

Web Service API Styles

Client-Service Interaction Styles

Request and Response Management

RPC API (18) How can clients execute remote procedures over HTTP?

Message API (27) How can clients send commands, notifications, or other
information to remote systems over HTTP while avoiding
direct coupling to remote procedures?

Resource API (38) How can a client manipulate data managed by a remote
system, avoid direct coupling to remote procedures, and
minimize the need for domain-specific APIs?

Request/Response (54) What’s the simplest way for a web service to process a
request and provide a result?

Request/Acknowledge
(59)

How can a web service safeguard systems from spikes in
request load and ensure that requests are processed even
when the underlying systems are unavailable?

Media Type
Negotiation (70)

How can a web service provide multiple representations of
the same logical resource while minimizing the number of
distinct URIs for that resource?

Linked Service (77) Once a service has processed a request, how can a client
discover the related services that may be called, and also
be insulated from changing service locations and URI
patterns?

Service Controller (85) How can the correct web service be executed without hav-
ing to write complex parsing and routing logic?

Data Transfer
Object (94)

How can one simplify manipulation of request and
response data, enable domain layer entities, requests, and
responses to vary independently, and insulate services from
wire-level message formats?

Request Mapper (109) How can a service process data from requests that are struc-
turally different yet semantically equivalent?

Response Mapper (122) How can the logic required to construct a response be
reused by multiple services?

Web Service Implementation Styles

Web Service Infrastructures

Web Service Evolution

Transaction Script (134) How can developers quickly implement web service logic?

Datasource Adapter (137) How can a web service provide access to internal resources
like database tables, stored procedures, domain objects, or
files with a minimum amount of custom code?

Operation Script (144) How can web services reuse common domain logic without
duplicating code?

Command Invoker (149) How can web services with different APIs reuse common
domain logic while enabling both synchronous and asyn-
chronous request processing?

Workflow Connector (156) How can web services be used to support complex and
long-running business processes?

Service Connector (168) How can clients avoid duplicating the code required to use
a specific service and also be insulated from the intricacies
of communication logic?

Service Descriptor (175) How can development tools acquire the information neces-
sary to use a web service, and how can the code for Service
Connectors be generated?

Asynchronous Response
Handler (184)

How can a client avoid blocking when sending a request?

Service Interceptor (195) How can common behaviors like authentication, caching,
logging, exception handling, and validation be executed
without having to modify the client or service code?

Idempotent Retry (206) How can a client ensure that requests are delivered to a web
service despite temporary network or server failures?

Single-Message
Argument (234)

How can a web service with an RPC API (##) become less
brittle and easily accommodate new parameters over time
without breaking clients?

Dataset Amendment (237) How can a service augment the information it sends or
receives while minimizing the probability of breaking
changes?

Tolerant Reader (243) How can clients or services function properly when some of
the content in the messages or media types they receive is
unknown or when the data structures vary?

Consumer-Driven
Contracts (250)

How can a web service API reflect its clients’ needs while
enabling evolution and avoiding breaking clients?

Service
Design Patterns

Service
Design Patterns
Fundamental Design Solutions
for SOAP/WSDL and
RESTful Web Services

Robert Daigneau

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding in-
terests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Daigneau, Robert.

Service design patterns : fundamental design solutions for SOAP/WSDL
and restful Web services / Robert Daigneau.

p. cm.
Includes bibliographical references and index.
ISBN-13: 978-0-321-54420-9 (hardcover : alk. paper)
ISBN-10: 0-321-54420-X (hardcover : alk. paper)
1. Web services. 2. Web site development. 3. Simple Object Access

Protocol (Computer network protocol) I. Title.
TK5105.88813.D35 2012
006.7'8—dc23

2011033436

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use
material from this work, please submit a written request to Pearson Education, Inc., Per-
missions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-54420-9
ISBN-10: 0-321-54420-X

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, October 2011

For John, Alice, Heather, and Michelle

This page intentionally left blank

vii

Contents

Foreword by Martin Fowler . xi

Foreword by Ian Robinson . xiii

Preface . xv

Acknowledgments . xxiii

About the Author . xxv

Chapter 1: From Objects to Web Services . 1

What Are Web Services? . 2
From Local Objects to Distributed Objects 3
Why Use Web Services? . 6
Web Service Considerations and Alternatives 7
Services and the Promise of Loose Coupling 9
What about SOA? . 10
Summary . 11

Chapter 2: Web Service API Styles . 13

Introduction . 13
Design Considerations for Web Service APIs 14
RPC API . 18

Considerations . 20
Message API . 27

Considerations . 29
Resource API . 38

Considerations . 43

Chapter 3: Client-Service Interactions . 51

Introduction . 51
Request/Response . 54

Considerations . 56

viii CONTENTS

Request/Acknowledge . 59
Considerations . 62

Media Type Negotiation . 70
Considerations . 73

Linked Service . 77
Considerations . 79

Chapter 4: Request and Response Management . 83

Introduction . 83
Service Controller . 85

Considerations . 89
Data Transfer Object . 94

Data-Binding Considerations . 98
General Considerations . 99

Request Mapper . 109
Considerations . 111

Response Mapper . 122
Considerations . 124

Chapter 5: Web Service Implementation Styles . 131

Introduction . 131
Design Considerations for Web Service Implementation 132
Transaction Script . 134

