
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321543738
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321543738
https://plusone.google.com/share?url=http://www.informit.com/title/9780321543738
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321543738
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321543738/Free-Sample-Chapter


Praise for Essential Skills for the Agile Developer

“I tell teams that the lean and agile practices should be treated like a 
buffet: Don’t try and take everything, or it will make you ill—try the 
things that make sense for your project. In this book the authors have 
succinctly described the ‘why’ and the ‘how’ of some of the most effec-
tive practices, enabling all software engineers to write quality code for 
short iterations in an efficient manner.”

—Kay Johnson
Software Development Effectiveness Consultant, IBM

“Successful agile development requires much more than simply mas-
tering a computer language. It requires a deeper understanding of 
agile development methodologies and best practices. Essential Skills for 
the Agile Developer provides the perfect foundation for not only learn-
ing but truly understanding the methods and motivations behind agile 
development.”

—R.L. Bogetti
www.RLBogetti.com, 
Lead System Designer, Baxter Healthcare

“Essential Skills for the Agile Developer is an excellent resource filled with 
practical coding examples that demonstrate key agile practices.”

—Dave Hendricksen
Software Architect, Thomson Reuters

www.RLBogetti.com


The Net Objectives Lean-Agile Series provides fully integrated Lean-Agile training, 
consulting, and coaching solutions for businesses, management, teams, and individuals. 

Series editor Alan Shalloway and the Net Objectives team strongly believe that it is not the soft-
ware, but rather the value that software contributes—to the business, to the consumer, to the 
user—that is most important. 

The best—and perhaps only—way to achieve effective product development across an 
organization is a well-thought-out combination of Lean principles to guide the enterprise, 
agile practices to manage teams, and core technical skills. The goal of The Net Objectives 
Lean-Agile Series is to establish software development as a true profession while helping 
unite management and individuals in work efforts that “optimize the whole,” including

•  The whole organization: Unifying enterprises, teams, and individuals to best work together

•  The whole product: Not just its development, but also its maintenance and integration

•  The whole of time: Not just now, but in the future—resulting in a sustainable return 
on investment

The books included in this series are written by expert members of Net Objectives. These 
books are designed to help practitioners understand and implement the key concepts 
and principles that drive the development of valuable software.

Visit informit.com/netobjectives for a complete list of available publications.
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If you are like me, you will just skim this foreword for the series and 
move on, figuring there is nothing of substance here. You will miss 

something of value if you do. 
I want you to consider with me a tale that most people know but 

don’t often think about. That tale illustrates what is ailing this industry. 
And it sets the context for why we wrote the Net Objectives Product 
Development Series and this particular book. 

I have been doing software development since 1970. To me, it is just 
as fresh today as it was four decades ago. It is a never-ending source of 
fascination to me to contemplate how to do something better, and it is 
a never-ending source of humility to confront how limited my abilities 
truly are. I love it. 

Throughout my career, I have also been interested in other industries, 
especially engineering and construction. Now, engineering and con-
struction have suffered some spectacular failures: the Leaning Tower of 
Pisa, the Tacoma Narrows Bridge, the Hubble telescope. In its infancy, 
engineers knew little about the forces at work around them. Mostly, 
engineers tried to improve practices and to learn what they could from 
failures. It took a long time—centuries—before they acquired a solid 
understanding about how to do things. 

No one would build a bridge today without taking into account long-
established bridge-building practices (factoring in stress, compression, 
and the like), but software developers get away with writing code based 
on “what they like” every day, with little or no complaint from their 
peers. And developers are not alone: Managers often require people to 
work in ways that they know are counterproductive. Why do we work 
this way?

Series Foreword

The Net Objectives Lean-Agile Series

Alan Shalloway, CEO, Net Objectives
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But this is only part of the story. Ironically, much of the rest is related 
to why we call this the Net Objectives Product Development Series. The 
Net Objectives part is pretty obvious. All of the books in this series were 
written either by Net Objectives staff or by those whose views are con-
sistent with ours. Why product development? Because when building 
software, it is always important to remember that software development 
is really product development. 

By itself, software has little inherent value. Its value comes when it 
enables delivery of products and services. Therefore, it is more useful to 
think of software development as part of product development—the set 
of activities we use to discover and create products that meet the needs 
of customers while advancing the strategic goals of the company.

