrade of multiple compo-
nents. Internally, this approach became known as the “$50,000 Boolean flag.”

The inverse to this approach can also work quite nicely. In this same sys-
tem, we sold a client-side COM API that was physically created as a separate
DLL. This allowed us to create and distribute bug fixes, updates, and so forth,
very easily; instead of upgrading a monolithic client (challenging in Microsoft-
based architectures), we could simply distribute a new DLL. Marketing didn’t
sell the API as a separate component, but instead promoted it as an "inte-
grated” part of the client.

Moral? Maintaining a difference between marketecture and tarchitecture
gives both teams the flexibility to choose what they think is the best approach
to solving a variety of technical and business problems.

Early Forces in Solution Development 53

Early Forces in Solution Development

A variety of technical and market forces shape a winning solution. These range from
the core technologies to the competitive landscape to the maturity target market. What
makes these forces so interesting is that they are always changing: Technology changes,
the competitive landscape changes, markets mature, and new markets emerge.

Three particularly influential forces in the early stages of development are the ili-
ties, the problem domain, and the technology base. As shown in Figure 3-1, driving,
and being driven by, these forces are the target market, shown at the upper right, and
the development organization, shown at the upper left. Product management is shown
in the center to emphasize its collaborative, leadership role in resolving these forces.

The strength of the affinity that the target market and developers have with vari-
ous forces is represented by single or double arrows. The final solution, including the
marketing and technical architectures, lives in the "space” defined by all of the forces
that shape its creation.

The problem domain is the central force in the development of a winning solution.
Any given problem domain, such as credit card transaction processing, automotive
power systems, or inventory management, immediately evokes a unique set of rules,
nomenclature, procedures, workflows, and the like. Included in my definition of the
problem domain is the ecosystem in which the solution exists, including customers,
suppliers, competitors, and regulatory entities. Understanding the problem domain is
a key prerequisite for both the marketect and the tarchitect if they wish build a winning
solution. This is why most every development methodology places such a strong
emphasis on gathering, validating, and understanding requirements as well as model-
ing the solution. This is also why effective product development places such an
emphasis on the concept proposal and the business plan.

FIGURE 3-1 Forces shaping software architectures

Ilities

Technology
Base

Problem Domain
Architecture

54 The Difference between Marketecture and Tarchitecture

The interplay between the marketect and the tarchitect in this process is quite
interesting. Recall from Chapter 2 that the marketect’s primary job is clarifying and
prioritizing market needs; the tarchitect’s primary job is to create a technical solution
that will meet these needs. If the marketect is convinced that speed is paramount, as
opposed to flexibility or usability, then the tarchitect will make certain choices that
emphasize speed. Simply meeting the prioritized requirements, however, is insuffi-
cient to produce a successful tarchitecture. For this, the tarchitect must also bring his
or her own domain experience to the tarchitectural design.

The requirement of extensive domain knowledge for a tarchitect is so strong that few
developers can be promoted to this position until they have considerable experience
and skill building systems within the specified domain. My rule of thumb is that, before
someone can be considered a tarchitect, he or she must have done one of the following:

• Been a key member of a team that has created, from scratch, at least one major
system in the given domain and has experienced the effects of that system
through at least two full releases after the initial release (three releases total).

• Been a key member of a team that has made major architectural changes to an
existing system and experienced the effects of these changes through at least
two full release cycles after the changes were introduced.

You’re not an architect in your very first job. You’re not an architect after the first
release. There is simply no substitute for sticking with a problem long enough to
receive and process the feedback generated through customer use of your system. Do
this long enough and you may gain sufficient experience to become an architect.

Ilities are the various quality and product attributes ascribed to the architecture.
As Bass [98] points out, they fall within two broad dimensions: those discerned by
observing the system at runtime and those not observed by observing the system at
runtime. The former, including such attributes as performance and usability, are
directly influenced by the target customer. The latter, such as testability and modifi-
ability, are secondary attributes that govern the future relationship with the target cus-
tomer. Because these secondary attributes are often informally specified, if they are
specified at all, the discipline in tarchitectural design and associated system construc-
tion is critically important.

Care must be taken when the marketecture or marketect routinely accepts lesser
ility attributes than those desired by the development team. When a developer wants to
fix a bug or improve performance, but marketing thinks the product can be safely
shipped without the fix or that the current performance is acceptable, tempers can
flare, especially as you get closer to the projected release date. Keep things cool by
creating forums that allow both development and marketing to express their points of
view. For example, marketing needs to present arguments that a particular choice is
"good enough” for the target customer.

I’ve found it especially helpful to have customers participate in forums. I vividly
remember one customer demanding that we allow her to ship a beta version of our
software three months before the scheduled delivery date. Our software was a core

Early Forces in Solution Development

55

component to her software. Any delays in shipping our software affected her custom-
ers. She readily acknowledged that the beta had many issues that needed to be
resolved. However, its value was so compelling and her customer’s need was so great
that we eventually agreed to let her ship the beta subject to some strict terms and con-
ditions regarding its use and a firm commitment to upgrade the released version when
we thought it was ready.

Engineering (and especially quality assurance) needs to make certain that the
risks associated with

good enough

 choices are clearly understood. In the example I
just mentioned, engineering provided the customer with a very clear assessment of
how the product would fail outright under certain usage scenarios. This didn’t change
her mind—the beta still shipped—but it did enable her to equip her customer support
organization with answers should these problems arisen in the field.

As described in Chapter 1, most development teams must make a variety of tech-
nical compromises in order to ship the product on time. Managing these compromises
is difficult, as most compromises have their most pronounced negative effect in the
release that follows the release in which they were introduced. This is another reason
to demand that your tarchitect have the experience of two or more full release cycles.
Only experience can help you gauge the potential severity of a technical compromise

Sometimes “The Hard Way” Is the Only Way

Most of the time the only way to learn a domain is through long-term relation-
ships with customers. Among my responsibilities at a major digital content
security provider was the creation of a backend server architecture that sup-
ported multitier distribution of software. As I learned the capabilities of the sys-
tem, I also learned some of the lessons key members of the development team
had learned over several years of working with major software publishers.

One of the most interesting lessons lay in the management of serial num-
bers. As it turns out, almost every major software vendor has a unique
approach to managing serial numbers through its sales channel. Some create
them in real time. Others create serial number blocks that are distributed
according to predetermined algorithms to key channel participants. In this
approach, the numbers are used not only for identification of shipped soft-
ware but also for backend reporting and analysis. Other vendors use variants
of these approaches.