Considerations . 135
Datasource Adapter . 137

Considerations . 139
Operation Script . 144

Considerations . 145
Command Invoker . 149

Considerations . 150
Workflow Connector . 156

Considerations . 162

Chapter 6: Web Service Infrastructures . 165

Introduction . 165
Service Connector . 168

Considerations . 172
Service Descriptor . 175

Considerations . 177

CONTENTS ix

Asynchronous Response Handler . 184
Considerations . 188

Service Interceptor . 195
Idempotent Retry . 206

Considerations . 211
A Quick Review of SOA Infrastructure Patterns 220

The Service Registry . 220
The Enterprise Service Bus . 221
The Orchestration Engine . 224

Chapter 7: Web Service Evolution . 227

Introduction . 227
What Causes Breaking Changes? . 228

Structural Changes to Media Types or Messages 229
Service Descriptor Changes . 230

Common Versioning Strategies . 232
Single-Message Argument . 234
Dataset Amendment . 237

Considerations . 240
Tolerant Reader . 243

Considerations . 244
Consumer-Driven Contracts . 250

Considerations . 254
How the Patterns Promote or Hinder Service Evolution 264

Appendix: Reference to External Patterns . 269

Glossary . 277

Bibliography . 297

Index . 303

This page intentionally left blank

xi

Foreword
by Martin Fowler

One of the inevitable truisms of enterprise applications is that they are not
islands. You may be focused on solving a particular business problem, but in
order to do that you won’t be able to capture all the data you need yourself, or
develop all the processing. Even if you had the time, that data and processing is
being done elsewhere, and duplication is both wasteful and leads to messy
inconsistencies. As a result, almost all enterprise applications need to communi-
cate with other applications. These foreign systems are often not in the same
organization, but are provided by some third-party organization.

For many years, one of the hardest parts of this kind of collaboration was
just to get some kind of communication path. Often these applications were
written on different platforms, with different languages, on different operating
systems supporting different communication protocols. But in the past decade,
the web has appeared as a solution to the connection problem. Almost all sys-
tems can open port 80 and talk text over it.

But that still leaves many questions around how they should talk. Should
they use an RPC-style API, a message-oriented API, or this fashionable REST
stuff? Should logic be embedded in services directly or delegated to underlying
objects? How can we change services that are already in use without breaking
clients?

Generally in my series, the books have featured topics that haven’t been cov-
ered much elsewhere, but there have already been too many books about vari-
ous aspects of web services. As a result, when a draft of Robert’s book came to
me across the ether, I didn’t think I would be interested in it. What changed my
mind was that it brings together these key questions into a single handbook, in
a style that I like to see in a technical book that’s worth the effort of reading.

First, he takes the approach of breaking up the topic area into patterns, so
we have vocabulary to talk about these topics. Then he goes into each pattern,
explaining how each one works and how to choose between them. As a result,

xii FOREWORD

you are able to see the various approaches to web service design and decide
what will work for you in your context. He provides code examples, so you can
see how these patterns might work in practice, yet the patterns are general
enough to apply to many technology stacks.

The result is a book that collects the important design decision points for
using web services in a style that focuses on principles that are likely to be valu-
able despite changes in technology.

Martin Fowler
http://martinfowler.com

http://martinfowler.com

xiii

Foreword
by Ian Robinson

Distributed application development often starts well. And just as often it ends
badly. Point, add web reference, click: That’s the sound of a developer pointing
a loaded client at your carefully crafted service interface. By substituting tooling
for design, we somehow turned all that loose coupling into plain irresponsible
promiscuity; come release time, we all have to join the lockstep jump.

In a more cautious era, we’d have just said: “No. Don’t distribute.” And in
large part that advice still holds true today. A layer is not a tier. Blowing a three-
layered application architecture out to distributed proportions is foolishness
writ large, no matter how many open standards you implement.

But today’s applications are rarely islands. Where a business’s capabilities are
scattered across organizational boundaries, so too are the systems that auto-
mate them. Some form of service orientation, both within and between compa-
nies, is necessary if we are to support the distributed nature of the modern
supply chain.

The web, or rather, the technology that underpins the web, has proven enor-
mously resourceful in this respect. Whether or not you’re aware of—or even
carelessly indifferent to—the web’s prominent place in the history of distributed
systems, there’s inevitably something of the web about a sound majority of the
services you’ve built or used. For all its purported transport agnosticism, SOAP,
in practice, has tended to ride the HTTP train. Hidden, but not forgotten, the
web has shouldered the services burden for several years now.

When we look at the web services landscape today, we see that there are at
least three ways to accommodate the web in the software we build. The web
has succeeded not because of the overwhelming correctness of its constituency,
but because of its tolerance for the many architectural styles that inhabit and
sometimes overrun its borders. Some services and applications are simply
behind the web. They treat the web as an unwelcome but nonetheless necessary
narrow gateway through which to access objects and procedures. Adjust your

xiv FOREWORD

gaze, and you’ll see that some services are on the web; that is, they treat HTTP
not as a brute transport, but rather as the robust coordination and transfer pro-
tocol described in RFC 2616. Last, you’ll see some (very few) that are of the
web. These use the web’s founding technologies—in particular, URIs and HTTP
and generalized hypermedia representation formats such as HTML—to present
a web of data, including data that describes how to access and manipulate more
data, to consumers.

This book brings together the need for caution and defensive design when
distributing systems with the several ways of using the web to enable distribu-
tion. As a compendium of sound strategies and techniques, it rivals the hard-
won experience of many of my friends and colleagues at ThoughtWorks. It’s a
book about getting things done on the web; it’s also a book about not backing
yourself into a corner. By balancing the (necessary) complexity of shielding a
service’s domain and data from that army of cocked clients with the simplicity
that begets internal quality and service longevity, it may just help you avoid the
midnight lockstep deployment.

