Preface

FIGURE P-1

Early in my career, I saw a full-page advertisement in a magazine that
showed one keyboard key, similar to the Enter key, labeled with the
word “Integrate” (see Figure P-1). The text below the key read, “If
only it were this easy.” I am not sure who or what this ad was for, but it
struck a chord with me. In considering software development, I
thought, surely that would never be achievable because, on my project,
we spent several days in “integration hell” attempting to cobble
together the myriad software components at the end of most project
milestones. But I liked the concept, so I cut out the ad and hung it on
my wall. To me, it represented one of my chief goals in being an effi-
cient software developer: to automate repetitive and error-prone pro-
cesses. Furthermore, it embodied my belief in making software
integration a “nonevent” (as Martin Fowler has called this) on a
project—something that just happens as a matter of course. Continu-
ous Integration (CI) can help make integration a nonevent on your
project.

Integrate!

Xix



XX Preface

What Is This Book About?

Consider some of the more typical development processes on a soft-
ware project: Code is compiled, and data is defined and manipulated
via a database; testing occurs, code is reviewed, and ultimately, soft-
ware is deployed. In addition, teams almost certainly need to commu-
nicate with one another regarding the status of the software. Imagine if
you could perform these processes at the press of a single button.

This book demonstrates how to create a virtual Integrate button to
automate many software development processes. What’s more, we
describe how this Integrate button can be pressed continuously to
reduce the risks that prevent you from creating deployable applica-
tions, such as the late discovery of defects and low-quality code. In
creating a CI system, many of these processes are automated, and they
run every time the software under development is changed.

What Is Continuous Integration?

The process of integrating software is not a new problem. Software
integration may not be as much of an issue on a one-person project
with few external system dependencies, but as the complexity of a
project increases (even just adding one more person), there is a greater
need to integrate and ensure that software components work
together—early and often. Waiting until the end of a project to inte-
grate leads to all sorts of software quality problems, which are costly
and often lead to project delays. CI addresses these risks faster and in
smaller increments.

In his popular “Continuous Integration” article,’ Martin Fowler
describes CI as:

. . . a software development practice where members of a team inte-
grate their work frequently, usually each person integrates at least
daily—leading to multiple integrations per day. Each integration is

1. See www.martinfowler.com/articles/continuousIntegration.html.


www.martinfowler.com/articles/continuousIntegration.html

Preface

XXi

verified by an automated build (including test) to detect integration
errors as quickly as possible. Many teams find that this approach
leads to significantly reduced integration problems and allows a team
to develop cohesive software more rapidly.

In my experience, this means that:

* All developers run private builds® on their own workstations
before committing their code to the version control repository to
ensure that their changes don’t break the integration build.

* Developers commit their code to a version control repository at
least once a day.

* Integration builds occur several times a day on a separate build
machine.

* 100% of tests must pass for every build.

* A product is generated (e.g., WAR, assembly, executable, etc.)
that can be functionally tested.

* Fixing broken builds is of the highest priority.

* Some developers review reports generated by the build, such as
coding standards and dependency analysis reports, to seek areas
for improvement.

This book discusses the automated aspects of CI because of the
many benefits you receive from automating repetitive and error-prone
processes; however, as Fowler identifies, CI is the process of integrat-
ing work frequently—and this need not be an automated process to
qualify. We clearly believe that since there are many great tools that
support CI as an automated process, using a CI server to automate
your CI practices is an effective approach. Nevertheless, a manual
approach to integration (using an automated build) may work well
with your team.

2. The Private (System) Build and Integration Build patterns are covered in
Software Configuration Management Patterns by Stephen P. Berczuk and Brad
Appleton.



xxii

Preface

Rapid Feedback

Continuous Integration increases your opportunities for feed-
back. Through it, you learn the state of the project several times
a day. Cl can be used to reduce the time between when a defect
is introduced and when it is fixed, thus improving overall software
quality.

A development team should not believe that because their CI sys-
tem is automated, they are safe from integration problems. It is even
less true if the group is using an automated tool for nothing more than
compiling source code; some refer to this as a “build,” which it is not
(see Chapter 1). The effective practice of CI involves much more than
a tool. It includes the practices we outline in the book, such as frequent
commits to a version control repository, fixing broken builds immedi-
ately, and using a separate integration build machine.

