
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321543738
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321543738
https://plusone.google.com/share?url=http://www.informit.com/title/9780321543738
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321543738
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321543738/Free-Sample-Chapter

Praise for Essential Skills for the Agile Developer

“I tell teams that the lean and agile practices should be treated like a
buffet: Don’t try and take everything, or it will make you ill—try the
things that make sense for your project. In this book the authors have
succinctly described the ‘why’ and the ‘how’ of some of the most effec-
tive practices, enabling all software engineers to write quality code for
short iterations in an efficient manner.”

—Kay Johnson
Software Development Effectiveness Consultant, IBM

“Successful agile development requires much more than simply mas-
tering a computer language. It requires a deeper understanding of
agile development methodologies and best practices. Essential Skills for
the Agile Developer provides the perfect foundation for not only learn-
ing but truly understanding the methods and motivations behind agile
development.”

—R.L. Bogetti
www.RLBogetti.com,
Lead System Designer, Baxter Healthcare

“Essential Skills for the Agile Developer is an excellent resource filled with
practical coding examples that demonstrate key agile practices.”

—Dave Hendricksen
Software Architect, Thomson Reuters

www.RLBogetti.com

The Net Objectives Lean-Agile Series provides fully integrated Lean-Agile training,
consulting, and coaching solutions for businesses, management, teams, and individuals.

Series editor Alan Shalloway and the Net Objectives team strongly believe that it is not the soft-
ware, but rather the value that software contributes—to the business, to the consumer, to the
user—that is most important.

The best—and perhaps only—way to achieve effective product development across an
organization is a well-thought-out combination of Lean principles to guide the enterprise,
agile practices to manage teams, and core technical skills. The goal of The Net Objectives
Lean-Agile Series is to establish software development as a true profession while helping
unite management and individuals in work efforts that “optimize the whole,” including

• The whole organization: Unifying enterprises, teams, and individuals to best work together

• The whole product: Not just its development, but also its maintenance and integration

• The whole of time: Not just now, but in the future—resulting in a sustainable return
on investment

The books included in this series are written by expert members of Net Objectives. These
books are designed to help practitioners understand and implement the key concepts
and principles that drive the development of valuable software.

Visit informit.com/netobjectives for a complete list of available publications.

The Net Objectives Lean-Agile Series
Alan Shalloway, Series Editor

Essential Skills for the
Agile Developer

This page intentionally left blank

Essential Skills for the
Agile Developer

A Guide to Better Programming and Design

Alan Shalloway
Scott Bain
Ken Pugh
Amir Kolsky

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Essential skills for the agile developer : a guide to better programming and design / Alan
Shalloway . . . [et al.].
 p. cm.
 Includes index.
 ISBN 978-0-321-54373-8 (pbk. : alk. paper)
 1. Agile software development. I. Shalloway, Alan.
 QA76.76.D47E74 2011
 005.1—dc23
 2011023686

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to
use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-54373-8
ISBN-10: 0-321-54373-4
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.
First Printing: August 2011 with corrections made August 2013

To my loving and lifetime partner, Leigh, my muse, who
keeps me more humble than I would otherwise be. And
while giving me a reason not to be writing books, keeps

the pressure up to get the job done.

—Alan Shalloway

To June Carol Bain. I wish she had lived to see her son
become the teacher she always told him he should be.

Hey, mom, you nailed it.

—Scott Bain

To Ron, Shelly, and Maria: those who matter.

—Amir Kolsky

To my brother Don, who gave me a reason to become an
engineer.