Mary and Tom Poppendieck, in their excellent book Implementing 
Lean Software Development: From Concept to Cash (Addison-Wesley, 2006), 
note the following:

It is the product, the activity, the process in which software is embedded that is 
the real product under development. The software development is just a subset 
of the overall product development process. So in a very real sense, we can call 
software development a subset of product development. And thus, if we want 
to understand lean software development, we would do well to discover what 
constitutes excellent product development.

In other words, software in itself isn’t important. It is the value that 
it contributes—to the business, to the consumer, to the user—that is 
important. When developing software, we must always remember to 
look to what value is being added by our work. At some level, we all 
know this. But so often organizational “silos” work against us, keeping 
us from working together, from focusing on efforts that create value. 

The best—and perhaps only—way to achieve effective product devel-
opment across an organization is a well-thought-out combination of 
principles and practices that relate both to our work and to the people 
doing it. These must address more than the development team, more 
than management, and even more than the executives driving every-
thing. That is the motivation for the Net Objectives Product Develop-
ment Series.

Too long, this industry has suffered from a seemingly endless swing 
of the pendulum from no process to too much process and then back 
to no process: from heavyweight methods focused on enterprise con-
trol to disciplined teams focused on the project at hand. The time has 
come for management and individuals to work together to maximize 
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the production of business value across the enterprise. We believe lean 
principles can guide us in this. 

Lean principles tell us to look at the systems in which we work and 
then relentlessly improve them in order to increase our speed and qual-
ity (which will drive down our cost). This requires the following:

• Business to select the areas of software development that will 
return the greatest value 

• Teams to own their systems and continuously improve them

• Management to train and support their teams to do this

• An appreciation for what constitutes quality work 

It may seem that we are very far from achieving this in the software-
development industry, but the potential is definitely there. Lean princi-
ples help with the first three, and understanding technical programming 
and design has matured far enough to help us with the fourth.

As we improve our existing analysis and coding approaches with the 
discipline, mind-set, skills, and focus on value that lean, agile, patterns, 
and Test-Driven Development teach us, we will help elevate software 
development from being merely a craft into a true profession. We have 
the knowledge required to do this; what we need is a new attitude. 

The Net Objectives Lean-Agile Series aims to develop this attitude. 
Our goal is to help unite management and individuals in work efforts 
that “optimize the whole”:

• The whole organization. Integrating enterprise, team, and indi-
viduals to work best together.

• The whole product. Not just its development but also its mainte-
nance and integration.

• The whole of time. Not just now but in the future. We want sus-
tainable ROI from our effort.

This Book’s Role in the Series

Somewhere along the line, agile methods stopped including techni-
cal practices. Fortunately, they are coming back. Scrum has finally 
acknowledged that technical practices are necessary in order for agility 
to manifest itself well. Kanban and eXtreme Programming (XP) have 
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become interesting bedfellows when it was observed that XP had one-
piece flow ingrained in its technical practices.

This book was written as a stop-gap measure to assist teams that 
have just started to do lean, kanban, scrum, or agile. Regardless of the 
approach, at some point teams are going to have to code differently. This 
is a natural evolution. For years I have been encouraged that most peo-
ple who take our training clearly know almost everything they need to 
know. They just need a few tweaks or a few key insights that will enable 
them to be more effective in whatever approach they will be using. 

Why is this book a “stop-gap measure”? It’s because it is a means to 
an end. It offers a minimal set of skills that developers need to help them 
on their way toward becoming adept at incremental development. Once 
developers master these skills, they can determine what steps they need 
to take next or what skills they need to acquire next. They are readied 
for an interesting journey. This book offers the necessary starting point.

The End of an Era, the Beginning of a New Era

I believe the software industry is at a crisis point. The industry is con-
tinually expanding and becoming a more important part of our every-
day lives. But software development groups are facing dire problems. 
Decaying code is becoming more problematic. An overloaded workforce 
seems to have no end in sight. Although agile methods have brought 
great improvements to many teams, more is needed. By creating a true 
software profession, combined with the guidance of lean principles 
and incorporating agile practices, we believe we can help uncover the 
answers. 

Since our first book appeared, I have seen the industry change con-
siderably. The advent of kanban, in particular, has changed the way 
many teams and organizations do work. I am very encouraged. 

I hope you find this book series to be a worthy guide.