Supporting every variant requires close interaction between marketects
and tarchitects. In the case of this company, it was also vital to involve profes-
sional services, since they were the group that made everything “work” for a
customer. It was clear to me that the only way the system could have evolved
to support all of these demands was through the long-term relationships
established with customers that enabled key team members to learn the
problem domain.

56 The Difference between Marketecture and Tarchitecture

Bug Severities, Priorities, and Normalization

One technique that I have found very effective in managing ilities is to classify
bugs by severity and priority. Severity refers to the impact of the bug on the
customer. Setting it to a value ranging from 1 to 5 works well, where 1 is a
crash with no workaround and 5 is an enhancement request. Priority refers to
the importance of fixing the problem. A five point priority scale also works
well. A 1 is a bug that must be fixed as quickly as possible—such as one that
breaks the build or that is required to satisfy an important customer. A 5
means “fix it when you can.”

It is relatively easy to create consistency within your QA organization for
severities, because they can be objectively verified. Priorities, on the other
hand, are subjective. A misspelling in the user interface may get a 4 for sever-
ity, but different cultures will ascribe different priorities to fixing it. Americans
and Europeans are happy to give these kinds of bugs low priorities. Japanese
customers tend not to be as tolerant and give user interface bugs high priori-
ties. Because of their subjective nature, setting priorities consistently across
various members of the team can be difficult.

Fortunately, I learned how to improve prioritization consistency from one
of the very best QA managers I know, James Bach. When a code freeze
occurred, James would hold a bug review meeting that included all of the
major stakeholders involved with the release. In this meeting he would review
a sample of bugs (or all of them) to set initial priorities. Because all of the
major stakeholders were represented, we could learn when and why support
might prioritize a bug higher than product management would or why a senior
developer would be so concerned if a certain kind of bug appeared. Although
the meetings were rather long in the early part of the QA cycle, they had the
advantage of “calibrating” the QA team so that they could more effectively pri-
oritize bugs based on their collective perceptions.

These meetings worked well for our organization because we could
quickly come together, review the issues, and move on. They don’t work for
every team, and when they go poorly a lot of time can be wasted. If you try
this approach and find it isn’t working, consider an alternative approach that
my colleague Elisabeth Hendrickson has used: preset quality criteria.

Preset quality criteria act both as exit criteria and as a prioritization guide.
Suppose you define them as MUST, SHOULD, and MAY. Any violation of a
MUST is an automatic P1 bug, SHOULD violations became P2s, and so forth.
You then have to define the various criteria. You might define MUST as follows:

• The system MUST support 100 concurrent users.

• The system MUST retain all data created in a previous version
throughout an upgrade.

Creating Results in the Short Run while Working in the Long Run 57

and only a long term commitment to the integrity of the product will make absolutely
certain such compromises are removed.

The technology base dimension includes the full suite of possible technologies
available to the development team. These include the languages and compilers, data-
bases, middleware, messaging, as well as any “uber-tarchitecture” associated with the
system—a technical architecture that prescribes the basic structure of many classes of
application and that is delivered with an extensive array of development tools to make
it easy for developers to create applications within it. Examples of uber-tarchitectures
include J2EE, CORBA, Sun ONE and Microsoft .NET (all of which are also marke-
tectures, depending on your point of view).

Choices made within the technology base must support the tarchitecture as moti-
vated by the problem domain. This can be challenging, as developers are people with
their own hopes, desires, preferences, and ambitions. Unfortunately, “resumé-driven
design,” in which developers choose a technology because they think it’s cool, is a
common malady afflicting many would-be architects and a major contributor to inap-
propriate architectures. Marketects are also people, and “airplane magazine market
research” becomes a poor substitute for the hard and often mundane but necessary
market research and decision making that lead to winning solutions.

I have intentionally simplified my discussion of the early forces that shape a win-
ning solution. If you were to ask me about a discrete force not already discussed, such
as competitive pressures or requirements imposed by a regulatory agency, I would
lump its effect with one associated with the problem domain, the ilities, or the under-
lying technology. This process is not intended to diminish the effect of this force in
your specific situation. To consciously do this would be dangerous and would cer-
tainly miss the point. It is imperative that you remain vigilant in identifying the most
important forces affecting both your marketecture and your tarchitecture.

Creating Results in the Short Run while Working in the Long Run

World-class marketects approach their task from a perspective of time that easily dis-
tinguishes them from those less skilled. Instead of listening to what customers want
now (easy), they extrapolate multiple streams of data, including current requests, to

• The system MUST present an error dialog only if the dialog contains
directions on how the user can fix the problem.

One advantage to this approach is that you get people thinking about pri-
orities (both market and product) long before quality assurance is initiated.
Bugs are also managed by exception, with the review committee meeting to
handle those that for some reason don’t seem to match the preset quality criteria.

58 The Difference between Marketecture and Tarchitecture

envision what customers will want 18 to 24 months in the future (hard). To them, the
current release is ancient history, and they often use past tense to refer to the features
for the next release that are supported in the current tarchitecture as these require-
ments stabilize—even though this next release may be ten or more months in the
future. World-class marketects know that when a feature motivates a new capability or
other fundamental change to the tarchitecture they must watch it carefully, for a mis-
take here may not only hurt their ability to secure future customers but also harm their
ability to support existing customers. Envisioning the future on behalf of customers,
even when they can’t articulate what they want, is the world-class marketect’s key dis-
tinguishing feature.

Like their marketect counterparts, world-class tarchitects also extrapolate multi-
ple streams of data and envision a technological future that provides superior value to
their customers. One of the key reasons certain tarchitectures, such as the IP address-
ing scheme or the 5ESS phone switch, have provided enduring value is simply that the
key tarchitects behind them envisioned a future and built for it.

Projecting the Future

If the marketect and the tarchitect pursue different visions of a future, the total system
will fail. You can minimize this risk through a variety of simple diagrams that capture
how you want to create your future. I will refer to these diagrams as “maps,” even
though they do not map what currently exists but what you want to create. These maps
are reviewed briefly here and presented in greater detail as patterns in Appendix B.