Ian Robinson

xv

Preface

When I started working on this book I wasn’t entirely sure what SOA and
REST were. I knew that I wasn’t the only one who felt this way. Most discus-
sions on these topics were rife with ambiguity, hyperbole, misinformation, and
arguments that appealed to emotion rather than reason. Still, as a developer
who had struggled with distributed object technologies, I was fascinated by web
services. I saw them as a pragmatic way to integrate systems and reuse common
business logic.

Since then, REST has gained significant momentum, WS* services have
established a solid foothold, and SOA was proclaimed dead [Manes]. Through
it all, my fascination with web services never waned. As mobile, cloud, and
Software-as-a-Service (SaaS) platforms cause software to become increasingly
distributed, the importance of web services will only continue to increase. We
live in exciting times indeed!

What Is This Book About?

This book is a catalogue of design solutions for web services that leverage
SOAP/WSDL or follow the REST architectural style. The goal was to produce a
concise reference that codifies fundamental web service design concepts. Each
pattern describes a known and proven solution to a recurring design problem.
However, the patterns are not meant to be recipes that are followed precisely. In
fact, a given pattern might never be implemented in exactly the same way twice.
This catalogue also doesn’t invent new solutions. Rather, the patterns in this
book were identified over long periods of time by developers who noticed that
certain problems could be solved by using similar design approaches. This book
captures and formalizes those ideas.

Services can be implemented with many different technologies. SOA practi-
tioners, for example, often say that technologies as diverse as CORBA and

xvi PREFACE

DCOM, to the newer software frameworks developed for REST and SOAP/
WSDL, can all be used to create services. This book focuses exclusively on web
services. Unfortunately, this term is somewhat overloaded as well. Some use it
to refer to any callable function that uses WSDL. The term has also been used
to describe RESTful services (re: [Richardson, Ruby]). This book uses the term
web service to refer to software functions that can be invoked by leveraging
HTTP as a simple transport over which data is carried (e.g., SOAP/WSDL ser-
vices) or by using HTTP as a complete application protocol that defines the
semantics for service behavior (e.g., RESTful services).

Who Is This Book For?

This book is aimed at professional enterprise architects, solution architects, and
developers who are currently using web services or are thinking about using
them. These professionals fall into two distinct groups. The first group creates
software products (e.g., commercial, open source SaaS applications). The sec-
ond develops enterprise applications for corporate IT departments. While this
catalogue is tailored for software professionals, it can also be used in academia.

What Background Do You Need?

Pattern authors often provide code examples to illustrate design solutions.
Most catalogues aren’t meant to be platform-specific, but the author must still
choose which languages, frameworks, and platforms to use in the examples.
While a plethora of new languages have become popular in recent years, I
decided to use Java and C# for two reasons. First, these languages have a signif-
icant market share (i.e., a large installed base of applications) and are quite
mature. Second, most readers probably use or have used these languages and
are therefore familiar with their syntax. I will assume that the reader has an
intermediate to advanced understanding of these languages and of several
object-oriented programming (OOP) concepts.

The patterns in this catalogue make heavy use of a few web service frame-
works popular with Java and C# developers. These frameworks encapsulate the
most common functions used by web service developers. This book does not
identify the patterns used within these frameworks. Instead, it identifies pat-

PREFACE xvii

terns that developers use when leveraging these frameworks to build web ser-
vices. Here are the frameworks that are used in this book:

• SOAP/WSDL frameworks:

– The Java API for XML Web Services (JAX-WS)

– Apache CXF

– Microsoft’s Windows Communication Foundation (WCF)

• REST frameworks:

– The Java API for RESTful Web Services (JAX-RS)

– Microsoft’s WCF

• Data-binding frameworks:

– The Java Architecture for XML Binding (JAXB)

– Microsoft’s DataContractSerializer and other serializers (e.g., XmlSerializer)

It is assumed that the reader will at least have a basic acquaintance with the
following:

• JavaScript Object Notation (JSON)

• Extensible Markup Language (XML)

• XML Schema Definition Language

• XML Path Language (XPath)

• Extensible Stylesheet Language Transformation (XSLT)

• The Web Services Description Language (WSDL)

Organization of This Book

Following a general introduction in Chapter 1, the patterns in this catalogue are
grouped into six chapters.

• Chapter 2, Web Service API Styles: This chapter explores the primary API
styles used by web services. The ramifications of selecting the right style
cannot be underestimated because, once a style is chosen, it becomes very
hard to change direction.

xviii PREFACE

• Chapter 3, Client-Service Interactions: This chapter presents the founda-
tions for all client-service interactions. These patterns may be used with
any service design style. Given an understanding of these patterns, you can
devise complex conversations in which multiple parties exchange data
about a particular topic over short or extended periods of time.

• Chapter 4, Request and Response Management: Software applications are
frequently organized into layers that contain logically related entities. This
chapter identifies the common Service Layer [POEAA] entities that are
used to manage web requests and responses. The intent of these patterns is
to decouple clients from the underlying systems used by the service.

• Chapter 5, Web Service Implementation Styles: Services may be imple-
mented in various ways. They may have intimate knowledge of resources
such as database tables, they may coordinate the activities of an Object
Relational Mapper (ORM) or direct calls to legacy APIs, or they may for-
ward work to external entities. This chapter looks at the ramifications of
each approach.