—Ken Pugh

This page intentionally left blank

ix

Series Foreword ___xvii

Preface __ xxi

Acknowledgments __xxiii

About the Authors __ xxv

Part I
The Core Trim Tabs __1

Chapter 1
Programming by Intention _________________________________ 3

Programming by Intention: A Demonstration _____________________3

Advantages ___6

Method Cohesion ___6

Readability and Expressiveness _________________________________7

Debugging ___ 10

Refactoring and Enhancing ___________________________________ 11

Unit Testing __ 13

Easier to Modify/Extend _____________________________________ 15

Seeing Patterns in Your Code _________________________________ 16

Movable Methods ___ 17

Summary ___ 18

Contents

x Contents

Chapter 2
Separate Use from Construction ________________________ 21

An Important Question to Ask ____________________________________ 21

Perspectives ___ 22

Perspective of Creation ______________________________________ 23

Perspective of Use ___ 24

What You Hide You Can Change ______________________________ 25

Realistic Approach __ 27

Other Practical Considerations ________________________________ 30

Timing Your Decisions __ 30

Overloading and C++ __ 31

Validating This for Yourself __ 32

Summary ___ 33

Chapter 3
Define Tests Up Front ____________________________________ 35

A Trim Tab: Testing and Testability _________________________________ 35

What Is Testing? ___ 35

Testability and Code Quality ______________________________________ 36

Case Study: Testability __ 37

Setting Ourselves Up for Change ______________________________ 38

Programmer as Frog ___ 39

A Reflection on Up-Front Testing __________________________________ 39

Better Design ___ 42

Improving Clarity of Scope: Avoiding Excess Work ______________ 42

Reducing Complexity __ 42

Other Advantages ___ 43

No Excuses ___ 43

Summary ___ 44

Chapter 4
Shalloway’s Law and Shalloway’s Principle ___________ 45

Types of Redundancy ___ 46

Copy and Paste ___ 46

Contents xi

Magic Numbers ___ 46

Other Types __ 46

Redefining Redundancy __ 46

Other Types of Redundancy _______________________________________ 47

The Role of Design Patterns in Reducing Redundancy ________________ 48

Few Developers Spend a Lot of Time Fixing Bugs ____________________ 48

Redundancy and Other Code Qualities _____________________________ 50

Summary ___ 52

Chapter 5
Encapsulate That! ___ 53

Unencapsulated Code: The Sabotage of the Global Variable ___________ 53

Encapsulation of Member Identity _________________________________ 54

Self-Encapsulating Members ______________________________________ 56

Preventing Changes __ 58

The Difficulty of Encapsulating Reference Objects ____________________ 59

Breaking Encapsulation with Get() _________________________________ 62

Encapsulation of Object Type ______________________________________ 64

Encapsulation of Design __ 67

Encapsulation on All Levels _______________________________________ 69

Practical Advice: Encapsulate Your Impediments _____________________ 69

Summary ___ 72

Chapter 6
Interface-Oriented Design ________________________________75

Design to Interfaces __ 75

Definition of Interface __ 75

Interface Contracts ___ 76

Separating Perspectives ___ 77

Mock Implementations of Interfaces _______________________________ 79

Keep Interfaces Simple ___ 79

Avoids Premature Hierarchies _____________________________________ 80

Interfaces and Abstract Classes ____________________________________ 81

Dependency Inversion Principle ___________________________________ 82

xii Contents

Polymorphism in General ___ 83

Not for Every Class___ 84

Summary ___ 84

Chapter 7
Acceptance Test–Driven Development (ATDD) _______ 85

Two Flows for Development_______________________________________ 85

Acceptance Tests ___ 88

An Example Test ___ 88

Implementing the Acceptance Tests ________________________________ 90

User Interface Test Script _____________________________________ 90

User Interface for Testing ____________________________________ 91

XUnit Testing ___ 93

Acceptance Test Framework __________________________________ 93

Connection __ 94

An Exercise ___ 95

What to Do If the Customer Won’t Tell You _________________________ 95

Summary ___ 96

Part II
General Attitudes __97

Chapter 8
Avoid Over- and Under-Design __________________________ 99

A Mantra for Development _______________________________________ 99

The Pathologies of Code Qualities _________________________________ 100

Avoid Over- and Under-Design ___________________________________ 101

Minimize Complexity and Rework ________________________________ 102

Never Make Your Code Worse/Only Degrade Your Code Intentionally __ 102

Keep Your Code Easy to Change, Robust, and Safe to Change ________ 103

A Strategy for Writing Modifiable Code in a Non-Object-Oriented or Legacy

System___ 103

Summary __ 107

Contents xiii

Chapter 9
Continuous Integration __________________________________ 109

Branching the Source Code ______________________________________ 109

Multiple Versions: Specialization Branching ___________________ 110

Working in Isolation: Development Branching _________________ 112

Problem, Solution, Problem _________________________________ 114

The Merge-Back __ 115

Test-Driven Development and Merge Cost _________________________ 117

Continuous Integration __ 119

Continuous Integration Servers ___________________________________ 121

Summary __ 122

Part III
Design Issues ___ 125

Chapter 10
Commonality and Variability Analysis _________________ 127

Using Nouns and Verbs as a Guide: Warning, Danger Ahead! _________ 127

What Is the Real Problem? _______________________________________ 130

What We Need to Know ___ 131

Handling Variation ___ 132

Commonality and Variability Analysis _____________________________ 132

Commonality Analysis ______________________________________ 132

Variability Analysis ___ 133

Object-Oriented Design Captures All Three Perspectives ________ 133

A New Paradigm for Finding Objects ______________________________ 134

Tips for Finding Your Concepts and Variations with an Example _ 135

The Analysis Matrix: A Case Study ________________________________ 136

Selecting the Stories to Analyze ______________________________ 141

Summary __ 145

xiv Contents

Chapter 11
Refactor to the Open-Closed ___________________________ 147

The Open-Closed Principle _______________________________________ 147

Open-Closed to Other Things ________________________________ 151

Open-Closed Is a “Principle” _________________________________ 152

Refactoring __ 154

Why Refactor? __ 155

Debt versus Investment _____________________________________ 155

Refactoring and Legacy Systems _____________________________ 156

Refactoring to the Open-Closed ______________________________ 157

Just-in-Time Design __ 159

Summary __ 161

Chapter 12
Needs versus Capabilities Interfaces _________________ 163

The Law of Demeter __ 163

Coupling, Damned Coupling, and Dependencies ____________________ 166

Coupling and Testability ____________________________________ 166

Needs versus Capabilities ___________________________________ 167

The Ideal Separation: Needs Interfaces and Capabilities Interfaces _____ 168

Back to the Law of Demeter ______________________________________ 169

Summary __ 171

Chapter 13
When and How to Use Inheritance ____________________ 173

The Gang of Four ___ 173

Initial Vectors, Eventual Results __________________________________ 176

Favoring Delegation ___ 178

The Use of Inheritance versus Delegation __________________________ 180

Uses of Inheritance ___ 181

Scalability ___ 183

Applying the Lessons from the Gang of Four to Agile Development ___ 184

Testing Issues ___ 185

There’s More ___ 187

Contents xv

Part IV
Appendixes ___ 189

Appendix A
Overview of the Unified Modeling Language (UML) ___ 191

What Is the UML? __ 191

Why Use the UML? __ 192

The Class Diagram __ 192

UML Notation for Access ____________________________________ 194

Class Diagrams Also Show Relationships ______________________ 194

Showing the “has-a” Relationship ____________________________ 195

Composition and Uses ______________________________________ 195

Composition versus Aggregation _____________________________ 196

Notes in the UML __ 196

Indicating the Number of Things Another Object Has ___________ 197

Dashes Show Dependence __________________________________ 198

Sequence Diagram __ 198

Object:Class Notation _______________________________________ 198

Summary __ 200

Appendix B
Code Qualities __ 201

Christmas-Tree Lights: An Analogy _______________________________ 201

Cohesion __ 204

Description __ 204

Principles ___ 204

Practices __ 205

Pathologies __ 205

Indications in Testing _______________________________________ 205

Coupling __ 205

Description __ 205

Principles ___ 206

Practices __ 207

Pathologies __ 207

Indications in Testing _______________________________________ 207

xvi Contents

Redundancy ___ 207

Description __ 207

Principles ___ 208

Practices __ 208

Pathologies __ 208

Indications in Testing _______________________________________ 208

Encapsulation __ 208

Description __ 208

Principles ___ 209

Practices __ 209

Pathologies __ 210

Indications in Testing _______________________________________ 210

Appendix C
Encapsulating Primitives _________________________________211

Encapsulating Primitives in Abstract Data Types ____________________ 211

Principles __ 212

Narrow the Contract __ 213

Expanding Abstract Data Types ___________________________________ 214

Use Text as External Values ______________________________________ 215

Enumerations Instead of Magic Values ____________________________ 217

Disadvantages __ 218

Summary __ 219

Index ___ 221

xvii

If you are like me, you will just skim this foreword for the series and
move on, figuring there is nothing of substance here. You will miss

something of value if you do.
I want you to consider with me a tale that most people know but

don’t often think about. That tale illustrates what is ailing this industry.
And it sets the context for why we wrote the Net Objectives Product
Development Series and this particular book.

I have been doing software development since 1970. To me, it is just
as fresh today as it was four decades ago. It is a never-ending source of
fascination to me to contemplate how to do something better, and it is
a never-ending source of humility to confront how limited my abilities
truly are. I love it.

Throughout my career, I have also been interested in other industries,
especially engineering and construction. Now, engineering and con-
struction have suffered some spectacular failures: the Leaning Tower of
Pisa, the Tacoma Narrows Bridge, the Hubble telescope. In its infancy,
engineers knew little about the forces at work around them. Mostly,
engineers tried to improve practices and to learn what they could from
failures. It took a long time—centuries—before they acquired a solid
understanding about how to do things.

No one would build a bridge today without taking into account long-
established bridge-building practices (factoring in stress, compression,
and the like), but software developers get away with writing code based
on “what they like” every day, with little or no complaint from their
peers. And developers are not alone: Managers often require people to
work in ways that they know are counterproductive. Why do we work
this way?

Series Foreword

The Net Objectives Lean-Agile Series

Alan Shalloway, CEO, Net Objectives

xviii Series Foreword • The Net Objectives Lean-Agile Series

But this is only part of the story. Ironically, much of the rest is related
to why we call this the Net Objectives Product Development Series. The
Net Objectives part is pretty obvious. All of the books in this series were
written either by Net Objectives staff or by those whose views are con-
sistent with ours. Why product development? Because when building
software, it is always important to remember that software development
is really product development.

By itself, software has little inherent value. Its value comes when it
enables delivery of products and services. Therefore, it is more useful to
think of software development as part of product development—the set
of activities we use to discover and create products that meet the needs
of customers while advancing the strategic goals of the company.

Mary and Tom Poppendieck, in their excellent book Implementing
Lean Software Development: From Concept to Cash (Addison-Wesley, 2006),
note the following:

It is the product, the activity, the process in which software is embedded that is
the real product under development. The software development is just a subset
of the overall product development process. So in a very real sense, we can call
software development a subset of product development. And thus, if we want
to understand lean software development, we would do well to discover what
constitutes excellent product development.

In other words, software in itself isn’t important. It is the value that
it contributes—to the business, to the consumer, to the user—that is
important. When developing software, we must always remember to
look to what value is being added by our work. At some level, we all
know this. But so often organizational “silos” work against us, keeping
us from working together, from focusing on efforts that create value.

The best—and perhaps only—way to achieve effective product devel-
opment across an organization is a well-thought-out combination of
principles and practices that relate both to our work and to the people
doing it. These must address more than the development team, more
than management, and even more than the executives driving every-
thing. That is the motivation for the Net Objectives Product Develop-
ment Series.

Too long, this industry has suffered from a seemingly endless swing
of the pendulum from no process to too much process and then back
to no process: from heavyweight methods focused on enterprise con-
trol to disciplined teams focused on the project at hand. The time has
come for management and individuals to work together to maximize

This Book’s Role in the Series xix

the production of business value across the enterprise. We believe lean
principles can guide us in this.

Lean principles tell us to look at the systems in which we work and
then relentlessly improve them in order to increase our speed and qual-
ity (which will drive down our cost). This requires the following:

• Business to select the areas of software development that will
return the greatest value

• Teams to own their systems and continuously improve them

• Management to train and support their teams to do this

• An appreciation for what constitutes quality work

It may seem that we are very far from achieving this in the software-
development industry, but the potential is definitely there. Lean princi-
ples help with the first three, and understanding technical programming
and design has matured far enough to help us with the fourth.

As we improve our existing analysis and coding approaches with the
discipline, mind-set, skills, and focus on value that lean, agile, patterns,
and Test-Driven Development teach us, we will help elevate software
development from being merely a craft into a true profession. We have
the knowledge required to do this; what we need is a new attitude.

The Net Objectives Lean-Agile Series aims to develop this attitude.
Our goal is to help unite management and individuals in work efforts
that “optimize the whole”:

• The whole organization. Integrating enterprise, team, and indi-
viduals to work best together.

• The whole product. Not just its development but also its mainte-
nance and integration.

• The whole of time. Not just now but in the future. We want sus-
tainable ROI from our effort.

This Book’s Role in the Series

Somewhere along the line, agile methods stopped including techni-
cal practices. Fortunately, they are coming back. Scrum has finally
acknowledged that technical practices are necessary in order for agility
to manifest itself well. Kanban and eXtreme Programming (XP) have

xx Series Foreword • The Net Objectives Lean-Agile Series

become interesting bedfellows when it was observed that XP had one-
piece flow ingrained in its technical practices.