The practice of CI enables faster feedback. When using effective
CI practices, you’ll know the overall health of software under develop-
ment several times a day. What’s more, CI works well with practices
like refactoring and test-driven development, because these practices
are centered on the notion of making small changes. CI, in essence,
provides a safety net to ensure that changes work with the rest of the
software. At a higher level, CI increases the collective confidence of
teams and lessens the amount of human activity needed on projects,
because it’s often a hands-off process that runs whenever your soft-
ware changes.

A Note on the Word “Continuous”

We use the term “continuous” in this book, but the usage is tech-
nically incorrect. “Continuous” implies that something kicks off
once and never stops. This suggests that the process is con-
stantly integrating, which is not the case in even the most intense
ClI environment. So, what we are describing in this book is more
like “continual integration.”




Preface xxiii

Who Should Read This Book?

In our experience, there is a distinct difference between someone who
treats software development as a job and someone who treats it as a
profession. This book is for those who work at their profession and
find themselves performing repetitive processes on a project (or we
will help you realize just how often you are doing so). We describe the
practices and benefits of CI and give you the knowledge to apply these
practices so that you can direct your time and expertise to more impor-
tant, challenging issues.

This book covers the major topics relating to CI, including how to
implement CI using continuous feedback, testing, deployment, inspec-
tion, and database integration. No matter what your role in software
development, you can incorporate CI into your own software develop-
ment processes. If you are a software professional who wants to
become increasingly effective—getting more done with your time and
with more dependable results—you will gain much from this book.

Developers

If you have noticed that you’d rather be developing software for users
than fiddling with software integration issues, this book will help you
get there without much of the “pain” you thought would be involved.
This book doesn’t ask you to spend more time integrating; it’s about
making much of software integration a nonevent, leaving you to focus
on doing what you love the most: developing software. The many
practices and examples in this book demonstrate how to implement an
effective CI system.

Build/Configuration/Release Management

If your job is to get working software out the door, you’ll find this
book particularly interesting as we demonstrate that by running pro-
cesses every time a change is applied to a version control repository,
you can generate cohesive, working software. Many of you are



xxiv

Preface

managing builds while filling other roles on your project, such as
development. CI will do some of the “thinking” for you, and instead of
waiting until the end of the development lifecycle, it creates deploy-
able and festable software several times a day.

Testers

CI offers a rapid feedback approach to software development, all but
eliminating the traditional pain of reoccurring defects even after
“fixes” were applied. Testers usually gain increased satisfaction and
interest in their roles on a project using CI, since software to test is
available more often and with smaller scopes. With a CI system in
your development lifecycle, you test all along the way, rather than the
typical feast or famine scenario where testers are either testing into the
late hours or not testing at all.

Managers

This book can have great impact for you if you seek a higher level of
confidence in your team’s capability to consistently and repeatedly
deliver working software. You can manage scopes of time, cost, and
quality much more effectively because you are basing your decisions
on working software with actual feedback and metrics, not just task
items on a project schedule.

Organization of This Book

This book is divided into two parts. Part I is an introduction to CI and
examines the concept and its practices from the ground up. Part I is
geared toward those readers not familiar with the core practices of CIL.
We do not feel the practice of CI is complete, however, without a Part
IT that naturally expands the core concepts into other effective pro-
cesses performed by CI systems, such as testing, inspection, deploy-
ment, and feedback.



Preface

XXV

Part I: A Background on Cl—Principles and Practices
Chapter 1, Getting Started, gets you right into things with a high-level
example of using a CI server to continuously build your software.

Chapter 2, Introducing Continuous Integration, familiarizes you
with the common practices and how we got to CI.

Chapter 3, Reducing Risks Using CI, identifies the key risks CI
can mitigate using scenario-based examples.

Chapter 4, Building Software at Every Change, explores the prac-
tice of integrating your software for every change by leveraging the
automated build.