• Chapter 6, Web Service Infrastructures: Certain tasks are so generic that
they can be used over and over again. This chapter discusses some of the
most common and basic infrastructure concerns pertinent to client and
service developers. A few patterns common to corporate SOA infrastruc-
tures are also reviewed.

• Chapter 7, Web Service Evolution: Developers strive to create services that
will remain compatible with clients which evolve at different rates. This
goal, however, is quite difficult to achieve. This chapter reviews the factors
that cause clients to break and discusses two common versioning strate-
gies. You’ll also see how services can be augmented to meet client require-
ments while avoiding a major software release.

Supporting information is provided in the Appendix, Bibliography, and
Glossary.

The Pattern Form Used in This Book

There are many ways to present patterns, from the classic style of Christopher
Alexander [Alexander] to the highly structured forms of the Gang of Four
[GoF] and Pattern-Oriented Software Architecture [POSA] books. The conven-

PREFACE xix

tion used in this book was influenced by the Alexandrian form and the style
used in Enterprise Integration Patterns [EIP]. Hopefully you will find that the
conversational style makes the patterns easy to read. Only a few recurring
headers are used to demarcate content. Each design pattern is described using
the following conventions.

• Pattern name: The pattern name describes the solution in a few words.
The name provides a handle or identifier for the solution, and is a part of
the larger pattern language presented in the book. The goal was to use
evocative names that can be easily understood and used in everyday con-
versations. Many of the pattern names in this book are already quite
common.

• Context: The context follows the pattern name and is expressed in no
more than a few sentences. It identifies the general scenario in which the
pattern might apply. Of course, all of these patterns apply to web services,
but some are only relevant to certain situations. This section may refer to
other patterns to help set the context.

• Problem: The problem to solve is stated as a single question. You should
be able to read the problem and quickly determine if the pattern is relevant
to the design challenge you are facing. This section is marked off between
two horizontal bars.

• Forces: The forces provide more detail on the problem. This section, which
follows the problem definition, explores some of the reasons why the
problem is difficult to solve and presents alternative solutions that have
been tried but may not work out so well. The goal of this narrative is to
naturally lead you to the solution.

• Solution summary: This section provides a brief description of the design
solution, in a few sentences. Despite its terseness, you should be able to
quickly understand how the problem can be solved. The solution summary
typically describes the primary entities that comprise the design, their
responsibilities and relationships, and the way they work together to solve
the problem. The solution is not meant to be an absolute prescription that
has one and only one implementation. Rather, it should be viewed as a
general template that can be implemented in many different ways. The
written summary is usually accompanied by a diagram to supplement the
narrative. The primary mechanisms used in this book include sequence
diagrams and class diagrams. In some cases, the solution is modeled
through nonstandard graphical depictions. This section is demarcated by

xx PREFACE

two horizontal bars, just like the problem section. The intent was to make
it easy for readers to quickly find the problem and solution summary.

• Solution detail: This section presents several aspects of the solution in a
prosaic style. It expands on the solution summary to explore how the pri-
mary elements of the solution are employed in order to solve the problem
and resolve the forces. Since every solution has benefits and drawbacks, this
section reviews the consequences and additional factors you may need to
consider. I also point out related patterns that may be found elsewhere in
this book or in other pattern catalogues. This is done for a variety of rea-
sons. Some of the patterns in this book are actually specializations of exist-
ing patterns, and I felt that it was only right to acknowledge the original
source. Other patterns are complementary to the pattern being discussed,
or may be considered as an alternative.

• Considerations: This section discusses additional factors you may need to
consider when using the pattern. Such factors include design considerations,
related technologies, and a variety of other pertinent topics. Bulleted lists are
used to help the reader skim this section and hone in on specific topics of
interest. This section does not occur in each and every pattern.

• Examples: This section is meant to supplement the prior sections. You
should be able to understand the essence of a pattern without having to
read this section. Some patterns offer several examples to help you under-
stand the many ways in which the pattern may be implemented. Other
patterns only provide a few examples to facilitate understanding.

The examples in this book take many forms. The most common form is
Java and C# code. Other examples use XML, JSON, XSD, and WSDL. All
attempts were made to keep the examples as simple as possible, so a number
of things were left out (e.g., exception-handling blocks, thread management,
most queuing and database-related logic, etc.). In some cases, the examples
only include enough code to convey the basic idea of the pattern. In other
cases, the code examples provide much more detail because I felt that omit-
ting such detail would have left the reader with too many questions.

Please note that this is not meant to be a book on how to use a specific
API; there are many great books out there for such matters. Rather, these
code samples are provided to deepen your understanding of abstract
design solutions. Furthermore, just as the pattern descriptions provide a
template, so too do the code examples. This means that you probably
won’t want to copy any code verbatim.

PREFACE xxi

Pattern Categories Not Covered

A vast array of topics has been included under the umbrella of service design.
However, many of these subjects are quite deep and have already been covered
extensively in other works. The content of this catalogue has therefore been con-
strained to only include the most fundamental solutions relevant to web service
design. The following topics have been avoided or only covered lightly.

• Enterprise integration patterns: While web services provide a great way to
integrate disparate applications, the topic of integration is exceedingly
deep. Hohpe and Woolf’s book, Enterprise Integration Patterns: Design-
ing, Building, and Deploying Messaging Solutions [EIP], does a great job
of showing how integration can occur through middleware solutions that
primarily leverage queuing technologies. This book builds on and refers to
many of their patterns.