This book was written as a stop-gap measure to assist teams that
have just started to do lean, kanban, scrum, or agile. Regardless of the
approach, at some point teams are going to have to code differently. This
is a natural evolution. For years I have been encouraged that most peo-
ple who take our training clearly know almost everything they need to
know. They just need a few tweaks or a few key insights that will enable
them to be more effective in whatever approach they will be using.

Why is this book a “stop-gap measure”? It’s because it is a means to
an end. It offers a minimal set of skills that developers need to help them
on their way toward becoming adept at incremental development. Once
developers master these skills, they can determine what steps they need
to take next or what skills they need to acquire next. They are readied
for an interesting journey. This book offers the necessary starting point.

The End of an Era, the Beginning of a New Era

I believe the software industry is at a crisis point. The industry is con-
tinually expanding and becoming a more important part of our every-
day lives. But software development groups are facing dire problems.
Decaying code is becoming more problematic. An overloaded workforce
seems to have no end in sight. Although agile methods have brought
great improvements to many teams, more is needed. By creating a true
software profession, combined with the guidance of lean principles
and incorporating agile practices, we believe we can help uncover the
answers.

Since our first book appeared, I have seen the industry change con-
siderably. The advent of kanban, in particular, has changed the way
many teams and organizations do work. I am very encouraged.

I hope you find this book series to be a worthy guide.

— Alan Shalloway
CEO, Net Objectives
Achieving enterprise and team agility

xxi

Although this is a technical book, the idea of it sprang from the Net
Objectives’ agile development courses. As I was teaching teams

how to do scrum or lean, students would often ask me, “How are we
supposed to be able to build our software in stages?” The answer was
readily apparent to me. What they were really asking was, “How can
we best learn how to build our software in stages?” I knew of three
approaches:

• Read books. I am confident that anyone who read and absorbed
the books Design Patterns Explained: A New Perspective on Object-
Oriented Design and Emergent Design: The Evolutionary Nature of Pro-
fessional Software Development would know how to write software
in stages.

• Take courses. This is a better approach. The combination of Net
Objectives courses—Design Patterns and Emergent Design—can’t
be beat.

• Learn about trim tabs. The trim tabs of software development
make building software in stages more efficient.

The first one requires a big investment in time. The second one
requires a big investment in money. The third one requires less of both.
Unfortunately, there is no place where these “trim tabs” are described
succinctly.

What are trim tabs? They are structures on airplanes and ships that
reduce the amount of energy needed to control the flaps on an airplane
or the rudder of a ship. But what I mean comes from something Bucky
Fuller once said.

Preface

xxii Preface

Something hit me very hard once, thinking about what one little man could do.

Think of the Queen Mary—the whole ship goes by and then comes the rudder.
And there’s a tiny thing at the edge of the rudder called a trim tab.

It’s a miniature rudder. Just moving the little trim tab builds a low pressure
that pulls the rudder around. Takes almost no effort at all. So I said that the
little individual can be a trim tab. Society thinks it’s going right by you, that
it’s left you altogether. But if you’re doing dynamic things mentally, the fact is
that you can just put your foot out like that and the whole big ship of state is
going to go.

So I said, call me Trim Tab.

In other words, these are the actions and insights that give the most
understanding with the least investment. In our design patterns courses,
we identify three essential trim tabs. Students who do these three things
see tremendous improvements in their design and programming abili-
ties. What were these three? Why, they are described in chapters in this
book of course:

• Programming by intention

• Separate use from construction

• Consider testability before writing code

These three are very simple to do and take virtually no additional
time over not doing them. All three of these are about encapsulation.
The first and third encapsulate the implementation of behavior while
the second focuses explicitly on encapsulating construction. This is a
very important theme because encapsulation of implementation is a
kind of abstraction. It reminds us that we are implementing “a way” of
doing things—that there may be other ways in the future. I believe for-
getting this is the main cause of serious problems in the integration of
new code into an existing system.

A fourth trim tab that I recommend is to follow Shalloway’s principle.
This one takes more time but is always useful.

This book is a compilation of the trim tabs that Net Objectives’
instructors and coaches have found to be essential for agile developers
to follow to write quality code in an efficient manner. It is intended to
be read in virtually any order and in easy time segments. That said, the
chapters are sequenced in order to support the flow of ideas.

xxiii

Note from Alan Shalloway

We are indebted to Buckminster Fuller in the writing of this book for
many reasons. First, a little bit about Bucky, as he was affectionately
known by his friends. I am sorry to say I never met him, but he cer-
tainly would have been a dear friend of mine if I had. Bucky was best
known for the invention of the geodesic dome and the term “Spaceship
Earth.” He also coined the term “synergetics”—the study of systems in
transformation—which is essentially what we do at Net Objectives. Of
course, most relevant is that his use of the term “trim tab” (discussed in
the preface) was the actual inspiration for this book.

He was also an inspiration for me to always look for better ideas. This
quote is my all-time favorite Buckyism:

I am enthusiastic over humanity’s extraordinary and sometimes very timely
ingenuity. If you are in a shipwreck and all the boats are gone, a piano top
buoyant enough to keep you afloat that comes along makes a fortuitous life pre-
server. But this is not to say that the best way to design a life preserver is in the
form of a piano top. I think that we are clinging to a great many piano tops in
accepting yesterday’s fortuitous contrivings as constituting the only means for
solving a given problem.

All these are good reasons, of course. But in truth, I realized I wanted
to make a special acknowledgment for Bucky because he has been an
inspiration in my life from, ironically, mostly the moment he passed
away in 1983. He was not just one of these vastly intelligent men or
one of these great humane folks. He was a rare, unique combination
of both. If you are not familiar with this great man, or even if you are,
I suggest you check out the Buckminster Fuller Institute (http://www
.bfi.org).

Acknowledgments

http://www.bfi.org
http://www.bfi.org

xxiv Acknowledgments

We Also Want to Acknowledge

This book represents our view of those skills that we believe every agile
software developer should possess. However, we did not come up with
this guidance on our own, and we owe a debt of sincere gratitude to the
following individuals.

Christopher Alexander, master architect and author of The Timeless
Way of Building. Although he is not a technical expert, Alexander’s pow-
erful ideas permeate nearly all aspects of our work, most especially the
concept “design by context.”

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,
authors of the seminal book Design Patterns: Elements of Reusable Object-
Oriented Software. Although we hope to have significantly advanced the
subject of their work, it was the genesis of much of the wisdom that
guides us today.

James Coplien wrote the thesis “Multi-Paradigm Design” that became
the book that taught us about Commonality-Variability Analysis. This
in turn helped us understand how to use patterns and objects in a way
that fits the problem domain before us. Jim’s work is a powerful enabler
of many of the skills we teach in this book.

Martin Fowler, author of Refactoring and UML Distilled, as well as
many other thoughtful and incredibly useful books. Martin is definitely
the developer’s friend.

Ward Cunningham, one of the author/inventors of eXtreme Pro-
gramming and the progenitor of the role of testing in the daily life of
the software developer. Countless good things have come from that cen-
tral idea. Also, Ward, thanks so much for inventing wikis.

Robert C. Martin, author of Agile Software Development and many
other books and articles. “Uncle Bob” teaches how various critical cod-
ing skills work together to make software that is readable, scalable,
maintainable, and elegant.

In addition to these individual authors and thought leaders, we also
want to acknowledge the thousands of students and consulting clients
who have contributed endlessly to our understanding of what good
software is and how to make it. It has been said that the good teacher
always learns from the student, and we have found this to be true to an
even greater degree than we expected when Net Objectives was founded
more than 10 years ago. Our clients have given us countless opportuni-
ties to expand our thinking, test our ideas, and gain critical feedback on
their real-world application.

There would be no Net Objectives without our customers. We love
our customers.

xxv

Alan Shalloway is the founder and CEO of Net
Objectives. With more than 40 years of experience,
Alan is an industry thought leader in lean, kanban,
product portfolio management, scrum, and agile
design. He helps companies transition to lean and
agile methods enterprisewide as well teaches courses
in these areas. Alan has developed training and
coaching methods for lean-agile that have helped
Net Objectives’ clients achieve long-term, sustain-

able productivity gains. He is a popular speaker at prestigious confer-
ences worldwide. He is the primary author of Design Patterns Explained:
A New Perspective on Object-Oriented Design and Lean-Agile Pocket Guide for
Scrum Teams. Alan has worked in dozens of industries over his career.
He is a cofounder and board member for the Lean Software and Systems
Consortium. He has a master’s degree in computer science from M.I.T.
as well as a master’s degree in mathematics from Emory University. You
can follow Alan on Twitter @alshalloway.