The first map is the market map. It shows the target markets you’ve identified and
the order in which you will create offers for them. (An offering is a bundle of one or
more products or services). To make certain you can properly compete for these mar-
kets it is helpful to create a feature/benefits map, which shows the key features required
for each identified market segment and their associated benefits. Variants of these
maps are common in product development organizations. A market events and
rhythms map helps to ensure that the timing of your product releases matches the mar-
ket timing. Maintained by the marketect, but open to sharing and upgrades by all,
these maps are key communication vehicles for the marketecture.

The tarchitecture map is the necessary equivalent of the market-related maps. It
shows the natural evolution of the tarchitecture in service to the market segments, fea-
tures, and benefits identified by the marketing team. Essential features that may not be
supportable within the existing tarchitecture must be noted as discontinuities so that
the changes needed to resolve them can be managed. Alternative, emerging technolo-
gies that hold promise for substantially improving the product and/or for opening a
new market are shown so that marketects can prepare for these futures.

Examples of discontinuities abound. Consider an application originally designed
for a single language. If this language becomes successful, the marketect may include

Harnessing Feedback 59

internationalization in her map, but the corresponding entry in the tarchitecture map is
often a major discontinuity, especially if the team is not experienced in building such
applications. Another example is new business models envisioned by the marketecture.
It is doubtful that the original tarchitecture was planned with them in mind, so they
should be noted as tarchitectural discontinuities. In a similar vein, known problems
with the tarchitecture that grate against developer sensibilities should be identified so
that they can be addressed in future revisions.

Although teams can improve their performance by creating any of these maps, the
best results are obtained when all are created so that they work together, as shown in
Appendix B.

Harnessing Feedback

Marketects typically use the following formal and informal, external and internal
feedback loops to ensure that they receive the data they need to make sound decisions:

• Organizing and/or attending user conferences (their own and competitors)

• Reviewing first- and second-line technical or product support logs

• Reviewing feature requests generated by customers

• Interviewing salespeople for features they believe would significantly improve
the salability of the product (often referred to as a “win/loss analysis”)

• Meeting with key customers or advisory groups

• Meeting with industry or market analysts

Tarchitects employ similar feedback loops to stay abreast of technological trends.
Conferences, magazines, mailing lists, home computers, and insatiable curiosity all
provide them with data.

Drawing from different data sources results in divergence between the tarchitec-
ture and marketecture maps described in the previous section.

Fortunately, the creation and ongoing maintenance (e.g., quarterly updates) of
these maps are the best ways to prevent divergence and to share data. Other helpful
techniques include making the raw data that informs these maps available to both
marketects and tarchitects. For example, marketects usually obtain primary market
data via user conferences or focus groups. Inviting marketects to these events is a
great way of reaching consensus on key issues. Marketects, in turn, should be open to
reading the key technical articles that are shaping their industry or tarchitecture, and
the tarchitect is a key source for such articles. Note that my goal isn’t to change the
naturally different information-seeking and -processing methods of marketects and
tarchitects but to make certain that the subset of data used as a source for key deci-
sions are available to everyone on the project.

60 The Difference between Marketecture and Tarchitecture

Generating Clarity

A marketect has among his or her primary objectives and responsibilities the genera-
tion of a sufficiently precise understanding of what the development team is charged
with building so that the team can actually build it. The specific approach for achiev-
ing this varies and is heavily influenced by the structures, processes, and outcomes the
total development organization has chosen in building the system.

There are a variety of source processes and materials to select from. Marketects can
choose simple paper-and-pencil prototypes or more formally defined marketing require-
ments documents (MRDs). In response, development organizations can create models
using UML, entity-relationship models, dataflow diagrams, and so forth. Communica-
tion between the teams can take place in regular meetings that formally review
progress or in daily meetings that track incremental improvements.

What if They Say Something They Shouldn’t?

One simple and effective strategy for leveraging primary feedback is to ask
your developers to work directly with customers. Several of my clients have
been Silicon Valley startups. One created a marketplace for intellectual prop-
erty licensing and for several years ran a user conference to actively seek
feedback from customers on current and proposed product offerings. What
made this conference unique was that nearly the entire development staff
was present to make presentations, conduct demos, and work with key cus-
tomers. This direct involvement was a key element of the company’s ability to
build products that its customers truly wanted.

Of course, you might be thinking, “I’m not going to let my developers talk
with customers. What if they say something they shouldn’t?” This fear may be
real—sometimes developers do say things that they shouldn’t—but in practice
it isn’t that big a risk. If you’re really concerned, give your developers the fol-
lowing guidelines:

• Don’t make any promises on priorities.

• Don’t make any commitments.

• Don’t talk negatively about our product or our competitors’ products.

• Don’t say, “That should be easy.” It sets expectations too high and can
kill any negotiation to have the customer pay for the modification.

• Don’t say, “That’s too hard.” It can prematurely stop conversation about
what the customer really wants and ways to achieve this.

• Listen nonjudgmentally. They are your customers, and they’re not stu-
pid. They might be ignorant, but they’re not lazy. They might have prior-
ities you don’t know about. They’re neither your fan nor your adversary.

Generating Clarity 61

Chief among the variables that determine appropriate structures, processes, and
outcomes are the size of the team and the number of external interactions it must sup-
port. (See [Hohmann 96] for an in-depth description of these variables). Larger
projects require a level of formality and detail that would suffocate smaller ones.
Other variables, including team culture, are vitally important.

The marketect has similar objectives and responsibilities but for a very different
audience. He must make certain the prospective client is clear on how the system will
impact its environment. If the system can be extended, such as in a browser with a
plug-in architecture, the API must be made available to the appropriate developers.
Data sheets outline the broad requirements, while detailed deployment requirements
enable customers to prepare for the introduction of the system within their idiosyn-
cratic IT environment. Performance and scalability whitepapers are common for any
software that has a server component.

Managing Cultural Differences in Software Development

In the course of my career I’ve managed several groups of technical and mar-
keting personnel, including those from Russia, Germany, India, Israel, China,
Japan, Korea, Poland, Canada, and Mexico. At times I’ve had to manage a
worldwide team focused on the same deliverable.

There are, of course, several challenges in managing a worldwide devel-
opment organization, and many of them are logistical. For example, it is
nearly impossible to schedule a simple meeting without inconveniencing
some members of the team—08:00 U.S. PST is 16:00 in Israel. Some devel-
opment teams have it even harder—12-hour time differences are common in
Silicon Valley. Other examples exist in creating or adopting international stan-
dards for naming conventions, coding standards, source code management
systems, and so forth. Most of these logistical challenges are relatively easy
to overcome given a sufficiently motivated workforce.