• Workflow/orchestration: Workflow technologies provide the means to
define the flow of execution through a set of related activities managed by
a central controller. Workflows are frequently triggered by web services
and often interact with external web services to send or receive data.
Workflows may be relatively short in duration (i.e., a few seconds), or may
transpire over days, weeks, or even months. The subject of workflow is far
beyond the scope of this book, and is addressed by such catalogues as
http://workflowpatterns.com [van der Aalst, et al.].

• Event-driven architecture: An alternative to the “command and control”
architectural style exemplified by workflows is event-driven architecture
(EDA). With EDA, there is no centralized controller. Instead, clients and
services communicate with each other in a much more fluid, dynamic, and
often unpredictable way when specific events occur within their respective
domains. Sometimes the rules for EDA are described through choreogra-
phy. For more information on this topic I recommend the following:

www.complexevents.com/category/applications/eda/

• Choreography: Choreography, like EDA, is not a “command and control”
architectural style. Instead, it suggests that parties adopt a rules-based
approach that declares the sequence of allowed exchanges between parties
as if seen by an external observer. This concept has yet to see wide adoption.

www.complexevents.com/category/applications/eda/
http://workflowpatterns.com

xxii PREFACE

• Security: Matters such as authentication, authorization, data confidential-
ity, data integrity, nonrepudiation, techniques used to harden network
infrastructures, and other security concerns are not discussed in any detail
as these subjects are incredibly deep and have been covered extensively in
other works.

Supporting Web Site and contact information

Companion information for this book may be found at

www.ServiceDesignPatterns.com

www.ServiceDesignPatterns.com

xxiii

Acknowledgments

I’d like to acknowledge everyone who has assisted in this project. I could not
have done this without you.

I am indebted to a number of people from the Pattern Languages of Program-
ming Conference (PLoP) held in 2008. Kyle Brown played an instrumental role
by pointing me toward an effective pattern form. He instilled in me a strategy for
setting up the problem, forces, and constraints. I’d also like to thank my PLoP
2008 workshop mates for their feedback on early versions of a few patterns and
my writing style. This group included Paul Austrem, Philipp Bachmann, Geert
Monsieur, Mark Mahoney, Lise Hvatum, Bobby Woolf, and John Liebenau.

Bobby Woolf, Rebecca Wirfs-Brock, and Michael Stiefel volunteered to review
early versions of a few chapters. Your feedback helped steer me in the right direc-
tion. John Liebenau and Uwe Zdun also offered help in those early days.

My biggest thanks go to my official team of technical reviewers. Jim Webber
was incredibly gracious with his time and proved to be a reliable REST
resource. Eric Newcomer offered thoughts on how to fine-tune the book’s
scope. Marc Hadley kept me honest on several Java Specification Requests
(JSRs), and provided great input in several other areas. Scott Ambler offered
several suggestions to help make the patterns more readable. Elliotte Rusty
Harold’s expertise is world renowned, and his critiques were thought provok-
ing. Ian Robinson made a huge contribution by offering a very important pat-
tern to the book. Rebecca Wirfs-Brock, more than anyone else, recognized my
strengths and weaknesses. Her measured feedback was invaluable. I am, of
course, extremely grateful to Martin Fowler for accepting me into this presti-
gious series and working with me to sharpen the book’s content.

Last but not least, I must thank my editorial team, Chris Guzikowski, Raina
Chrobak, Chris Zahn, Julie Nahil, and Audrey Doyle. Without your patience,
support, and a little prodding, I would have never reached the finish line.

This page intentionally left blank

xxv

About the Author

Robert Daigneau has more than twenty years of experience designing and
implementing applications and products for a broad array of industries from
financial services, to manufacturing, to retail and travel. Rob has served in such
prominent positions as Director of Architecture for Monster.com, and Manager
of Applications Development at Fidelity Investments. He has been known to
speak at a conference or two.

Rob can be reached at rob@ServiceDesignPatterns.com.

This page intentionally left blank

1

From Objects
to Web
Services

Chapter 1

From Objects
to Web Services

Web services have been put into practical use for many years. In this time,
developers and architects have encountered a number of recurring design chal-
lenges related to their usage. We have also learned that certain design
approaches work better than others to solve certain problems. This book is for
software developers and architects who are currently using web services or are
thinking about using them. The goal is to acquaint you with some of the most
common and fundamental web service design solutions and to help you deter-
mine when to use them. All of the concepts discussed here are derived from
real-life lessons. Proven design solutions will also be demonstrated through
code examples.

Service developers are confronted with a long list of questions.

• How do you create a service API, what are the common API styles, and
when should a particular style be used?

• How can clients and services communicate, and what are the foundations
for creating complex conversations in which multiple parties exchange
data over extended periods of time?

• What are the options for implementing service logic, and when should a
particular approach be used?

• How can clients become less coupled to the underlying systems used by a
service?

• How can information about a service be discovered?

• How can generic functions like authentication, validation, caching, and
logging be supported on the client or service?

2 CHAPTER 1 FROM OBJECTS TO WEB SERVICES

What Are Web
Services?

• What changes to a service cause clients to break?

• What are the common ways to version a service?

• How can services be designed to support the continuing evolution of busi-
ness logic without forcing clients to constantly upgrade?

These are just a few of the questions that must be answered. This book will
help you find solutions that are appropriate for your situation.

In this chapter, you’ll learn what services are and how web services address
the shortcomings of their predecessors.

What Are Web Services?