Scott Bain is a 35+-year veteran in computer tech-
nology, with a background in development, engineer-
ing, and design. He has also designed, delivered, and
managed training programs for certification and end-
user skills, both in traditional classrooms and via dis-
tance learning. Scott teaches courses and consults on
agile analysis and design patterns, advanced software

design, and sustainable Test-Driven Development. Scott is a frequent
speaker at developer conferences such as JavaOne and SDWest. He is the
author of Emergent Design: The Evolutionary Nature of Professional Software

About the Authors

xxvi About the Authors

Development, which won a Jolt Productivity Award and is now available
from Addison-Wesley.

Ken Pugh is a fellow consultant with Net Objec-
tives. He helps companies transform into lean-agility
through training and coaching. His particular interests
are in communication (particularly effectively commu-
nicating requirements), delivering business value, and
using lean principles to deliver high quality quickly. He
also trains, mentors, and testifies on technology topics

ranging from object-oriented design to Linux/Unix. He has written sev-
eral programming books, including the 2006 Jolt Award winner, Pref-
actoring: Extreme Abstraction, Extreme Separation, Extreme Readability. His
latest book is Lean-Agile Acceptance Test Driven Development: Better Software
Through Collaboration. He has helped clients from London to Boston to
Sydney to Beijing to Hyderabad. When not computing, he enjoys snow-
boarding, windsurfing, biking, and hiking the Appalachian Trail.

Amir Kolsky is a senior consultant, coach, and
trainer for Net Objectives. Amir has been in the com-
puter sciences field for more than 25 years. He worked
for 10 years in IBM Research and spent 9 more years
doing chief architect and CTO work in assorted com-
panies big and small. He has been involved with agile
since 2000. He founded MobileSpear and subsequently

XPand Software, which does agile coaching, software education, and
agile projects in Israel and Europe. Amir brings his expertise to Net
Objectives as a coach and trainer in lean and agile software processes,
tools, and practices, Scrum, XP, design patterns, and TDD.

This page intentionally left blank

99

Developers tend to take one of two approaches to programming. Many think they
need to plan ahead to ensure that their system can handle new requirements
that come their way. Unfortunately, this planning ahead often involves adding
code to handle situations that never come up. The end result is code that is more
complex than it needs to be and therefore harder to change—the exact situation
they were trying to avoid. The alternative, of course, seems equally bad. That is,
they just jump in, code with no forethought, and hope for the best. But this hack-
ing also typically results in code that is hard to modify. What are we supposed to
do that doesn’t cause extra complexity but leaves our code easy to change? The
middle ground can be summed up by something Ward Cunningham said at a
user group: “Take as much time as you need to make your code quality as high
as it can be, but don’t spend a second adding functionality that you don’t need
now!” In other words, write high-quality code, but don’t write extra code.

This chapter is admittedly more of a new mantra than it is a detailed descrip-
tion of a technique to implement. This chapter takes advantage of what we
learned in Chapter 5, Encapsulate That!, and sets the groundwork for Chapter
11, Refactor to the Open-Closed.

A Mantra for Development

We believe developers should have a particular attitude when writing
code. There are actually several we’ve come up with over time—all
being somewhat consistent with each other but saying things a different
way. The following are the ones we’ve held to date:

• Avoid over- and under-design.

• Minimize complexity and rework.

CHAPTER 8

Avoid Over- and Under-Design

100 Chapter 8 • Avoid Over- and Under-Design

• Never make your code worse (the Hippocratic Oath of coding).

• Only degrade your code intentionally.

• Keep your code easy to change, robust, and safe to change.

Before we can discuss these mantras, we need to be clear what we
mean by quality code. Appendix B, Code Qualities, provides a thorough
explanation of the specific qualities referred to in this chapter. We’ll
give a brief summary of code quality here, but interested readers may
want to read the more extensive narrative in the appendix.

The Pathologies of Code Qualities

It’s often easier to see code qualities by discussing examples of when the
qualities aren’t present. Let’s look at five common code qualities: cohe-
sion, coupling, redundancy, readability, and encapsulation.

• Cohesion. Strongly cohesive classes are classes whose functions are
all related to each other. Strongly cohesive methods are methods
that do only one thing. The pathology of weak cohesion is classes or
methods that do unrelated things. We’ve heard very weakly cohe-
sive classes called “god objects” presumably because they are some-
what omniscient in that everything takes place in them.1

• Proper coupling. Having well-defined relationships between
objects makes them easier to understand and likely to inadvertently
cause problems when changing code. The pathology of improper
coupling is the occurrence of side effects—that is, unexpected
errors due to making changes elsewhere.

• No redundancy. No redundancy is difficult to achieve. The more
redundancy you have, the more time it will take to make changes.
As we discussed in Chapter 4, Shalloway’s Law and Shalloway’s
Principle, no redundancy is virtually impossible to achieve—but at
least you want to make it so you don’t have to find the duplication.
Essentially, the pathology of redundancy is that when you make a
change in one place, you have to make a change in another place.

1. We’ve also thought they may be called this because when you first look at them you mut-
ter to yourself “Oh my god!” and the fact that it looks like only god could figure them out.

Avoid Over- and Under-Design 101

• Readability. Readable code means you can understand what has
been written. It requires intention-revealing names and is best
achieved by using Programming by Intention (see Chapter 1, Pro-
gramming by Intention). Unreadable code, of course, is code you
can’t understand when you read it. Poor names, tight coupling, and
big methods/classes contribute greatly to the unreadability of code.

• Encapsulation. Encapsulation is more than mere data hiding.
The type of an object is one of the most important things to hide.
Design patterns are really about hiding: object type, cardinality,
which function is being used, order, optional behavior, construc-
tion, and more. The pathology of encapsulation is when you must
know how the code you are using is implanted in order to use it
properly. This often means you know the implementation type of
the object being used or know something about cardinality, order,
and so on.

Avoid Over- and Under-Design

This essentially means you should put in the correct amount of design.
Overdesign is putting in things that add complexity to the code that
may or may not be needed. Note that the key word here is “complexity.”
We’re not as worried about the time you take as much as we are about
how you leave the state of the code. If the work you’ve done does not
raise the complexity of the code you have, then no worries. In other
words, putting in an interface where one may or may not be needed is
not necessarily a bad thing if everyone understands interfaces. Inter-
faces aren’t really complexity-adders in our mind. They are a holder for
an idea. However, putting in a complex parameter list (or using a value
object to hold a parameter, say, when one isn’t needed) would be raising
complexity.

Under-design is actually a euphemism for “poor code quality.” We
view under-design as having taken place when high coupling or weak
cohesion is present. Typically, proper encapsulation is also not present.
So, avoiding overdesign means make your code changeable, but don’t
add things you don’t need now. If you need them later, the change-
ability of the code will enable you to do that with less, if any, extra
cost. Avoiding under-design mostly means making sure your code is
changeable.

102 Chapter 8 • Avoid Over- and Under-Design

Minimize Complexity and Rework

Many people only partly understand the true nature of refactoring.
Martin Fowler, in his excellent Refactoring: Improving the Design of Existing
Code,2 describes refactoring in the following way.

Refactoring is the process of changing a software system in such a way that it
does not alter the external behavior of the code yet improves its internal struc-
ture. It is a disciplined way to clean up code that minimizes the chances of intro-
ducing bugs. In essence when you refactor you are improving the design of the
code after it has been written.

In the book, Fowler talks about refactoring as a method of cleaning
up messy/poor code. However, there is another side to refactoring that
Fowler doesn’t talk about. This is refactoring code that is of high quality,
when it comes to the code qualities we’ve been talking about, but that
no longer has sufficient design because of new requirements. In other
words, the book talks about how to clean up poorly written code (a
good thing to know) but mostly ignores how to refactor good code that
now must be changed to accommodate new requirements.3

We strongly suggest that refactoring good code when new require-
ments come so that the code is better able to accommodate the changes
is a way to minimize complexity because you are deferring adding
complexity until it is needed, but your code quality is high so there is
no rework. We would contend that delaying extensions to code is not
rework but a kind of just-in-time design. We’ll talk explicitly about how
to do this in Chapter 11, Refactor to the Open-Closed.

Never Make Your Code Worse/Only Degrade
Your Code Intentionally

Existing code degrades one bit at a time (no pun intended). We suggest
that team members do their best to not take shortcuts that makes their
code worse. Sometimes this is difficult, however. It may be that legacy
code makes it very difficult to add functionality properly without harm-
ing your code. To be realistic, we restate “Never make your code worse”

2. Fowler, Martin. Refactoring: Improving the Design of Existing Code. Boston, MA: Addison-Wesley,
1999.

3. Alan Shalloway had a private conversation with Martin about this once. After suggesting
that the refactoring concepts Martin presented would work equally well for both types of
code, Martin responded by agreeing and saying, “My book was long enough as it was!”