— Alan Shalloway
CEO, Net Objectives
Achieving enterprise and team agility
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Although this is a technical book, the idea of it sprang from the Net 
Objectives’ agile development courses. As I was teaching teams 

how to do scrum or lean, students would often ask me, “How are we 
supposed to be able to build our software in stages?” The answer was 
readily apparent to me. What they were really asking was, “How can 
we best learn how to build our software in stages?” I knew of three 
approaches:

• Read books. I am confident that anyone who read and absorbed 
the books Design Patterns Explained: A New Perspective on Object- 
Oriented Design and Emergent Design: The Evolutionary Nature of Pro-
fessional Software Development would know how to write software 
in stages.

• Take courses. This is a better approach. The combination of Net 
Objectives courses—Design Patterns and Emergent Design—can’t 
be beat.

• Learn about trim tabs. The trim tabs of software development 
make building software in stages more efficient.

The first one requires a big investment in time. The second one 
requires a big investment in money. The third one requires less of both. 
Unfortunately, there is no place where these “trim tabs” are described 
succinctly. 

What are trim tabs? They are structures on airplanes and ships that 
reduce the amount of energy needed to control the flaps on an airplane 
or the rudder of a ship. But what I mean comes from something Bucky 
Fuller once said.

Preface
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Something hit me very hard once, thinking about what one little man could do.  

Think of the Queen Mary—the whole ship goes by and then comes the rudder. 
And there’s a tiny thing at the edge of the rudder called a trim tab.  

It’s a miniature rudder. Just moving the little trim tab builds a low pressure 
that pulls the rudder around. Takes almost no effort at all. So I said that the 
little individual can be a trim tab. Society thinks it’s going right by you, that 
it’s left you altogether. But if you’re doing dynamic things mentally, the fact is 
that you can just put your foot out like that and the whole big ship of state is 
going to go.  

So I said, call me Trim Tab.

In other words, these are the actions and insights that give the most 
understanding with the least investment. In our design patterns courses, 
we identify three essential trim tabs. Students who do these three things 
see tremendous improvements in their design and programming abili-
ties. What were these three? Why, they are described in chapters in this 
book of course:

• Programming by intention

• Separate use from construction

• Consider testability before writing code

These three are very simple to do and take virtually no additional 
time over not doing them. All three of these are about encapsulation. 
The first and third encapsulate the implementation of behavior while 
the second focuses explicitly on encapsulating construction. This is a 
very important theme because encapsulation of implementation is a 
kind of abstraction. It reminds us that we are implementing “a way” of 
doing things—that there may be other ways in the future. I believe for-
getting this is the main cause of serious problems in the integration of 
new code into an existing system.

A fourth trim tab that I recommend is to follow Shalloway’s principle. 
This one takes more time but is always useful. 

This book is a compilation of the trim tabs that Net Objectives’ 
instructors and coaches have found to be essential for agile developers 
to follow to write quality code in an efficient manner. It is intended to 
be read in virtually any order and in easy time segments. That said, the 
chapters are sequenced in order to support the flow of ideas.
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Note from Alan Shalloway

We are indebted to Buckminster Fuller in the writing of this book for 
many reasons. First, a little bit about Bucky, as he was affectionately 
known by his friends. I am sorry to say I never met him, but he cer-
tainly would have been a dear friend of mine if I had. Bucky was best 
known for the invention of the geodesic dome and the term “Spaceship 
Earth.” He also coined the term “synergetics”—the study of systems in 
transformation—which is essentially what we do at Net Objectives. Of 
course, most relevant is that his use of the term “trim tab” (discussed in 
the preface) was the actual inspiration for this book. 

He was also an inspiration for me to always look for better ideas. This 
quote is my all-time favorite Buckyism:

I am enthusiastic over humanity’s extraordinary and sometimes very timely 
ingenuity. If you are in a shipwreck and all the boats are gone, a piano top 
buoyant enough to keep you afloat that comes along makes a fortuitous life pre-
server. But this is not to say that the best way to design a life preserver is in the 
form of a piano top. I think that we are clinging to a great many piano tops in 
accepting yesterday’s fortuitous contrivings as constituting the only means for 
solving a given problem. 

All these are good reasons, of course. But in truth, I realized I wanted 
to make a special acknowledgment for Bucky because he has been an 
inspiration in my life from, ironically, mostly the moment he passed 
away in 1983. He was not just one of these vastly intelligent men or 
one of these great humane folks. He was a rare, unique combination 
of both. If you are not familiar with this great man, or even if you are, 
I suggest you check out the Buckminster Fuller Institute (http://www
.bfi.org). 