From a technical perspective, the term service has been used to refer to any
software function that carries out a business task, provides access to files (e.g.,
text, documents, images, video, audio, etc.), or performs generic functions like
authentication or logging. To these ends, a service may use automated work-
flow engines, objects belonging to a Domain Model [POEAA], commercial
software packages, APIs of legacy applications, Message-Oriented Middleware
(MOM), and, of course, databases. There are many ways to implement ser-
vices. In fact, technologies as diverse as CORBA and DCOM, to the newer
software frameworks developed for REST and SOAP/WSDL, can all be used to
create services.

This book primarily focuses on how services can be used to share logical
functions across different applications and to enable software that runs on dis-
parate computing platforms to collaborate. A platform may be any combina-
tion of hardware, operating system (e.g., Linux, Windows, z/OS, Android,
iOS), software framework (e.g., Java, .NET, Rails), and programming language.
All of the services discussed in this book are assumed to execute outside of the
client’s process. The service’s process may be located on the same machine as
the client, but is usually found on another machine. While technologies like
CORBA and DCOM can be used to create services, the focus of this book is on
web services. Web services provide the means to integrate disparate systems and
expose reusable business functions over HTTP. They either leverage HTTP as a
simple transport over which data is carried (e.g., SOAP/WSDL services) or use
it as a complete application protocol that defines the semantics for service
behavior (e.g., RESTful services).

FROM LOCAL OBJECTS TO DISTRIBUTED OBJECTS 3

From Local
Objects to
Distributed
Objects

Web services were conceived in large part to address the shortcomings of dis-
tributed-object technologies. It is therefore helpful to review some history in
order to appreciate the motivation for using web services.

From Local Objects to Distributed Objects

Objects are a paradigm that is used in most modern programming languages to
encapsulate behavior (e.g., business logic) and data. Objects are usually “fine-
grained,” meaning that they have many small properties (e.g., FirstName, LastName)
or methods (e.g., getAddress, setAddress). Since developers who use objects often
have access to the internals of the object’s implementation, the form of reuse
they offer is frequently referred to as white-box reuse. Clients use objects by
first instantiating them and then calling their properties and methods in order
to accomplish some task. Once objects have been instantiated, they usually
maintain state between client calls. Unfortunately, it wasn’t always easy to use
these classes across different programming languages and platforms. Compo-
nent technologies were developed, in part, to address this problem.

Terminology

Web service developers often use different terms to refer to equivalent
roles. Unfortunately, this has caused a lot of confusion. The following
table is therefore provided for clarification and as a reference. The first
column lists names used to denote software processes that send requests
or trigger events. The second column contains terms for software func-
tions that respond or react to these requests and events. The terms appear-
ing under each column are therefore synonymous.

Client Service

Requestor Provider

Service consumer Service provider

This book uses the terms “client” and “service” because they are com-
mon to both SOAP/WSDL services and RESTful services.

4 CHAPTER 1 FROM OBJECTS TO WEB SERVICES

From Local
Objects to

Distributed
Objects

Components were devised as a means to facilitate software reuse across dis-
parate programming languages (see Figure 1.1). The goal was to provide a
means whereby software units could be assembled into complex applications
much like electronic components are assembled to create circuit boards. Since
developers who use components cannot see or modify the internals of a compo-
nent, the form of reuse they offer is called black-box reuse. Components group
related objects into deployable binary software units that can be plugged into
applications. An entire industry for the Windows platform arose from this con-
cept in the 1990s as software vendors created ActiveX controls that could be
easily integrated into desktop and web-based applications. The stipulation was
that applications could not access the objects within components directly.
Instead, the applications were given binary interfaces that described the objects’
methods, properties, and events. These binary interfaces were often created
with platform-specific interface definition languages (IDLs) like the Microsoft
Interface Definition Language (MIDL), and clients that wished to use compo-
nents frequently had to run on the same computing platform.

Objects were eventually deployed to remote servers in an effort to share and
reuse the logic they encapsulated (see Figure 1.2). This meant that the memory
that was allocated for clients and distributed objects not only existed in sepa-
rate address spaces but also occurred on different machines. Like components,
distributed objects supported black-box reuse. Clients that wished to use dis-
tributed objects could leverage a number of remoting technologies like
CORBA, DCOM, Java Remote Method Invocation (RMI), and .NET Remot-

Client

A Single Process On One Machine

Customer Component

Platform-Specific
Interface

Customer
Object

Address
Object

*

Figure 1.1 Components were devised as a means to facilitate reuse across
disparate programming languages. Unfortunately, they were often created

for specific computing platforms.

FROM LOCAL OBJECTS TO DISTRIBUTED OBJECTS 5

From Local
Objects to
Distributed
Objects

ing. The compilation process for these technologies produced a binary library
that included a Remote Proxy [GoF]. This contained the logic required to com-
municate with the remote object. As long as the client and distributed object
used the same technologies, everything worked pretty well. However, these
technologies had some drawbacks. They were rather complex for developers to
implement, and the process used to serialize and deserialize objects was not
standardized across vendor implementations. This meant that clients and
objects created with different vendor toolkits often had problems talking to
each other. Additionally, distributed objects often communicated over TCP
ports that were not standardized across vendor implementations. More often
than not, the selected ports were blocked by firewalls. To remedy the situation,
IT administrators would configure the firewalls to permit traffic over the
required ports. In some cases, a large number of ports had to be opened. Since
hackers would have more network paths to exploit, network security was often
compromised. If traffic was already permitted through the port, then it was
often already provisioned for another purpose.