A Strategy for Writing Modifiable Code in a Non-Object-Oriented or Legacy System 103

to “Only degrade your code intentionally.” Although this may sound
funny, the alternative would be to make your code worse unintentionally.

One way to only degrade your code intentionally is to ensure you
consider alternatives. One way to do this is to make a teamwide agree-
ment that if developers can’t figure out how to make a change without
degrading code, they will tell another team member of the change they
are thinking of making before they make the change. Note that we are
not requiring getting permission or even getting a better result. We’re
just suggesting you tell someone. This forces you to at least reflect a little.
Our experience has shown us that a person will stop just short of a good
solution because he or she is willing to do the first thing that comes
to mind. Our approach forces people to think about things a bit more
(sometimes a lot more because they don’t want to admit to coworkers
that they don’t have good solutions).

Keep Your Code Easy to Change, Robust, and
Safe to Change

Code should not be viscous. That means the effort to make changes
should not be excessive. Viscosity can be avoided by having easy-to-
understand, nonredundant code. Code should also not be brittle. That
is, changes in one place should not break code in other places. This
requires loosely coupled code, following Shalloway’s principle (see
Chapter 4, Shalloway’s Law and Shalloway’s Principle) and proper
encapsulation. It is not sufficient to follow these two mantras alone,
however. Although doing so may make it easy to change your code with
less likelihood of breaking it, there are no guarantees. The only way to
be assured that you can safely change your code is to have a full set of
automated acceptance tests available.

A Strategy for Writing Modifiable Code in a
Non-Object-Oriented or Legacy System

Many of the approaches we’ve discussed here are often met with this
attitude: “That’s a great idea, but I can’t do it where I work because I’m
using C.” A variant of this is “That’s a great idea, but I can’t do it where
I work because there is so much monolithic legacy code that I can’t take
advantage of object-oriented methods.” There are other variants as well,
but you get the idea. Although it is true that your existing software and

104 Chapter 8 • Avoid Over- and Under-Design

the languages you are using provide certain constraints on what you
can do, there are certain approaches you can always take. One of these is
to consider the separation of concerns in a different way.

The idea is to separate the code that is particular to the application
from the code that defines the application’s architecture (or even system
architecture).

One can think of a program as essentially an overall flow detailing
the steps to be undertaken. For example, a sales-order system can have
a variety of actions needed to work:

• Select customer.

• Get customer information.

• Select products to be sold.

• Get prices.

• Apply appropriate discounts.

• Total cost of sales order.

• Specify shipping.

Object orientation attempts to simplify this by creating objects that
group responsibilities for the different implementing steps. These objects
collaborate with each other and avoid coupling by having well-defined
interfaces that hide their implementations. Unfortunately, if you can’t
(properly) use an object-oriented language, how can you get at least
some of the value that comes from separating concerns? One way is to
have each method in your code deal with only one of the following:

• The system architecture

• The application architecture

• The implementation of a step

For example, let’s say you are writing embedded software that takes
its input from a special bus in the form of string from which it extracts
required parameters via a specialized method. Applications like this
often take the following approach:

public function someAction () {
 string inputString;

inputString= getInputFromBus();
 if (getParameter(inputString, PARAM1)> SOMEVALUE) {
 // bunches of code
 } else {
 if (getParameter(inputString, PARAM2)< SOMEOTHERVALUE) {
 // more bunches of code
 // …
 } else {
 // even more bunches of code
 // …
 }
 }
}

The problem with this is lack of cohesion. As you try to figure out
what the code does, you are also confronted with detailed specifics
about how the information is obtained. Although this might be clear
to the person who first wrote this, this will be difficult to change in
the future (not counting the confusion that happens now). This gets
much worse if one never makes the distinction between the system one
is embedded in (which is determining the input method) and the logic
inside the routine. For example, consider what happens when a differ-
ent method of getting the string is used as well as a different method of
extracting the information. In this case, the parameters are returned in
an array:

public function someAction () {
 string inputString;
 int values[MAX_VALUES];

 if (COMMUNICATION_TYPE== TYPE1) {
 inputString= getInputFromBus();
 } else {
 values= getValues();
 }

 if ((COMMUNICATION_TYPE== TYPE1 ?
 getParameter(inputString, PARAM1) :
 values[PARAMETER1]) > SOMEVALUE) {
 // bunches of code
 } else {
 if (COMMUNICATIONS_TYPE== TYPE1 ?
 getParameter(inputString, PARAM2) :
 values(PARAMETER2])
 < SOMEOTHERVALUE) {
 // more bunches of code
 // …

A Strategy for Writing Modifiable Code in a Non-Object-Oriented or Legacy System 105

106 Chapter 8 • Avoid Over- and Under-Design

 } else {
 // even more bunches of code
 // …
 }
 }
}

Pretty confusing? Well, have no fears, it’ll only get worse. If, instead,
we separated the “getting of the values” from the “using of the values,”
things would be much clearer.

public function someAction () {
 string inputString;
 int values[MAX_VALUES];

 int value1;
 int value2;

 if (COMMUNICATION_TYPE== TYPE1) {
 inputString= getInputFromBus();
 } else {
 values= getValues();
 }

 value1= (COMMUNICATION_TYPE== TYPE1 ?
 getParameter(inputString, PARAM1) :
 values[PARAMETER1]);
 value2= (COMMUNICATIONS_TYPE== TYPE1 ?
 getParameter(inputString, PARAM2) :
 values(PARAMETER2]);

 someAction2(value1, value2);
}

public function someAction2 (int value1, int value2) {

 if (value1 > SOMEVALUE) {
 // bunches of code
 } else {
 if (value2 < SOMEOTHERVALUE) {
 // more bunches of code
 // …
 } else {
 // even more bunches of code
 // …
 }
 }
}

Summary 107

You must remember that complexity is usually the result of an
increase in the communication between the concepts involved, not the
concepts themselves. Therefore, complexity can be lowered by separat-
ing different aspects of the code. This does not require object orienta-
tion. It simply requires putting things in different methods.

Summary

Developers must always be aware of doing too much or too little. When
you anticipate what is needed and put in functionality to handle it, you
are very likely to be adding complexity that may not be needed. If you
don’t pay attention to your code quality, however, you are setting your-
self up for rework and problems later. Code quality is a guide. Design
patterns can help you maintain it because they give you examples of
how others have solved the problem in the past in similar situations.

This page intentionally left blank

221

A
Abstract classes

creating one-to-one relation-
ship, 52

definition of, 194–195
in encapsulation of object type,

65
interfaces as, 81–82, 195
reducing redundancy using, 48
specification giving better

understanding of, 134
in Variability Analysis, 133–134

Abstract data types (ADTs)
cost of not using, 219
disadvantages of, 219
encapsulating primitives in,

211–212
enumerations instead of magic

values, 218–219
expanding, 214
narrowing contract for concept,

213
underlying principles of, 212
using text as external values,

215–217
Abstract inheritance, 175–176, 179
Acceptance Test-Driven Develop-

ment (ATDD)

Index

acceptance test framework,
93–94

acceptance tests, 88
benefits of, 40
combining unit tests for auto-

mated, 39
connection, 94–95
creating unit tests from, 40, 44
defined, 41, 85
example test, 88–89
exercise, 95
flows for development, 85–87
implementing with FIT, 40
improving clarity of scope, 42
no excuses for avoiding, 43
other advantages, 43
reducing complexity, 42
role in continuous integration,

119–120
summary review, 96
testing interface to clarify con-

tract, 76–77
user interface for testing, 91–92
user interface test script, 90–91
UTDD vs., 42
what to do if customer won't tell

you, 95–96
XUnit testing, 93

222 Index

Accessibility, UML notation for, 194
Accessor methods

encapsulating data members behind
set of, 56–57

preventing changes, 58–59
Accidental coupling, 206
Adapter Pattern, 168, 171
ADTs. See Abstract data types (ADTs)
Aggregation, UML

composition vs., 196
example of, 193
showing "has-a" relationship, 195

Agile Software Development (Martin),
xxiv

Alexander, Christopher, 40, 42
Aliasing, 60
Analysis Matrix

adding another case, 139–140
adding new concepts as rows in

table, 139–141
adding steps, 137–139
building, 136–137
defined, 136
selecting stories to analyze, 141–144
uses of, 144–145