A bigger challenge, and one that I’ve found exhibits no ethnically based
pattern, is the relationship that a given group of developers have to their soft-
ware process. These relationships actually form a culture although not the kind
we commonly associate with the word. My own bias is heavily weighted toward
processes and practices promoted by the Agile Alliance (www.agilealliance.org).
However, at times I need to subordinate my own preferences to accommo-
date the dominant culture of the team I’m managing. Thus, while I firmly believe
that in most cases iterative/incremental development practices are most
effective, sometimes waterfall models are more appropriate, not because they
inherently produce a better result but because the culture of the team wants
them. Marketects and tarchitects both must pay close attention to these
potential cultural differences and choose approaches and processes that
work for a given culture.

www.agilealliance.org

62

The Difference between Marketecture and Tarchitecture

The marketect is critically dependent on the flow of appropriate information from
the tarchitect. An unfortunate, but all too common, situation occurs when last-minute
changes must be made to customer-facing documentation and sales collateral because
the tarchitect realizes that they contain some grave error resulting from a misunder-
standing by the marketect. Even more common is when the tarchitect sheepishly
informs the marketect that some key feature won’t make the release. Printed material
must be created weeks and sometimes even months in advance of a product launch,
salespeople must be educated on the product, existing customers must prepare for the
upgrade, and so forth. The marketect is partially responsible for making certain all of
these happen on time and with accuracy.

Working in Unison

I reject the images perpetuated by Dilbert that marketing departments are buffoons
and that engineering departments must bear the pain they incur. Instead, marketects
and tarchitects should work together to ensure that the total system achieves its objec-
tives. Lest I be misunderstood, I will try to be much more explicit: There is much for
each side to gain from a strong, collaborative relationship. While this sounds good,
learning to work in unison takes time and effort. Are the potential benefits worth the
effort?

Let’s first consider this question from the perspective of the marketect. Over the
years I’ve found that marketects routinely underestimate or fail to understand the true
capabilities of the system created by the development team. Working with tarchitects
or other developers can expose marketects to unexpected, and often delightful, system
capabilities. Think about systems that can be extended via plug-ins or APIs. I was
delighted when a member of the professional services team of an enterprise-class soft-
ware company I worked for elegantly solved a thorny customer problem by hooking
up Excel directly to the system through the client-side COM API. We had never
intended the API to be used in this manner, but who cares? One of the primary goals
of creating extensible systems is that you believe in a future that

you can’t envision

(extensibility is explored in greater detail in Chapter 8).
Now consider features that can be offered because of choices the development

team made when implementing one or more key requirements. In one project I man-
aged, the development team had to build a functional replacement of an existing
server. The old architecture had a way of specifying pre- and postprocessing hooks to
server messages. Unfortunately, the old architecture’s solution was difficult to use and
was not widely adopted, so the development team implemented an elegant solution
that was very easy to use. Among other things, they generalized the pre- and postpro-
cessing hook message handlers so that an arbitrary number of hooks could be created
and chained together. The generalization was not a requirement, but it created new
features that the marketect could tap.

Working in Unison 63

A final set of examples illustrates marketing’s ability to exploit development tools
for customer gain. I’ve co-opted and subsequently productized developer-created
regression test suites for customers so that the operational health of the system could
be assessed by the customer onsite. I’ve converted log files originally created by
developers so they could be used as sources of data for performance analysis tools.
I’m not advocating goldplating, which is wasteful. But marketects who fail to under-
stand the capabilities of the system from the perspective of its creators lose a valuable
opening for leveraging latent opportunities. By establishing strong relationships with
tarchitects, marketects can quickly capitalize on their fertile imaginations.

Reflexively, a tarchitect’s creative energy is most enjoyably directed toward solv-
ing the real problems of real customers. By maintaining a close relationship with mar-
ketects, tarchitects learn of these problems and work to solve them. I’m not referring
to the problems that the tarchitect would like to solve, that would be cool to solve, or
that would help them learn a new technology. I’m talking about the deep problems
that don’t lend themselves to an immediate solution and are captured on the maps
described earlier. Working on these problems provides a clear outlet for the tarchi-
tect’s strategic energy.

The following sections describe activities that have proven effective in fostering a
healthy working relationship between the marketect and the tarchitect.

Reaching Agreements

Agreement on the project management principles and resultant practices driving the
project. A variety of principles can drive any given project. Project leaders select the
specific techniques for managing the project from them. Differences on principles and
resulting techniques can cause unnecessary friction between marketects and tarchi-
tects which will be felt throughout the entire project organization.

To illustrate, many software projects are driven by a “good enough” approach to
quality assurance, but some, especially those dealing with human safety, require much
more rigor. These goals motivate marketects and tarchitects to utilize different princi-
ples. These different principles motivate different project management practices. Not
better or worse, just different.

Identifying and agreeing to the set of principles that drive the project, from the
“style” of documentation (informal versus formal) to the project management tools
used (MS Project or sticky notes on a shared wall), are an important step toward mar-
ketects and tarchitects working in unison. As described earlier, this agreement is also
vital to meeting the cultural requirements of the development team.

Making Data Available

Visibility to maps and features is crucial. None of the approaches I’ve described for
capturing and planning for the future are much good if the data are hidden. Get this
information into a forum where everyone can share it. Some teams accomplish this

64 The Difference between Marketecture and Tarchitecture

through an intranet or a Lotus Notes database. Other teams are experimenting with
Swikis, Twikis, or CoWebs with good results, although my own experience with these
tools has been mixed and is heavily influenced by team culture. Other teams simply
make lots of posters available to everyone. Visibility, in turn, is built on top of a corpo-
rate culture founded on trust and openness. Putting up posters merely to look good
won’t fool anyone. Making a real commitment to visibility—and dealing with the
inevitable issues your project team members will raise—is a powerful tool to ensure
marketect and tarchitect cooperation.

Context Diagrams and Target Products

Context diagrams are a great tool for keeping the marketect and the tarchitect in step.
A context diagram shows your system in context with other systems or objects with
which it interacts. It typically shows your system as a “single box” and other systems/
objects as boxes or stylized icons, with interactions between systems shown using any
number of notations. Avoid formal notations in context diagrams and instead focus on
simple descriptions that capture the important aspects of the relationships between the
items contained within the context diagram. Context diagrams are not a formal picture
of the architecture but a “higher level” shot that shows the system in the context of its
normal use.

Context diagrams are useful for a number of reasons.