Distributed objects typically maintained state between client calls. This led to
a number of problems that hindered scalability.

• Server memory utilization degraded with increased client load.

• Effective load-balancing techniques were more difficult to implement and
manage because session state was often reserved for the client. The result
was that subsequent requests were, by default, directed back to the server
where the client’s session had been established. This meant that the load
for client requests would not be evenly distributed unless a sophisticated

Client

Client Process Server Process for Distributed Object

Network

Proxy
Customer Object

Stub

Figure 1.2 Objects were frequently used in distributed scenarios.
When a client invoked a method on the proxy’s interface, the proxy
would dispatch the call over the network to a remote stub, and the

corresponding method on the distributed object would be invoked. As
long as the client and distributed object used the same technologies,

everything worked pretty well.

6 CHAPTER 1 FROM OBJECTS TO WEB SERVICES

Why Use Web
Services?

infrastructure (e.g., shared memory cache) was used to access the client’s
session from any server.

• The server had to implement a strategy to release the memory allocated for
a specific client instance. In most cases, the server relied on the client to
notify it when it was done. Unfortunately, if the client crashed, then the
server memory allocated for the client might never be released.

In addition to these issues, if the process that maintained the client’s session
crashed, then the client’s “work-in-progress” would be lost.

Why Use Web Services?

Web services make it relatively easy to reuse and share common logic with
such diverse clients as mobile, desktop, and web applications. The broad reach
of web services is possible because they rely on open standards that are ubiqui-
tous, interoperable across different computing platforms, and independent of
the underlying execution technologies. All web services, at the very least, use
HTTP and leverage data-interchange standards like XML and JSON, and
common media types. Beyond that, web services use HTTP in two distinct
ways. Some use it as an application protocol to define standard service behav-
iors. Others simply use HTTP as a transport mechanism to convey data.
Regardless, web services facilitate rapid application integration because, when
compared to their predecessors, they tend to be much easier to learn and
implement. Due to their inherent interoperability and simplicity, web services
facilitate the creation of complex business processes through service composi-
tion. This is a practice in which compound services can be created by assem-
bling simpler services into workflows.

Web services establish a layer of indirection that naturally insulates clients
from the means used to fulfill their requests (see Figure 1.3). This makes it possi-
ble for clients and services to evolve somewhat independently as long as break-
ing changes do not occur on the service’s public interface (for more on breaking
changes, refer to the section What Causes Breaking Changes? in Chapter 7). A
service owner may, for example, redesign a service to use an open source library
rather than a custom library, all without having to alter the client.

WEB SERVICE CONSIDERATIONS AND ALTERNATIVES 7

Web Service
Considerations
and
Alternatives

Web Service Considerations and Alternatives

While web services are appropriate in many scenarios, they shouldn’t be used in
every situation. Web services are “expensive” to call. Clients must serialize all
input data to each web service (i.e., the request) as a stream of bytes and trans-
mit this stream across computer processes (i.e., address spaces). The web service
must deserialize this stream into a data format and structure it understands
before executing. If the service provides a “complex type” as a response (i.e.,
something more than a simple HTTP status code), then the web service must
serialize and transmit its response, and the client must deserialize the stream
into a format and structure it understands. All of these activities take time. If
the web service is located on a different machine from the client, then the time it
takes to complete this work may be several orders of magnitude greater than
the time required to complete a similar in-process call.

Possibly more important than the problem of latency is the fact that web ser-
vice calls typically entail distributed communications. This means that client and
service developers alike must be prepared to handle partial failures [Waldo,
Wyant, Wollrath, Kendall]. A partial failure occurs when the client, service, or
network itself fails while the others continue to function properly. Networks are
inherently unreliable, and problems may arise for innumerable reasons. Connec-
tions will occasionally time out or be dropped. Servers will be overloaded from

Service Service Service Service Service
Service
Layer

Domain
Models

Table
Modules

Workflows Code
Libraries

Commercial
Packages

Legacy
Applications

Databases LDAP Files Multimedia Middleware

Domain
Layer

Data Sources

Client Applications

Figure 1.3 Web services help to insulate clients from the logic used to fulfill their
requests. They establish a natural layer of indirection that makes it possible for

clients and domain entities (i.e., workflow logic, Table Modules, Domain Models
[POEAA], etc.) to evolve independently.

8 CHAPTER 1 FROM OBJECTS TO WEB SERVICES

Web Service
Considerations

and
Alternatives

time to time, and as a result, they may not be able to receive or process all
requests. Services may even crash while processing a request. Clients may crash
too, in which case the service may have no way to return a response. Multiple
strategies must therefore be used to detect and handle partial failures.

In light of these inherent risks, developers and architects should first explore
the alternatives. In many cases, it may be better to create “service libraries”
(e.g., JARs, .NET assemblies) that can be imported, called, and executed from
within the client’s process. If the client and service have been created for differ-
ent platforms (e.g., Java, .NET), you may still use a variety of techniques that
enable disparate clients and services to collaborate from within the same pro-
cess. The client may, for example, be able to host the server’s runtime engine,
load the services into that environment, and invoke the target directly. To illus-
trate, a .NET client could host a Java Virtual Machine (JVM), load a Java
library into the JVM, and communicate with the target classes through the Java
Native Interface (JNI). You may also use third-party “bridging technologies.”
These options, however, can become quite complex and generally prolong the
client’s coupling to the service’s technologies.

Web services should therefore be reserved for situations in which out-of-pro-
cess and cross-machine calls “make sense.” Here are a few examples of when
this might occur.