Part II: Creating a Full-Featured Cl System

Chapter 5, Continuous Database Integration, moves into more
advanced concepts involving the process of rebuilding databases and
applying test data as part of every integration build.

Chapter 6, Continuous Testing, covers the concepts and strategies
of testing software with every integration build.

Chapter 7, Continuous Inspection, takes you through some auto-
mated and continuous inspections (static and dynamic analysis) using
different tools and techniques.

Chapter 8, Continuous Deployment, explores the process of
deploying software using a CI system so that it can be functionally
tested.

Chapter 9, Continuous Feedback, describes and demonstrates the
use of continuous feedback devices (such as e-mail, RSS, X10, and the
Ambient Orb) so that you are notified on build success or failure as it
happens.

The Epilogue explores the future possibilities of CI.

Appendixes
Appendix A, CI Resources, includes a list of URLSs, tools, and papers
related to CI.

Appendix B, Evaluating CI Tools, assesses the different CI servers
and related tools on the market, discusses their applicability to the
practices described in the book, identifies the advantages and disad-
vantages of each, and explains how to use some of their more interest-
ing features.



XXVi Preface

Other Features
The book includes features that help you to better learn and apply what
we describe in the text.

* Practices—We cover more than forty Cl-related practices in this
book. Many chapter subheadings are practices. A figure at the
beginning of most chapters illustrates the practices covered and
lets you scan for areas that interest you. for example, use a dedi-
cated integration build machine and commit code frequently are
both examples of practices discussed in this book.

* Examples—We demonstrate how to apply these practices by
using various examples in different languages and platforms.

* Questions—Each chapter concludes with a list of questions to
help you evaluate the application of CI practices on your project.

* Web site—The book’s companion Web site,
www.integratebutton.com, provides book updates, code
examples, and other material.

What You Will Learn

By reading this book, you will learn concepts and practices that enable
you to create cohesive, working software many times a day. We have
taken care to focus on the practices first, followed by the application of
these practices, with examples included as demonstration wherever
possible. The examples use different development platforms, such as Java,
Microsoft .NET, and even some Ruby. CruiseControl (Java and .NET
versions) is the primary CI server used throughout the book; however,
we have created similar examples using other servers and tools on the
companion Web site (www.integratebutton.com) and in Appendix B.
As you work your way through the book, you gain these insights:

* How implementing CI produces deployable software at every
step in your development lifecycle.

* How CI can reduce the time between when a defect is introduced
and when that defect is detected, thereby lowering the cost to fix it.

* How you can build quality into your software by building software
often rather than waiting to the latter stages of development.


www.integratebutton.com
www.integratebutton.com

Preface Xxvii

What This Book Does Not Cover

This book does not cover every tool—build scheduling, programming
environment, version control, and so on—that makes up your CI sys-
tem. It focuses on the implementation of CI practices to develop an
effective CI system. CI practices are discussed first; if a particular tool
demonstrated is no longer in use or doesn’t meet your particular needs,
simply apply the practice using another tool to achieve the same effect.

It is also not possible, or useful, to cover every type of test, feed-
back mechanism, automated inspector, and type of deployment used
by a CI system. We hope that a greater goal is met by focusing on the
range of key practices, using examples of techniques and tools for
database integration, testing, inspection, and feedback that may inspire
applications as different as the projects and teams that learn about
them. As mentioned throughout the book, the book’s companion Web
site, www.integratebutton.com, contains examples using other tools
and languages that may not be covered in the book.

Authorship

This book has three coauthors and one contributor. I wrote most of the
chapters. Steve Matyas contributed to Chapters 4, 5, 7, 8, and Appen-
dix A, and constructed some of the book’s examples. Andy Glover
wrote Chapters 6, 7, and 8, provided examples, and made contributions
elsewhere in the book. Eric Tavela wrote Appendix B. So when sen-
tences use first-person pronouns, this should provide clarity as to who
is saying what.