Acknowledgments
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Developers tend to take one of two approaches to programming. Many think they 
need to plan ahead to ensure that their system can handle new requirements 
that come their way. Unfortunately, this planning ahead often involves adding 
code to handle situations that never come up. The end result is code that is more 
complex than it needs to be and therefore harder to change—the exact situation 
they were trying to avoid. The alternative, of course, seems equally bad. That is, 
they just jump in, code with no forethought, and hope for the best. But this hack-
ing also typically results in code that is hard to modify. What are we supposed to 
do that doesn’t cause extra complexity but leaves our code easy to change? The 
middle ground can be summed up by something Ward Cunningham said at a 
user group: “Take as much time as you need to make your code quality as high 
as it can be, but don’t spend a second adding functionality that you don’t need 
now!” In other words, write high-quality code, but don’t write extra code.

This chapter is admittedly more of a new mantra than it is a detailed descrip-
tion of a technique to implement. This chapter takes advantage of what we 
learned in Chapter 5, Encapsulate That!, and sets the groundwork for Chapter 
11, Refactor to the Open-Closed.

A Mantra for Development

We believe developers should have a particular attitude when writing 
code. There are actually several we’ve come up with over time—all 
being somewhat consistent with each other but saying things a different 
way. The following are the ones we’ve held to date:

• Avoid over- and under-design.

• Minimize complexity and rework.

CHAPTER 8

Avoid Over- and Under-Design
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• Never make your code worse (the Hippocratic Oath of coding).

• Only degrade your code intentionally.

• Keep your code easy to change, robust, and safe to change.

Before we can discuss these mantras, we need to be clear what we 
mean by quality code. Appendix B, Code Qualities, provides a thorough 
explanation of the specific qualities referred to in this chapter. We’ll 
give a brief summary of code quality here, but interested readers may 
want to read the more extensive narrative in the appendix.

The Pathologies of Code Qualities

It’s often easier to see code qualities by discussing examples of when the 
qualities aren’t present. Let’s look at five common code qualities: cohe-
sion, coupling, redundancy, readability, and encapsulation.

• Cohesion. Strongly cohesive classes are classes whose functions are 
all related to each other. Strongly cohesive methods are methods 
that do only one thing. The pathology of weak cohesion is classes or 
methods that do unrelated things. We’ve heard very weakly cohe-
sive classes called “god objects” presumably because they are some-
what omniscient in that everything takes place in them.1

• Proper coupling. Having well-defined relationships between 
objects makes them easier to understand and likely to inadvertently 
cause problems when changing code. The pathology of improper 
coupling is the occurrence of side effects—that is, unexpected 
errors due to making changes elsewhere.

• No redundancy. No redundancy is difficult to achieve. The more 
redundancy you have, the more time it will take to make changes. 
As we discussed in Chapter 4, Shalloway’s Law and Shalloway’s 
Principle, no redundancy is virtually impossible to achieve—but at 
least you want to make it so you don’t have to find the duplication. 
Essentially, the pathology of redundancy is that when you make a 
change in one place, you have to make a change in another place.

1. We’ve also thought they may be called this because when you first look at them you mut-
ter to yourself “Oh my god!” and the fact that it looks like only god could figure them out.



Avoid Over- and Under-Design 101

• Readability. Readable code means you can understand what has 
been written. It requires intention-revealing names and is best 
achieved by using Programming by Intention (see Chapter 1, Pro-
gramming by Intention). Unreadable code, of course, is code you 
can’t understand when you read it. Poor names, tight coupling, and 
big methods/classes contribute greatly to the unreadability of code.

• Encapsulation. Encapsulation is more than mere data hiding. 
The type of an object is one of the most important things to hide. 
Design patterns are really about hiding: object type, cardinality, 
which function is being used, order, optional behavior, construc-
tion, and more. The pathology of encapsulation is when you must 
know how the code you are using is implanted in order to use it 
properly. This often means you know the implementation type of 
the object being used or know something about cardinality, order, 
and so on.

Avoid Over- and Under-Design

This essentially means you should put in the correct amount of design. 
Overdesign is putting in things that add complexity to the code that 
may or may not be needed. Note that the key word here is “complexity.” 
We’re not as worried about the time you take as much as we are about 
how you leave the state of the code. If the work you’ve done does not 
raise the complexity of the code you have, then no worries. In other 
words, putting in an interface where one may or may not be needed is 
not necessarily a bad thing if everyone understands interfaces. Inter-
faces aren’t really complexity-adders in our mind. They are a holder for 
an idea. However, putting in a complex parameter list (or using a value 
object to hold a parameter, say, when one isn’t needed) would be raising 
complexity. 