"Anticipated vector of change," 57
ATDD. See Acceptance Test-Driven

Development (ATDD)
Attributes, abstract data type, 214
Automated tests, in continuous inte-

gration, 119–120

B
Bain, Scott, xxv–xxvi
Bain's corollary, 51
Behavior

delegating to helper class, 80–81
designing from context of, 40–42
determining functionality using

tests, 36
enhancing by adding or changing, 11
preserving in refactoring, 11

redundant, 46
timing decisions and, 30–31
unit testing of, 13–15

Branching source code
development branching, 112–114
merge-back and, 115–117
overview of, 109–110
problem, solution, problem and, 114
specialization branching, 110–111
version control and, 109

C
C++

abstract data types in, 218
Commonality-Variability Analysis

and, 135
composition vs. aggregation in, 196
overloading and, 31–32
separating implementation from

interface, 84
testing private methods, 14

C#
abstract data types in, 218
breaking encapsulation with get(),

63–64
Commonality-Variability Analysis

and, 134–135
composition vs. aggregation in, 196
declaring interface in, 76
encapsulation of object type in, 66
global variables in, 53–54
interfaces and abstract classes in, 82
mixing implementation with inter-

face in, 84
new keyword in, 23
self-encapsulating data members in,

59
Cabie, continuous integration server,

121
Capabilities interface

defined, 168
following Law of Demeter, 169–171

Index 223

needs vs. capabilities and, 167–168
separating from needs interface,

168–169
Cardinality of relationship, UML, 197
Case studies

Analysis Matrix. See Analysis
Matrix

testability, 37–38
Christmas-tree light analogy, of code

quality, 201–204
CI. See Continuous integration (CI)
Clarity, using UML for, 192
Class diagrams, UML

indicating number of things another
object has, 197

overview of, 192–193
showing composition and uses rela-

tionship, 195–196
showing "has-a" relationship,

195–196
showing relationships, 194–195
using notes, 196

Classes
abstract data types increasing num-

ber of, 219
changing from concrete to abstract,

25–26
cohesion of, 6–7
designing in object-oriented analy-

sis, 127
improving cohesion with movable

methods, 17–18
interfaces and abstract, 81–82
keeping interfaces simple, 79–80
pathologies of cohesion and, 205
separate interface declarations and,

84
showing relationships, in UML dia-

grams, 194–195
testability case study, 37–38
warning about nouns and, 129–130

Classes, cohesive, 204–205

Clients
breaking encapsulation with get(),

62–64
coupling and testability, 166–167
encapsulating reference objects,

59–61
Law of Demeter and, 169–171
separate needs/capabilities inter-

faces, 167–169
Code qualities

avoiding slow degradation of, 39
Christmas-tree light analogy,

201–204
cohesion, 100, 204–205
coupling, 100, 205–207
encapsulation, 101, 208–210
overview of, 201
readability, 101
redundancy, 50–52, 100, 207–208
testability, 36–37

Code smells
comments as, 8–9
identifying need for refactoring, 155

Cohesion
Christmas-tree light analogy, 203
as code quality, 100, 204–205
creating with abstract data types, 212
under-design creating weak, 101
encapsulation and, 209
method, 6–8
movable methods and, 17–18
nouns-and-verbs approach causing

weak, 130–131
testability related to, 36–38
writing modifiable code for legacy

systems and, 105
Comments

as code smell, 8–10
Programming by Intention vs.

using, 7–8
commit() method, 13–14, 16–17
Commonality Analysis, 132–133

224 Index

Commonality-Variability Analysis
case study: The Analysis Matrix,

136–141
of cohesion, 205
Commonality Analysis, 132–133
finding objects, 134–136
handling variation, 132
nouns and verbs and, 127–130
overview of, 127
perspectives, 133–134
the real problem, 130–131
selecting stories to analyze, 141–145
summary review, 145
Variability Analysis, 133
what we need to know, 131–132

Communication, UML for, 192
Complexity

lowering by separating aspects of
code, 107

of merge process in development
branching, 112–113

minimizing rework and, 99, 102
overdesign creating, 101
reducing with ATDD, 42–43
refactoring and enhancing to add,

11–12
Composition, UML

example of, 193
showing "has-a" relationship, 195
showing uses relationship, 195–196
and uses, 195–196
vs. aggregation, 196

Construction, separating use from
approach to, 27–30
coupling and, 25–27
debugging and, 48–50
perspective of, 23–24
question to ask, 21–22
realistic approach to, 27–30
timing decisions, 30–31
validating concept, 32–33

Constructors
C++ and overloaded, 31–32

difficulty of encapsulating reference
objects, 59–61

private, 30
Context object, encapsulation of

design, 68–69
Continuous integration (CI)

branching source code, 109–110
development branching, 112–114
merge-back, 115–117
"nightly build," 115
overview of, 109
problem, solution, problem, 114–115
servers, 121–122
specialization branching, 110–111
summary review, 122–123
text-driven development and merge

cost, 117–119
understanding, 119–120

Contracts, interface, 76–77
Copy and paste, as redundancy, 46
Cost of merge

in development branching, 112–114
merge-backs decreasing, 116–117
"nightly builds" increasing, 115
problem, solution, problem and, 114
test-driven development and,

117–119
Coupling

Christmas-tree light analogy and,
203

as code quality, 100, 205–207
under-design creating high, 101
eliminating to implementations,

166–168
encapsulation and, 54–56, 209
global variables creating tight, 54
identity, 54, 206
inheritance, 206
misuse of inheritance and, 176–178
nouns-and-verbs approach causing

tight, 130–131
by perspective, 23–26
redundancy related to, 47, 50–52

Index 225

representational, 206
specialization branching and,

110–111
subclass, 206
testability and, 36–38, 166–167

CruiseControl, continuous integration
server, 121

D
Dashes, showing dependence in UML,

198
Data hiding. See Encapsulation
Debt vs. investment, refactoring, 156
Debugging

finding bugs, 48–50
Programming by Intention and, 10
refactoring vs., 154

Degrade code intentionally, 100,
102–103

Delegation
avoiding premature hierarchies,

80–81
favoring, 178–179
Gang of Four and, 173–176
inheritance vs., 180–181

Dependence, using dashes in UML, 198
Dependencies

controlling with strong interfaces, 163
coupling and, 205–207
Law of Demeter and, 163–165

Dependency injection, 28
Dependency Inversion principle, 42, 82
Deserialization, 28
Design

of code for testability, 37
encapsulation of, 67–69
lessons from Gang of Four, 184–185
starting with big picture of wanted

behavior, 40
testability case study, 38
up-front testing as up-front, 39–40
using tests to accomplish, 36

Design, avoid over- and under-
code qualities and, 100–101
degrading code intentionally,

102–103
development mantras, 99–100
keeping code robust and easy/safe to

change, 102–103
minimizing complexity and rework,

102
modifying code for non-object-

oriented or legacy system,
103–107

overview of, 101
Design patterns

concept of, 42
encapsulating using, 70–71
reducing redundancy with, 48
seeing in code, 16–17

Design Patterns: Elements of Reusable
Object-Oriented Software (Gamma.
Erich, et al.), 48, 173, xxiv

Design Patterns Explained: A New Per-
spective on Object-Oriented Design
(Shalloway and Trott), 48, 67–68,
100, xxv

Design Patterns Repository, 71
Development branching, 110, 112–114
Diagrams, UML

class, overview of, 192–193
class, showing relationships,

194–195
defined, 191
sequence, 198

Direct inheritance, 174–176

E
Emergent Design: The Evolutionary Nature

of Professional Software Development
(Bain), xxv–xxvi

Encapsulation
on all levels, 69
breaking, with get(), 62–64

226 Index

Encapsulation (continued)
as code quality, 101, 208–210
coupling from perspective of, 25–27
of design, 67–69
in development branching, 112
importance of, 22
of member identity, 54–56
of object type, 64–66
overview of, 53
in practice, 69–72
preventing changes, 58–59
of reference objects, 59–61
removing need for specialization

branching, 111
for robust and easy/safe to change

code, 103
self-encapsulating members, 56–57
summary review, 72–73
testability related to proper, 36–37
unencapsulated code, 53–54

Encapsulation of primitives
in abstract data types, 211–212
disadvantages of, 219
enumerations instead of magic val-

ues, 218–219
expanding abstract data types, 214
narrowing contract for concept, 213
overview of, 211
principles, 212
using text as external values, 215–217

Enhancing systems
with Programming by Intention, 12
refactoring vs., 154

Enumerations, encapsulating magic
values with, 218–219

Expressiveness, in Programming by
Intention, 7–10

Extensions, code
delaying, 102
Programming by Intention and,

15–16
External values, using text as, 215–217
Extract Method, of refactoring, 11

F
Façade Pattern, 79, 171
Factory

adding to build instance, 150–151
encapsulation of design, 67–69
practical considerations, 30
separating use from construction,