• They identify the technologies your customers use so that you can make certain
you’re creating something that “works” for their environment. This can range
from making certain you’re delivering your application using a platform that
makes the most sense to ensuring that the right standards are used to promote
interoperability among various components.

• They identify potential partnerships and market synergies. One of the most
important applications of the whole-product concept is identifying partnerships
that create a compelling augmented product and defining a map to a potential
product.

• They clarify your value proposition. Clearly understanding your value proposi-
tion is the foundation of a winning business model.

• They identify the integration and extension options you need to support in the
underlying architecture. A good context diagram will help you determine if you
need to provide integration and/or extension capabilities at the database, logic,
or even user interface levels of your application. They are a guide to the design
of useful integration and extension approaches. (See Chapter 8 for more details.)

• They help you understand what deployment and target platform options make
the most sense for your target customer. If you’re selling to a target market that
is generally running all other applications in house, it doesn’t make sense to

Chapter Summary

65

offer your part of the solution as an ASP. If your context diagram indicates that
all of your partners use a specific technology to integrate their applications, it is
probably best if you use it, too.

The marketect must take primary responsibility for the context diagram, although,
of course, other members of the team can and should provide input to it. For example,
the tarchitect can identify key standards, salespeople may suggest new entries based
on how customers use the product, and so forth.

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Chapter Summary

■

The marketect (marketing architect) is responsible for the marketecture (mar-
keting architecture).

■

The tarchitect (technical architect) is responsible for the tarchitecture (technical
architecture).

■

Marketecture and tarchitecture are distinct but related.

■

Three forces that are particularly influential in the early stages of solution
development are the

ilities

, the problem domain, and the technology base.

■

To become an architect you have to have extensive experience in the problem
space and have worked on systems in this space for a relatively long period of
time.

■

You should classify bugs along two dimensions: severity and priority. Severity
refers to the impact of the bug on the customer. Priority refers to the impor-
tance of fixing it.

■

Use the patterns in Appendix B to create a strategic view of your product and
its evolution.

■

Winning solutions are much more likely when marketects and tarchitects work
together.

■

Context diagrams are an essential tool for creating winning solutions. Learn to
use them.

Check This

❑

We have a marketect.

❑

We have a tarchitect.

❑

We have a bug database that classifies each bug according to severity and
priority.

66 The Difference between Marketecture and Tarchitecture

❑ We have followed the patterns in the Appendix and have created a market map,
a feature/benefit map, a market events and rhythms map, and a tarchitecture
map. These are in a place that is easily accessible for every member of the
team.

❑ Developers who meet with customers have been properly trained on what they
can and cannot say.

❑ The marketect has created a context diagram for our system.

Try This

1. What is the natural tarchitecture of your application domain? Do you have the
requisite skills and experience to work effectively in this application domain?

2. What are the specific responsibilities of marketect? tarchitect?

3. How do the ilities match between the engineering/development team and the
customer? Are there significant differences?

4. How do you obtain feedback from your customers?

303

Index

A
Accountability, 270–271
Activation, software, 258, 271–272
Adoption, S-shaped curve of, 42–44
Advertising, 41
Ahn, Myron, 1, 235
Annual software license, 71–72

characteristics of, 82
enforcement, 88–93

America Online (AOL), 224
APIs

exposure of, 156–157
integration through, 155–158
and license management, 91
managing over multiple releases, 169–170
stabilization of, 158
upgrading of, 219

Application service provider (ASP), 130, 133
Architecture

advantage conveyed by, 7
alternative thoughts on, 2–4
creating, 7–9
criteria for replacement of, 6, 8
definitions of, 1–2
deployment, 129–144
evaluation of, 8–9
evolution and maturation of, 9–16

and installation, 206–209
marketing. See Marketecture
modular, 227–228
patterns, 9
principles, 17–19
subsystems, 2–3
team for, 21–22
technical. See Tarchitecture
tips for, 16–17
views of, 20–21

Artifact, defined, 248
Audit trails, 85
Auditability, in secure system, 269
Augmented product, 44, 45
Authentication, 86

in closed systems, 267
in hybrid systems, 268–269
and marketecture, 276
in open systems, 267–268

Authorization, 266
and installation, 210

Automatic forwarding, of logs, 242

B
Bach, James, 56, 126
Back doors, 275–276
Backend integration, 92

304 Index

Background processing, 200
Backward compatibility, 170
Behavior tracking and auditing logs, 236

suggested content for, 239
Bootstrapping, 228
Boundaries, defining, 7
Brand

changing elements of, 179–181
customization of, 179
elements of, 173–178
importance of, 47
in-license, 178
legal issues, 177–178

Bugs
dealing with, 17
fixes, charging for, 255
prioritizing, 56–57

Build number, 252, 253
Bundles, in business model, 69
Business model, 40

in business plan, 36
choosing, 93–94
common types of, 69–81
defined, 67
enforcement issues, 83
ideal, 68
and installation, 207
and license model, 67
market maturity and, 93–94
multiple, 70
and pricing model, 75–76
rights associated with, 81–82
tarchitectural support for, 82–87
verification, 84

Business plan, 28
components of, 35–36
importance of, 35
updating of, 37

C
Caches, 199–200
Capabilities

defined, 12
vs. features, 11

Capacity, defined, 193
Capacity planning logs, 236

suggested content for, 238
Caps.ini file, 231–232
Cardinality, 187
Cash flow, modeling of, 137
Certificate revocation, 268
Certification, 166–167

digital, 268
upgrade, 219

Change protocols, 38–39
Channel strategy, in business plan, 36
Code tags, 15
Cohesion, 19
Colors, brand identification by, 177
Common Log Format, 242
Compaction, of logs, 243
Compatibility, configuration for, 229
Compensating transactions, 192
Competitive analysis, in business plan, 36
Complete release, 249
Component

defined, 248
name of, 174–176
physical location of, 174
prerequisite relationships, 248
ripple ugprade, 218

Concept proposal, 28, 37
Conceptual models, 186
Concurrent resource management, 76–77

characteristics of, 82
Confidentiality, in secure system, 270
Configuration parameters, 229

heuristics for, 232–233
setting, 230–232

Configuration
during execution, 230
during upgrades, 223
during initialization, 230
streamlining of, 229
system context of, 228–230
usability and, 227–228
value setting, 230–232