Under-design is actually a euphemism for “poor code quality.” We 
view under-design as having taken place when high coupling or weak 
cohesion is present. Typically, proper encapsulation is also not present. 
So, avoiding overdesign means make your code changeable, but don’t 
add things you don’t need now. If you need them later, the change-
ability of the code will enable you to do that with less, if any, extra 
cost. Avoiding under-design mostly means making sure your code is 
changeable. 
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Minimize Complexity and Rework

Many people only partly understand the true nature of refactoring. 
Martin Fowler, in his excellent Refactoring: Improving the Design of Existing 
Code,2 describes refactoring in the following way.

Refactoring is the process of changing a software system in such a way that it 
does not alter the external behavior of the code yet improves its internal struc-
ture. It is a disciplined way to clean up code that minimizes the chances of intro-
ducing bugs. In essence when you refactor you are improving the design of the 
code after it has been written.

In the book, Fowler talks about refactoring as a method of cleaning 
up messy/poor code. However, there is another side to refactoring that 
Fowler doesn’t talk about. This is refactoring code that is of high quality, 
when it comes to the code qualities we’ve been talking about, but that 
no longer has sufficient design because of new requirements. In other 
words, the book talks about how to clean up poorly written code (a 
good thing to know) but mostly ignores how to refactor good code that 
now must be changed to accommodate new requirements.3

We strongly suggest that refactoring good code when new require-
ments come so that the code is better able to accommodate the changes 
is a way to minimize complexity because you are deferring adding 
complexity until it is needed, but your code quality is high so there is 
no rework. We would contend that delaying extensions to code is not 
rework but a kind of just-in-time design. We’ll talk explicitly about how 
to do this in Chapter 11, Refactor to the Open-Closed.

Never Make Your Code Worse/Only Degrade 
Your Code Intentionally

Existing code degrades one bit at a time (no pun intended). We suggest 
that team members do their best to not take shortcuts that makes their 
code worse. Sometimes this is difficult, however. It may be that legacy 
code makes it very difficult to add functionality properly without harm-
ing your code. To be realistic, we restate “Never make your code worse” 

2. Fowler, Martin. Refactoring: Improving the Design of Existing Code. Boston, MA: Addison-Wesley, 
1999.

3. Alan Shalloway had a private conversation with Martin about this once. After suggesting 
that the refactoring concepts Martin presented would work equally well for both types of 
code, Martin responded by agreeing and saying, “My book was long enough as it was!”
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to “Only degrade your code intentionally.” Although this may sound 
funny, the alternative would be to make your code worse unintentionally.

One way to only degrade your code intentionally is to ensure you 
consider alternatives. One way to do this is to make a teamwide agree-
ment that if developers can’t figure out how to make a change without 
degrading code, they will tell another team member of the change they 
are thinking of making before they make the change. Note that we are 
not requiring getting permission or even getting a better result. We’re 
just suggesting you tell someone. This forces you to at least reflect a little. 
Our experience has shown us that a person will stop just short of a good 
solution because he or she is willing to do the first thing that comes 
to mind. Our approach forces people to think about things a bit more 
(sometimes a lot more because they don’t want to admit to coworkers 
that they don’t have good solutions).

Keep Your Code Easy to Change, Robust, and 
Safe to Change

Code should not be viscous. That means the effort to make changes 
should not be excessive. Viscosity can be avoided by having easy-to-
understand, nonredundant code. Code should also not be brittle. That 
is, changes in one place should not break code in other places. This 
requires loosely coupled code, following Shalloway’s principle (see 
Chapter 4, Shalloway’s Law and Shalloway’s Principle) and proper 
encapsulation. It is not sufficient to follow these two mantras alone, 
however. Although doing so may make it easy to change your code with 
less likelihood of breaking it, there are no guarantees. The only way to 
be assured that you can safely change your code is to have a full set of 
automated acceptance tests available.

A Strategy for Writing Modifiable Code in a 
Non-Object-Oriented or Legacy System

Many of the approaches we’ve discussed here are often met with this 
attitude: “That’s a great idea, but I can’t do it where I work because I’m 
using C.” A variant of this is “That’s a great idea, but I can’t do it where 
I work because there is so much monolithic legacy code that I can’t take 
advantage of object-oriented methods.” There are other variants as well, 
but you get the idea. Although it is true that your existing software and 
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the languages you are using provide certain constraints on what you 
can do, there are certain approaches you can always take. One of these is 
to consider the separation of concerns in a different way. 