About the Cover

I was excited when I learned that our book was to be a part of the
renowned Martin Fowler Signature Series. I knew this meant that I
would get to choose a bridge for the cover of the book. My coauthors
and I are part of a rare breed who grew up in the Washington, D.C.,


www.integratebutton.com

xxviii

Preface

area. For those of you not from the region, it’s a very transient area.
More specifically, we are from Northern Virginia and figured it would
be a fitting tribute to choose the Natural Bridge in Virginia for the
cover. I had never visited the bridge until early 2007—after I had cho-
sen it for the book cover. It has a very interesting history and I found it
incredible that it’s a functioning bridge that automobiles travel on
every day. (Of course, I had to drive my car over it a couple of times.)
I’d like to think that after reading this book, you will make CI a natural
part of your next software development project.

Acknowledgments

I can’t tell you how many times I’ve read acknowledgments in a book
and authors wrote how they “couldn’t have done it by (themselves)”
and other such things. I always thought to myself, “They’re just being
falsely modest.” Well, I was dead wrong. This book was a massive
undertaking to which I am grateful to the people listed herein.

I’d like to thank my publisher, Addison-Wesley. In particular, I'd
like to express my appreciation to my executive editor, Chris Guz-
ikowski, for working with me during this exhaustive process. His
experience, insight, and encouragement were tremendous. Further-
more, my development editor, Chris Zahn, provided solid recommen-
dations throughout multiple versions and editing cycles. I'd also like to
thank Karen Gettman, Michelle Housley, Jessica D’Amico, Julie
Nahil, Rebecca Greenberg, and last but definitely not least, my first
executive editor, Mary O’Brien.

Rich Mills hosted the CVS server for the book and offered excel-
lent ideas during brainstorming sessions. I’d also like to thank my
mentor and friend, Rob Daly, for getting me into professional writing
in 2002 and for providing exceptionally detailed reviews throughout
the writing process. John Steven was instrumental in helping me start
this book’s writing process.

I’d like to express my gratitude to my coauthors, editor, and con-
tributing author. Steve Matyas and I endured many sleepless nights to
create what you are reading today. Andy Glover was our clutch writer,
providing his considerable developer testing experience to the project.



Preface

XXix

Lisa Porter, our contributing editor, tirelessly combed through every
major revision to provide edits and recommendations which helped
increase the quality of the book. A thank you to Eric Tavela, who
wrote the CI tools appendix, and to Levent Gurses for providing his
experiences with Maven 2 in Appendix B.

We had an eclectic cadre of personal technical reviewers who pro-
vided excellent feedback throughout this project. They include Tom
Copeland, Rob Daly, Sally Duvall, Casper Hornstrup, Joe Hunt, Erin
Jackson, Joe Konior, Rich Mills, Leslie Power, David Sisk, Carl Tallis,
Eric Tavela, Dan Taylor, and Sajit Vasudevan.

I’d also like to thank Charles Murray and Cristalle Belonia for
their assistance, and Maciej Zawadzki and Eric Minick from Urban-
code for their help.

I am grateful for the support of many great people who inspire me
every day at Stelligent, including Burke Cox, Mandy Owens, David
Wood, and Ron Wright. There are many others who have inspired my
work over the years, including Rich Campbell, David Fado, Mike
Fraser, Brent Gendleman, Jon Hughes, Jeff Hwang, Sherry Hwang,
Sandi Kyle, Brian Lyons, Susan Mason, Brian Messer, Sandy Miller,
John Newman, Marcus Owen, Chris Painter, Paulette Rogers, Mark
Simonik, Joe Stusnick, and Mike Trail.

I also appreciate the thorough feedback from the Addison-Wesley
technical review team, including Scott Ambler, Brad Appleton, Jon
Eaves, Martin Fowler, Paul Holser, Paul Julius, Kirk Knoernschild,
Mike Melia, Julian Simpson, Andy Trigg, Bas Vodde, Michael Ward,
and Jason Yip.

I want to thank the attendees of CITCON Chicago 2006 for shar-
ing their experiences on CI and testing with all of us. In particular, I'd
like to acknowledge Paul Julius and Jeffrey Frederick for organizing
the conference, and everyone else who attended the event.

Finally, I’d like to thank Jenn for her unrelenting support and for
being there through the ups and downs of making this book.

Paul M. Duvall
Fairfax, Virginia
March 2007