Consumptive resource management, 77–78
characteristics of, 82

Index 305

Context diagrams, 64–65
Contracts

basics of, 101
and conflicts, 106–107
honoring, 107–108
license terms, 102–106
payment issues, 109–111

Contractual volume licensing, 73–74
Controlled release, 250
Copy protection, 84
Cost analysis, in business plan, 36
Costs saved, business model based on, 79–80
Coupling, 18
Crackers, counteracting, 92
Critical risks, in business plan, 36
Cross-platform code. See Portability
CRUD operations, 149
Cultural differences, and tarchitecture, 61
Cunningham, Ward, 13
Customers

characteristics of,134–135
and deployment architecture, 132–135
feedback from, 59–60, 168
and installation, 205–206
and integration and extension, 163
message to, 47–48
relations with, 51–59
software control by, 132–133, 145–147
types of, 42–44
and upgrades, 219, 221
in user community, 167–168
vendor confidence of, 133–134
working with, 12–13

Customization information, upgrades and, 223

D
Data capture, for business models, 83
Data migration

options for, 141
procedure for, 221, 223
in upgrading process, 218–219, 224

Data retention, in upgrading process,219
Data security, 133, 141

case study of, 135

Databases, software upgrades and, 221, 223
Debug label, for log files, 241
Debugging logs, 236

suggested content for, 238
Degradation, sources of, 13
Delivery

promptness of, 16
of usable product, 15

Deployment architecture
case study of, 135
choices of, 130–131
choosing, 138, 139
defined, 129
customer influences on, 132–135
corporate influences on, 136–138
geographical issues, 134, 137–138
hybrid, 132
information appliance and, 140
maintenance of, 138–139
and software architecture, 140–142
variables in, 141

Design documents, 29
Development

plan for, 28–29
of product, 30
parallel development, 153
rhythm of, 15

Digest function, 269
Digital certificates, 268
Digital identity management, 264

authentication, 266–269
authorization, 266

Digital signature, 270, 271
for software license, 89, 272

Directories, locating, 228
Dispute resolution, security and, 277–278
Distribution

defined, 249
channels, 41
electronic, 256
and software activation, 258

Domain model, 149–150
Dongle, 273
Dot release, 252
Dynamic logging, 241

306 Index

E

E-mail, security for, 268–269
Early adopters

and business model, 93
in adoption cycle, 43
and upgrades, 224

Early majority
in adoption cycle, 43

Encapsulation, 18
Encryption, 269–270
Enterprise application providers (EAPs), 131
Entropy reduction, 14

techniques for, 15
Error label, 241
Error logs, 236

suggested content for, 238
Error recovery logs, 236

suggested content for, 238
Error response, 189
ETL (extract, transform, load) scripts, 162–163

charging for, 163
in upgrades, 221

Exceptions, logging of, 242
Execution, configuration during, 230
Executive overview, in business plan, 35
Expected product, 44, 45
Extension, 36

at business logic layers, 154–159
layered business architectures and, 147–154
and locus of control, 155
motivations for, 145–147
and persistent data, 159–163
through registration, 158–159

F

Failure, dealing with, 8
Failure recovery, 192

and performance, 199
Feature/benefit map, 58, 291–292
Features, 69

vs. capabilities, 11
customer feedback in determining, 12–13
documenting, 10, 12

learning curve for, 220
as marketing tool, 10
removal of, 222
and technological debt, 13

Feedback, 59
and features, 12–13
unexpected, 60
to user, 187–188, 197–198

Fees
negotiation of, 111
types of, 109–111

Files, keeping track of, 228
Financial analysis, in business plan, 36
FIPS (U.S. Federal Information Processing

Standards), 277
Flat files, design of, 240
Flexibility

customer requests for, 11
in deployment architecture, 137
reducing through successive freezing, 38

4 P's of Marketing, 40
Fractional release, 249
Freezing, successive, 38
Full release, 249

identification of, 251
Future of commercial software, 142

G
General release, 250
Generic product, 44
Germeraad, Paul, 292
Globally unique identifiers (GUIDs), 85
Granularity, choosing, 19
Graphics, brand identification by, 177

H
Hackers, 271
Hardware

business models based on, 78–79, 82, 87
Hardware binding, 259, 272–273
Hardware upgrades, 218
Honor system, 88
Hook tables, 161–162

Index 307

I

Icons, brand identification by, 177
Identified resource management, 77

characteristics of, 82
Ilities, 53, 54

dealing with, 56, 83–84
Impact analysis, in business plan, 36
Info label, 241
Information appliance, 140
Information security, 133, 135, 141, 264

importance of, 273–274
techniques of, 274

Infrastructure investment, effect on deployment
architecture, 136–137

Initialization, configuration during, 230
Injection approach, to license management, 90–91
Innovations, adoption of, 42
Innovators, in adoption cycle, 43
Installation

and architecture, 206–209
and business model, 207
case study of, 207
caveats regarding, 210–212
confirmation of, 212
customer information for, 210–211, 212–213
customer issues with, 205–206
dangers of, 204
developers and, 208
environment issues, 208
interruptibility of, 211
licensing issues, 207
out-of-box, 203–205
preconditions for, 209–210
procedures for, 209–212
responsibilities for, 207–208
roles in, 208
testing, 213–214

Integration
APIs and, 155–158
backend, 92
at business logic layers, 154–159
example of, 147
layered business architectures and, 147–154
and locus of control, 155

motivations for, 145–147
and persistent data, 159–163

Integrity, in secure system, 269–270
Interfaces, 18
Internationalization, 189–190

case study of, 190
Internet business service providers (IBSPs), 131
Interpreted language, for portable applications,

119–120

K
Krutchen, Philippe, 20

L
Labels, in logs, 241
Laggards, in adoption cycle, 43
Lampson, Butler, 199
Late majority, in adoption cycle, 43
Latency, defined, 193
Layered business architectures

creation of, 151–154
domain model layer, 149–150
illustrated, 148
parallel development of, 153
persistent data layer, 150–151
services layer, 149
spiking and, 151–152
user interface layer, 147–149

License agreements, 167–168
License generator, 89
License managers

branding and user interface issues, 92
business model support of,91
capabilities of, 92–93
client, 89–90
home-grown, 88–89
license format and content, 92–93
license distribution, 93
operational environment issues 92
platform and operating system support of, 92
security issues of, 92
server component of, 90
third-party, 89, 90

308 Index

License model, 67
enforcement of, 87–93
types of, 71–80
verifying parameters of, 84