The idea is to separate the code that is particular to the application 
from the code that defines the application’s architecture (or even system 
architecture).

One can think of a program as essentially an overall flow detailing 
the steps to be undertaken. For example, a sales-order system can have 
a variety of actions needed to work:

• Select customer.

• Get customer information.

• Select products to be sold.

• Get prices.

• Apply appropriate discounts.

• Total cost of sales order.

• Specify shipping.

Object orientation attempts to simplify this by creating objects that 
group responsibilities for the different implementing steps. These objects 
collaborate with each other and avoid coupling by having well-defined 
interfaces that hide their implementations. Unfortunately, if you can’t 
(properly) use an object-oriented language, how can you get at least 
some of the value that comes from separating concerns? One way is to 
have each method in your code deal with only one of the following:

• The system architecture

• The application architecture

• The implementation of a step

For example, let’s say you are writing embedded software that takes 
its input from a special bus in the form of string from which it extracts 
required parameters via a specialized method. Applications like this 
often take the following approach:

public function someAction () {
  string inputString;



inputString= getInputFromBus();
  if (getParameter(inputString, PARAM1)> SOMEVALUE) {
    // bunches of code
  } else {
    if (getParameter(inputString, PARAM2)< SOMEOTHERVALUE) {
      // more bunches of code
      // …
    } else {
      // even more bunches of code
      // …
    }
  }
}

The problem with this is lack of cohesion. As you try to figure out 
what the code does, you are also confronted with detailed specifics 
about how the information is obtained. Although this might be clear 
to the person who first wrote this, this will be difficult to change in 
the future (not counting the confusion that happens now). This gets 
much worse if one never makes the distinction between the system one 
is embedded in (which is determining the input method) and the logic 
inside the routine. For example, consider what happens when a differ-
ent method of getting the string is used as well as a different method of 
extracting the information. In this case, the parameters are returned in 
an array:

public function someAction () {
  string inputString;
  int values[MAX_VALUES];

  if (COMMUNICATION_TYPE== TYPE1) {
    inputString= getInputFromBus();
  } else { 
    values= getValues();
  }

  if ( (COMMUNICATION_TYPE== TYPE1 ? 
    getParameter( inputString, PARAM1) :
    values[PARAMETER1]) > SOMEVALUE) {
    // bunches of code
  } else {
    if ( COMMUNICATIONS_TYPE== TYPE1 ?
      getParameter( inputString, PARAM2) :
      values(PARAMETER2])
      < SOMEOTHERVALUE) {
        // more bunches of code
        // …
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    } else {
      // even more bunches of code
      // …
    }
  }
}

Pretty confusing? Well, have no fears, it’ll only get worse. If, instead, 
we separated the “getting of the values” from the “using of the values,” 
things would be much clearer.

public function someAction () {
  string inputString;
  int values[MAX_VALUES];

  int value1;
  int value2;

  if (COMMUNICATION_TYPE== TYPE1) {
    inputString= getInputFromBus();
  } else {
    values= getValues();
  }

  value1= (COMMUNICATION_TYPE== TYPE1 ? 
    getParameter( inputString, PARAM1) :
    values[PARAMETER1]);
  value2= ( COMMUNICATIONS_TYPE== TYPE1 ?
    getParameter( inputString, PARAM2) :
    values(PARAMETER2]);

  someAction2( value1, value2);
}

public function someAction2 (int value1, int value2) {

  if ( value1 > SOMEVALUE) {
    // bunches of code
  } else {
    if ( value2 < SOMEOTHERVALUE) {
      // more bunches of code
      // …
    } else {
      // even more bunches of code
      // …
    }
  }
}



Summary 107

You must remember that complexity is usually the result of an 
increase in the communication between the concepts involved, not the 
concepts themselves. Therefore, complexity can be lowered by separat-
ing different aspects of the code. This does not require object orienta-
tion. It simply requires putting things in different methods.

Summary

Developers must always be aware of doing too much or too little. When 
you anticipate what is needed and put in functionality to handle it, you 
are very likely to be adding complexity that may not be needed. If you 
don’t pay attention to your code quality, however, you are setting your-
self up for rework and problems later. Code quality is a guide. Design 
patterns can help you maintain it because they give you examples of 
how others have solved the problem in the past in similar situations.
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