26–28
Failure, Christmas-tree light analogy,

201–204
Failure report, interfaces, 77
Feature envy, refactoring, 155
FinalBuilder, continuous integration

server, 121
FIT for Developing Software (Mugridge),

40
FIT (Framework for Integrated Test-

ing), 40
Framework for Integrated Testing

(FIT), 40
Frogs, programmers as, 39
Fuller, Buckminster, xxi–xxiii
Functional steps, of programming lan-

guages, 4–5
Functions

designing in object-oriented analy-
sis, 127

Law of Demeter for, 164–165
limited in ADTs, 213
warning about verbs, 129–130

G
Gang of Four

applying lessons to agile develop-
ment, 184–185

big design up-front, 72
favoring delegation over inheri-

tance, 80, 178–179
favoring design to interface, 66, 75
on inheritance, 173–176
on using inheritance to hide varia-

tion, 181–182

Index 227

getInstance()method, 28–32
get()method

breaking encapsulation with, 62–64
difficulty of encapsulating reference

objects, 59–61
encapsulating data members behind,

56–57
preventing changes, 58–59

getX()method
difficulty of encapsulating reference

objects, 59–61
encapsulation of member identity,

56
preventing changes, 58
self-encapsulating data members, 57

Global variables, unencapsulated code
and, 53–54

H
"Has-a" relationship, UML class dia-

gram, 192, 195–196
Helper methods

debugging by examining, 10
defined, 5
development of, 147
enhancing system by changing, 12
Open-Closed principle and, 153
seeing patterns in code, 16–17
unit testing behavior of, 13–14

Hierarchies
avoiding premature, 80–81
causes of tall class, 127–128
creating good, decoupled, 128
inheritance, 177

I
Identity coupling, 54, 206
Identity, encapsulation of data mem-

ber, 54–56, 64–66
if statement, 127, 129–130
"Ility" tests, for interfaces, 77

Impediments, encapsulating your,
69–71

Implementation perspective
abstract classes and, 82
in interface-oriented design, 75
separating specification perspective

from, 77–79, 84
Implementations

eliminating coupling to, 168
encapsulating in abstract data types.

See Encapsulation of primitives
redundant, 46, 47
removing redundant, 48

Implementing Lean Software Development:
From Concept to Cash (Poppendi-
eck), xviii

Inheritance
delegation vs., 80–81, 178–181
Gang of Four and, 173–176, 184–185
improper use of, 130–131, 173
initial vectors and eventual results,

176–178
open-closed through direct,

148–149
scalability and, 183–184
specialization branching similar to,

110
testing issues, 185–186
uses of, 181–183
when and how to use, 173

Inheritance coupling, 206
Initial vectors, eventual results and,

176–178
Instances. See Construction, separating

use from; Use, separating con-
struction from

Intention-revealing names
and cohesion, 205
defined, 8
for interfaces, 77
for readability, 101

Intentional coupling, 206
Interaction diagrams, UML, 198–199

228 Index

Interface contracts, 76–77
interface keyword, 76
Interface-oriented design (IOD)

abstract classes and, 81–82
definition of interface, 75–76
Dependency Inversion principle, 82
design to interface and, 75
favoring delegation over inheri-

tance, 80–81
interface contracts, 76–77
keeping simple, 79–80
mock implementations of interfaces,

79
not for every class, 84
polymorphism and, 83–84
separating perspectives in, 77–79
summary review, 84

Interface-Oriented Design (Pugh), 77
Interfaces

Commonality-Variability Analysis
and, 134–136

coupling and testability of, 166–167
defining prior to implementing

code, 13–14
definition of, 75–76
Law of Demeter and, 163–165,

169–171
laws of, 77
needs and capabilities, 168–169
needs vs. capabilities, 167–168
summary review, 171–172
users coupled to, 25

Investment vs. debt, refactoring, 156
"Is-a" relationship, UML class diagram,

192

J
Jacobsen, Ivar, 147–148
Java

abstract data types, 218
breaking encapsulation with get(),

63

Commonality-Variability Analysis
in, 134–135

composition vs. aggregation in, 196
declaring interface in, 76
encapsulation of object type in, 66
global variables in, 53–54
interfaces and abstract classes in, 82
mixing implementation with inter-

face in, 84
new keyword in, 23

Just-in-time design
avoiding code duplication with, 15
as delaying extensions to code, 102
enabling by refactoring to the open-

closed, 159–161

K
Kolsky, Amir, xxvi

L
Language constructs, polymorphic

behavior without, 83
Law of Demeter, 164–165, 169
Laws of interfaces, 77
Lazy class, refactoring, 155
Lean-Agile Acceptance Test Driven Develop-

ment.(Pugh), xxvi
Lean-Agile Pocket Guide for Scrum Teams

(Shalloway), xxv
Lean principles, xvii–xix
Legacy systems

degrading code intentionally on,
102–103

difficulty of debugging, 10
refactoring and, 156–157
writing modifiable code for, 103–107

Loose coupling
as intentional coupling, 206
for robust and easy/safe to change

code, 103
testability related to, 36–37

Index 229

M
Magic numbers, as redundancy, 46
Magic values, encapsulating with enu-

merations, 218–219
Member identity, encapsulation of,

54–56
Merging process

continuous integration and, 119–120
development branching and, 110,

112–114
merge-back in, 115–117
merge cost in test-driven develop-

ment, 117–119
"nightly build" and, 115
problem, solution and problem in,

114
summary review, 122–123
workarounds for CI server bottle-

neck, 121–122
Methods

cohesion of, 6–7, 204–205
as functional steps, 4–5
intention-revealing names of, 8
Law of Demeter for, 164–165
minimizing in interfaces, 79–80
as movable, 17–18
in testability case study, 37–38
unit testing of, 13–15

Minus sign (-), UML notation, 194
Mock implementations of interfaces,

79
Models of programs, creating with

UML, 191
Modifications, code, 15–16
Movable methods, 17–18
Moves, refactoring, 11–12
"Multi-Paradigm Design" (Coplien),

xxiv

N
Naming conventions, intention-

revealing, 8

Needs interface
capabilities vs., 167–168
defined, 168
following Law of Demeter for,

169–171
separating from capabilities inter-

face, 168–169
summary review, 171–172

Net Objectives Product Development
Series

goals of, xvii–xix
how to design software in stages,

xxi–xxii
role of this book in, xix–xx

.NET, properties, 58
new keyword, 23–24
Nightly build process, 115
Notation for accessibility, UML, 194
Notes, UML, 196
Nouns

in object-oriented analysis, 127
problem with, 130–131
warning about using, 127–130

Null Object Pattern, in debugging, 50
Number sign (#), UML notation, 194

O
Object: class notation, UML, 198–199
Object factory, 67–69
Object-oriented design. See also Open-

Closed principle
Commonality-Variability Analysis

in, 127, 132–133
handling variation in, 132–133
nouns and verbs in, 127–130
perspectives, 133–134
polymorphism in, 80
real problem of, 130–131

Object type, encapsulation of, 64–66
"Once and only once rule" (Beck), 52
One rule, one place principle, redun-

dancy, 208

230 Index

Online references
Buckminster Fuller Institute, xxiii
inheritance for pluggability and

dynamism, 187
listing patterns by what they encap-

sulate, 71
Singleton Pattern, 30

Open-Closed principle
applying to any change, 151–152
of coupling, 206
misuse of inheritance in, 174
overview of, 147–151
principles and, 152–153
refactoring to, 157–159
for simple interfaces, 79–80

out keyword, 63
Overdesign

avoiding, 101
avoiding using Open-Closed princi-

ple. See Open-Closed principle
avoiding using refactoring. See

Refactoring
causes of, 28

Overloaded constructors, and C++, 31–32
Overloaded operations, abstract data

classes, 219–220
override keyword, 66

P
Paired programming, 43
Patterns. See Design patterns
Performance, and abstract data classes,

219–220
Perspectives

in Commonality-Variability Analy-
sis, 133–134

of creation, 23–24
overview of, 22–23
practical considerations, 30
separating for interface, 77–79
separating use from construction,

27–30
of use, 24

Planning
avoiding over- and under-design

when, 99
up-front testing vs., 40–41

Plus sign (+), UML notation, 194
Policy, encapsulating by, 69
Polymorphism

avoiding premature hierarchies,
80–81

in general, 83–84
interfaces and abstract classes in,

81–82
open-closed through class, 149–150

Postconditions, interface contracts, 76
Precision, UML for, 192
Preconditions, interface contracts, 76
Prefactoring (Pugh), 12, xxvi
Primitives. See Encapsulation of

primitives
Principles

of abstract data types, 212
of cohesion, 204
of coupling, 206
defined, 152
of encapsulation, 209
of redundancy, 208