Licenses
from component vendors. See Technology in-

licensing
digitally signed, 272

Lightweight Directory Access Protocol (LDAP),
266

Limited release, 250
Localization, as user issue, 190
log4j, 242
Logging levels, 241–242
Logical view, of system, 20
Logs

APIs for, 242
audiences for, 234
automatic forwarding of, 242
case study of, 278
data categories in, 237
of exceptions, 242
format of, 239–240
information contained in, 237–239
installation, 210–211
logging libraries, 242
logging services, 243–244
management of, 241–242
postprocessing data for, 243
purposes for, 235–237
removable, 242
repurposing, 243
security of, 242
standards for, 242
vs. trace statements, 239

Longevity, of architecture, 4
Loose coupling, 18–19
Lunde, Ron, 218, 280

M

Machine binding, 272
Main message, 47–48
Maintenance release, 252

Major release, 252
Managed release, 250
Managed service provider (MSP), 130–131, 133
Market analysis, in business plan, 36
Market events/market rhythms, 58, 289–291
Market map, 58, 288–289
Market segment

defined, 41
niches within, 42

Market segment preferences, 156
Marketecture

case study of, 52, 55
and certification, 166–167
clarity in, 60–62
defined, 51–52
and licensing agreements, 168–169
and professional services, 164
projecting the future, 58–59
skills involved in, 57–58
and tarchitecture, 54, 55, 57, 68
and training programs, 166
and user community, 167–168

Marketing communication, 41
Marketing requirement documents (MRDs), 26, 29

and configuration management, 248
formality, 29, 37, 39, 60
importance of, 37

Marketing strategy, in business plan, 36
MD5 digest function, 269
Mental models, 185–186
Metaphor

example, 186
importance of, 186
relationship to marketecture, 186

Metering, 76
business models based on, 76–78
characteristics of, 82
methods of, 86–87
and tarchitecture, 86–87
user authentication, 86

Milestone payments, 110
Minor release, 252
Modular architecture, 227–228
Module release, 249

Index 309

Moore, Geoffrey, 43
Multiplatform development, 32

N

Names
attributes of, 175
in configuration and log files and system mes-

sages, 176
conventions for, 156
in deployment model, 174
internationalization of, 176
of key components, 174, 176
responsibility for, 174
volatility of, 176–177

Network availability, 192
Niche markets, 41

0

OEM market, 74
One-way hash, 269
Open source software (OSS), 79

licensing of, 108–109
Operational status logs, 236

suggested content for, 239
Out of box experience (OOBE), 203–205

P

Parallel development of layered architecture, 153
Parameterization, 19
Partial release, 249

identification of, 252–3
Partner preferences, 156
Password security, 274
Patch release, 249

identification of, 253–254
Pay after use software, 73

characteristics of, 82
Peak loads, 133
Per-thread logging, 241
Per-use software license, 73, 207
Percentage of revenue fees, 110

Performance
defined, 193
and marketecture, 195–197
and tarchitecture, 198–201
terminology of, 193–195
user response, 197–198

Performance parameters, 229
Performance tuning logs, 236

suggested content for, 238
Perpetual license, 71

characteristics of, 82
Persistent data

business logic and, 160
ETL scripts, 162–163
hook tables, 161–162
spreadsheet pivot tables, 162
user fields, 160–161
views, 159–160

Persistent data layer, 150–151
Persistent storage, standards-based, 120
Physical view, of system, 20
Piracy, 265

reducing, 84, 259
techniques of, 272

Pivot tables, 162
Place (in marketing), 41
Platform preferences, 155–156
Portability

applications and, 119–121
business case for, 116–119
case study of, 118
configurations and, 122–126
facilitation of, 121–126
and installation, 211
motivations for, 116
importance of, 228
perceived advantages of, 115–116
platform issues, 121

Portable applications
business logic, 120
language for, 119–120
obstacles to, 120
storage issues, 120
XML in, 120–121

310 Index

Positioning, 45, 47
effectiveness of, 46

Potential product, 44
Prelaunch, 33–34, 37
Prepaid fees, 109
Pricing model, 40–41, 75–76
Private key encryption, 270
Problem domain, 53
Process view, of system, 20
Product

augmented, 44, 45
branding of, 47
distribution of, 41
expected, 44, 45
generic, 44
importance of, 40
potential, 44
pricing of, 41
promotion of,41
target, 45, 64–65
technical vs. market superiority of, 45
whole, 44–45

Product description, in business plan, 36
Product development

preparation for, 34–35
real-world, 33–35

Product development processes
augmentation of, 37–40
enumerated, 26–33
real-world, 37

Product differentiation, in business plan, 36
Product extensions and futures, in business plan, 36
Product positioning, in business plan, 36
Product proposal, 28, 37
Professional services, marketecting of, 164
Profilers, 199
Profitability, architecture and, 5
Program family, defined, 248
Project management

business plan, 35–36
concepts in, 40–48
defined, 25
importance of, 26
interaction with engineering, 27

and product development, 26–33
protocol changing, 38–39
real-world view of, 33–35, 37–40

Product management patterns, 285
applying, 286–287
feature/benefit map, 291–292
market events/market rhythms, 289–291
market map, 288–289
results of, 287–288
tarchitecture roadmap, 292–294

Promotion, in marketing, 41
Public key encryption, 270

Q
Quality assurance

aspects of, 30–31
case study of, 31–32
importance of, 30
involvement in training programs, 165
in release management, 247
and technology in-licensing, 99

R
Rational 4+1 model, 20–21
RC4 algorithm, 270
Recycle bin, importance of, 40
Registration, software, 258

extension through, 158–159
Release, defined, 249
Release checklist

for core product management, 282
for engineering/development, 281
knowledge transfer, 282–283
for professional services, 282
for quality assurance, 281–282
release activities, 283
for sales, 282–283
technical publications, 282
for technical support, 283
tracking information, 281

Release management
audiences for, 250

Index 311

defined, 247
guidelines for, 260–261
importance of, 247–248
influences on tarchitecture, 259–261
product in, 249
release identification, 251–256
serial numbers, 258
SKU management, 256–258
software activation, 258

Reliability, defined, 193
Remittance requirements, 83
Rental software, 72

characteristics of, 82
Replacement, indications for, 6
Reporting requirements, 83
Request

cancellation of, 190–191
undoing of, 191–192

Response time, defined, 193
Revenue forecast, in business plan, 36
Revenue obtained, business model based on, 79–