Private accessibility, UML notation,
194

Private methods, unit testing behavior,
13–15

Programming by Intention
advantages of, 6
debugging and, 10
demonstration of, 3–5
development of helper methods in,

147–148
method cohesion and, 6–7
modifications and extensions using,

15–16
movable methods and, 17–18
overview of, 3
readability achieved with, 101
readability and expressiveness

using, 7–10

Index 231

refactoring and enhancing using,
11–12

seeing patterns in code and, 16–17
unit testing and, 13–15

Properties, .NET, 58
Protected accessibility, UML notation,

194
Protocol, interface contract, 76
Public accessibility, UML notation, 194
public keyword, 53–54
Public methods, interfaces as sets of, 76
Pugh, Ken, xxvi

Q
Quality, code. See Code qualities

R
Readability

as code quality, 101
Programming by Intention and,

7–10
Redundancy

Christmas-tree light analogy of, 203
as code quality, 100, 207–208
design patterns reducing, 48
encapsulation and, 209
redefining, 46–47
Shalloway's principle avoiding, 45
specialization branching and,

110–111
testability related to, 36–37
types of, 46

ref keyword, 63
Refactoring

debt vs. investment and, 155–156
definition of, 154
just-in-time design using, 159–161
legacy systems and, 156–157
for new requirements, 102
to the open-closed, 157–159
overview of, 154–155

Programming by Intention and,
11–12

reasons for, 155
redundancies, 208
unit testing and, 14

Refactoring: Improving the Design of Exist-
ing Code (Fowler)

about author, xxiv
cleaning up messy/poor code, 11,

102
on refactoring moves, 154–155

Reference objects
breaking encapsulation with get(),

62–64
encapsulation of, 59–61

Relationships, in UML
class diagrams showing, 192–195
"has-a" relationship showing,

195–196
indicating number of things of other

object, 197
releaseInstance() method, 32
Representational coupling, 206
Rework

avoiding in merge-back process, 116
minimizing complexity and, 99, 102

Robocode example, 152–153, 157–159
Runtime, inheritance vs. delegation at,

180–181

S
Scalability, inheritance and, 183–184
Scope, ATDD improving clarity of, 42
Self-encapsulating data members

overview of, 56–57
preventing changes, 58–59

Separation of concerns
in cohesion, 204
in delegation vs. inheritance, 179
and inheritance, 177

Separation of Use from Construction, 21
Sequence diagrams, UML, 198–199

232 Index

Serialization, separating use from con-
struction, 28

Servers
continuous integration of, 121–122
coupling and testability of, 166–167
Law of Demeter and, 169–171
separating needs/capabilities inter-

faces, 168–169
summary review, 171–172

Service-Oriented Architecture, 27
Service_Impl class, 23–24
Services

coupling and testability of, 166–167
Law of Demeter and, 169–171
needs vs. capabilities and, 167–168
perspectives and, 22–24
separating use from construction,

27–30
what you hide you can change and,

25–27
set()method

breaking encapsulation with, 62–64
difficulty of encapsulating reference

objects, 59–61
encapsulating data members behind,

56–57
preventing changes, 58–59

setter() methods, 28
setX()method, preventing changes,

58
Shalloway, Alan, 71–72, xxv
Shalloway's law and Shalloway's

principle
corollaries to, 51
defining, 45
design patterns reducing redun-

dancy, 48
redundancy and other code quali-

ties, 50–52
refining redundancy, 46–47
time spent finding bugs, 48–50
as trim tab, xxii

types of redundancy, 46–48
Shotgun surgery, refactoring, 155
Single Responsibility principle

cohesion of class and, 204
defined, 17

Singleton pattern, 30
Source code branching

development branching, 112–114
merge-back, 115–117
overview of, 109–110
problem, solution, problem, 114
specialization branching, 110–111
version control creating, 109

Specialization branching, 109–111
Specification perspective

abstract classes and, 82
in interface-oriented design, 75
separating from implementation

perspective, 77–79, 84
Static methods, 30
Static relationships, showing in class

diagrams, 198
Strategy Pattern

delegation vs. inheritance and, 179
encapsulating single varying algo-

rithm with, 70–71
encapsulation of type in, 67–68
inheritance and, 183
scalability of, 183–184
seeing patterns in, 17
testing issues, 185–186

Strings, and abstract data types, 214
Strong cohesion, 204
Subclass coupling, 206
Switch creep, 39

T
TDADD (Test Driven Analysis and

Design and Development), 40
TDD. See Test-Driven Development

(TDD)

Index 233

Team Foundation Server, 121
TeamCity, 121
Template Method Pattern

removing redundant implementa-
tions with, 48

seeing patterns in code, 16
and Strategy Pattern, 17

Test Driven Analysis and Design and
Development (TDADD), 40

Test-Driven Development (TDD)
better design, 42
defining testing, 35–36
improving clarity of scope, 42
and merge cost, 117–119, 123
other advantages, 43
overview of, 35
paired programming and, 43
programmers as frogs and, 39
reducing complexity with, 42
testability and code quality, 36–37
testability case study, 37–38
testing interface to clarify contract,

76–77
up-front testing vs., 39–41

Testing and testability. See also Unit
testing; Up-front testing

clarifying interface contract
through, 76–77

cohesion, 205
coupling, 166–167, 207
encapsulation, 210
redundancy, 51, 208
simplifying in ADTs by narrowing

of contract, 213
use of inheritance in, 185–186

Text, using as external values, 215–217
Textual commands, interface as set of,

76
Tight coupling, 206
Time between merges, development

branching
merge-backs and, 116–117
overview of, 113–114

test-driven development and merge
cost, 117–119

The Timeless Way of Building (Alexan-
der), 40, xxiv

Trim tabs. See also Testing and testabil-
ity, xxi–xxii

Trunk
in continuous integration, 119–120
in development branching, 110, 112
in merge-back process, 115–117
in specialization branching, 109–111

Types, creators coupled to, 25

U
UML Distilled (Fowler), 200, xxiv
Under-design, avoiding, 101
Unencapsulated code, global variables

and, 53–54
Unified Modeling Language (UML)

class diagrams and, 192–193
class diagrams showing relation-

ships, 194–195
composition and uses, 195–196
composition vs. aggregation, 196
definition of, 191
indicating number of things another

object has, 197
notation for accessibility, 194
notes in, 196
object: class notation, 198–199
polymorphism in, 83
reasons to use, 192
sequence diagram, 198
showing dependence using dashes, 198
showing "has-a" relationship, 195
summary review, 200

Unit Test-Driven Development
(UTDD), 41–42

Unit testing
creating automated acceptance tests

with, 39
creating from acceptance tests, 40, 44

234 Index

Unit testing (continued)
inserting mock test into interface

for, 79
in Programming by Intention, 13–15
Unit Test-Driven Development, 41–42

Up-front testing. See also Testing and
testability

of cohesion, 205
of coupling, 207
no excuses for avoiding, 43
overview of, 35
of redundancy, 208
reflection on, 39–41

Use, separating construction from
approach to, 27–30
coupling from perspective of, 25–27
debugging and, 48–50
perspective of, 24
question to ask, 21–22
realistic approach to, 27–30
timing your decisions, 30–31
validating concept for yourself,

32–33
"Uses-a" relationship, UML class dia-

gram, 192

V
Validation

Acceptance Test-Driven Develop-
ment and customer, 95–96

defining requirements using tests
for, 87

of separation of use from construc-
tion, 32–33

using text as external values, 216
Values

breaking encapsulation with get(),
63

encapsulating magic, 218–219
using text as external, 215–217

Variability Analysis, 133
Variations. See also Commonality-

Variability Analysis
encapsulating all, 209
handling in problem domain, 132
hiding with inheritance, 179,

181–182
in Variability Analysis, 133

Verbs
in object-oriented analysis, 127
problem with, 130–131
warning about using, 127–130

Version control. See also Continuous
integration (CI), 109

Viscosity, avoiding code, 103

W
Weak cohesion, 204
Web Services Description Language

(WSDL), 76

	Contents
	Series Foreword
	Preface
	Acknowledgments
	About the Authors
	Chapter 8 Avoid Over- and Under-Design
	A Mantra for Development
	The Pathologies of Code Qualities
	Avoid Over- and Under-Design
	Minimize Complexity and Rework
	Never Make Your Code Worse/Only Degrade Your Code Intentionally
	Keep Your Code Easy to Change, Robust, and Safe to Change
	A Strategy for Writing Modifiable Code in a Non-Object-Oriented or Legacy System
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