80
Reversion, 220
Revision, defined, 248
Rework, in upgrading, 217–218
Rijndael encryption, 270
Ripple upgrades, 218
Risk management, 265
Role based access control (RBAC), 266
Royalty market, 74

S

S-shaped curve of adoption, 42–44
Sales cycle, 136
Scalability, defined, 193
Security

algorithms for, 274–275
challenges to, 264–266
dangers of back doors, 275–276
digital identity management, 264, 266–269
in dispute resolution, 277–278
importance of, 263–264
and industry growth, 277

information security, 264, 273–274
of logs, 242
and marketecture, 276–278
need for, 265–266
regulatory issues, 277
risk management, 265
and session data, 156
software security, 264, 271–273
transaction security, 264, 269–271
and trust, 277

Self-service operations, 200
Serial numbers, 258

importance of, 258–259
management of, 55
as security measure, 271–272

Service-based business models, 79
characteristics of, 82

Services layer, 149
SHA1 digest function, 269
Shared resources, 192
Signature, digital, 270, 271, 272
SKUs, 256

allotment of, 258
assigning, 256–257

Sleepycat Software, 80
Slogans, brand identification by, 177
Smith, Dave, 235
Social structure, architecture and, 5
Software activation, 258

importance of, 259
as security measure, 271–272

Software security, 264
costs and benefits of, 273
hardware binding, 259, 272
protecting validation code, 272
techniques of, 271–273

Solution development, 53
Speed

network, 192
performance, 193–197, 198–201
user response, 197–198

Spiking
defined, 151
illustrated, 152

312 Index

Spiking continued
importance of, 153
incremental development using, 151–152

Splash screens, brand identification by, 177
Spreadsheet pivot tables, 162
SSL (Secure Socket Layer), 270
Stability, of architecture, 4
Standards-based persistent storage, 120
Strategic fit, in business plan, 35
Studios, in business model, 69
Subcomponents, managing, 206
Subscription software, 72–73

characteristics of, 82
Subsystems

integrity in, 3
motivators for design of, 2–3
need for, 2

Successive freezing, 38
Suites, in business model, 69
Superiority, technical vs. market, 45
Support model, in business plan, 36
SWOT analysis, 36
Synchronization, of logs, 243
System configuration management logs, 236

suggested content for, 239

T

Tarchitecture
and business model, 82–87
case study of, 52, 55
costs of, 84
cultural issues in, 61
data availability, 63–64
and decision making, 63
defined, 51
and marketecture, 54, 55, 57, 68
performance and, 198–201
projecting the future, 58
release management and, 259–261
teamwork and, 62–64
and training materials, 166
and user interface design, 187–193

Tarchitecture roadmap, 58, 292–294

Target product, 45
context diagrams and, 64–65

Team
building of, 21–22
cultural issues of, 61
working as, 62–64

Technological currency, 16
Technological debt, 14

causes of, 16–17
dealing with, 14–15

Technology in-licensing, 17
access to source code, 106
case study of, 103, 107
conflict resolution, 106–107
contracts for, 101
duration of, 102–103
economic issues, 110–112
exclusivity issues, 104
geographical scope of, 103
honoring agreements, 107–108
and installation, 206
management of, 108
marketing issues, 106
management of brands, 178
noncompete agreements, 105–106
OSS (Open Source Software) and, 108–109
payment and renewal terms, 105, 109–110
risks and rewards of, 98–101
reasons for, 97
restrictions on, 105
scope of, 102, 104
sublicensing, 104
termination of, 104
training and development issues, 111

Test-driven design, 31
Threading, 199
Throughput, defined, 193
Time-based access or usage, 71–74

characteristics of, 82
and tarchitecture, 84–85

Timeouts, 192
Total addressable market, defined, 41
Total available market, defined, 41
Trace statements, 239

Index 313

Trademark symbol, 177
Trademarks, 173

proper use of, 178
Training programs, 165–166
Transaction-based business models, 74–76

characteristics of, 82
and tarchitecture, 85–86

Transaction security, 264
accountability, 270–271
auditability, 269
confidentiality, 270
integrity, 269–270

Transaction support, 188–189
Transactional deployment, 131
Transactional volume licensing, 73–74
Transactions

business models based on, 74–76, 82
characteristics of, 86
defining, 85
identification of, 85
relation to business model, 85

Trialware, 11

U
Uninstallation, 213–214
Universally unique identifiers (UUIDs), 85
Update release, 249
Upgrades

APIs in, 219
certification of, 219
and configuration and customization informa-

tion, 223
customer readiness for, 221
customer resistance to, 219
data migration during, 218–219, 221, 223
data retention during, 219
facilitating, 221–224
fears about, 217–220
and license compliance, 17
and license rights, 67, 81–82
market maturity and, 224–225
new features and, 220
number and timing of, 221
from old versions, 223, 224

policies regarding, 141
replacement vs. coexistence, 223–224
reversion capability during, 220
ripple, 218
system accessibility during, 220
warning customers, 62

Usability, 183
financial importance of, 183–185
market issues and, 185
metaphors for, 185–186

Usage-based fees, 109–110
User community, 167

nurturing, 167–168
User feedback

importance of, 187–188
performance and, 197–198

User fields, 160–161
User interface design, 183–184

case study of, 190
tarchitecture and, 187–193
user models, 188

User interface layer, 147–149

V
Validation code, protecting, 272
Value setting, 230

procedures for, 231–232
Variation

defined, 248
identification of, 255–256

Version
defined, 248
number, 174

Versioning, and release management, 260–261
Viewers, for logs, 243
Views, 159–160
Voice, brand identification by, 177
Volume capabilities, checking, 92
Volume licensing, 73–74, 207

W
Warning label, 241
Web-based software deployment, 131

314 Index

Whole product, 44
and marketecture, 52
misuse of term, 45

Windows Event Logs, 242
Workflow support, 188
W3C Extended Log Format, 242

X
XML, in portable applications, 120–121

	Contents
	Foreword
	Foreword
	Preface
	Chapter 3 The Difference between Marketecture and Tarchitecture
	Who Is Responsible for What?
	Early Forces in Solution Development
	Creating Results in the Short Run while Working in the Long Run
	Projecting the Future
	Harnessing Feedback
	Generating Clarity
	Working in Unison
	Reaching Agreements
	Making Data Available

	Context Diagrams and Target Products
	Chapter Summary
	Check This
	Try This

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