• The client and service belong to different application domains and the
“service functions” cannot be easily imported into the client.

• The client is a complex business process that incorporates functions from
multiple application domains. The logical services are owned and man-
aged by different organizations and change at different rates.

• The divide between the client and server is natural. The client may, for
example, be a mobile or desktop application that uses common business
functions.

Developers would be wise to consider alternatives to web services even when
cross-machine calls seem justified.

• MOM (e.g., MSMQ, WebSphere MQ, Apache ActiveMQ, etc.) can be used
to integrate applications. These technologies, however, are best reserved for
use within a secured environment, far behind the corporate firewall. Fur-
thermore, they require the adoption of an asynchronous communications
style that forces all parties to tackle several new design challenges. MOM
solutions often use proprietary technologies that are platform-specific. For
complete coverage of this topic, see Enterprise Integration Patterns:

SERVICES AND THE PROMISE OF LOOSE COUPLING 9

Services and
the Promise of
Loose
Coupling

Designing, Building, and Deploying Messaging Solutions [EIP]. Web ser-
vices often forward requests to MOM.

• A certain amount of overhead should be expected with HTTP due to the
time it takes for clients and servers to establish connections. This added
time may not be acceptable in certain high-performance/high-load scenar-
ios. A connectionless protocol like User Datagram Protocol (UDP) can be
a viable alternative for situations like these. The trade-off, however, is that
data may be lost, duplicated, or received out of order.

• Most web service frameworks can be configured to stream data. This helps
to minimize memory utilization on both the sender’s and receiver’s end
because data doesn’t have to be buffered. Response times are also minimized
because the receiver can consume the data as it arrives rather than having to
wait for the entire dataset to be transferred. However, this option is best
used for the transfer of large documents or messages rather than for real-
time delivery of large multimedia files like video and audio. For situa-
tions like these, protocols such as Real Time Streaming Protocol (RTSP,
www.ietf.org/rfc/rfc2326.txt), Real Time Transport Protocol (RTP, http://
tools.ietf.org/html/rfc3550), and Real Time Control Protocol (RTCP, http://
tools.ietf.org/html/rfc3605) are usually more appropriate than HTTP.

Services and the Promise of Loose Coupling

Services are often described as being loosely coupled. However, the definitions
for this term are varied and cover a broad array of concerns. Coupling is the
degree to which some entity (e.g., client) depends on another entity. When the
dependencies are many, the coupling is said to be high or tight (e.g., high cou-
pling, tightly coupled). Conversely, when the dependencies are few, coupling is
considered to be low or loose (e.g., low coupling, loosely coupled).

It is certainly true that web services can eliminate the client’s dependencies
on the underlying technologies used by a service. However, clients and services
can never be completely decoupled. Some degree of coupling will always exist
and is often necessary. The following list describes a few forms of coupling that
service designers must consider.

• Function coupling: Clients expect services to consistently produce certain
results given certain types of input under particular scenarios. Clients are
therefore indirectly dependent on the logic implemented by web services.
The client will most certainly be affected if this logic is implemented

www.ietf.org/rfc/rfc2326.txt
http://tools.ietf.org/html/rfc3550
http://tools.ietf.org/html/rfc3550
http://tools.ietf.org/html/rfc3605
http://tools.ietf.org/html/rfc3605

10 CHAPTER 1 FROM OBJECTS TO WEB SERVICES

What about
SOA?

incorrectly or is changed to produce results that are not in accordance
with the client’s expectations.

• Data structure coupling: Clients must understand the data structures that a
service receives and returns, the data types used in these structures, and the
character encodings (e.g., Unicode) used in messages. If a data structure pro-
vides links to related services, the client must know how to parse the struc-
ture for that information. The client may also need to know what HTTP
status codes the service returns. Service developers must be careful to refrain
from including platform-specific data types (e.g., dates) in data structures.

• Temporal coupling: A high degree of temporal coupling exists when a
request must be processed as soon as it’s received. The implication is that
the systems (e.g., databases, legacy or packaged applications, etc.) behind
the service must always be operational. Temporal coupling can be reduced
if the time at which a request is processed can be deferred. Web services
can achieve this outcome with the Request/Acknowledge pattern (59).
Temporal coupling is also high if the client must block and wait for a
response. Clients may use the Asynchronous Response Handler pattern
(184) to reduce this form of coupling.

• URI coupling: Clients are often tightly coupled to service URIs. That is,
they often either have a static URI for a service, or follow a simple set of
rules to construct a service URI. Unfortunately, this can make it difficult
for service owners to move or rename service URIs, or to adopt new pat-
terns for URI construction since actions like these would likely cause cli-
ents to break. The following patterns can help to reduce the client’s
coupling to the service’s URI and location: Linked Service (77), Service
Connector (168), Registry (220), and Virtual Service (222).

What about SOA?

Many definitions for Service-Oriented Architecture (SOA) have been offered.
Some see it as a technical style of architecture that provides the means to inte-
grate disparate systems and expose reusable business functions. Others, how-
ever, take a much broader view:

A service-oriented architecture is a style of design that guides all aspects of
creating and using business services throughout their lifecycle (from con-
ception to retirement). [Newcomer, Lomow, p. 13]

SUMMARY 11

Summary
Service Oriented Architecture (SOA) is a paradigm for organizing and uti-
lizing distributed capabilities that may be under the control of different
ownership domains. [OASIS Ref Model]

These viewpoints suggest that SOA is a design paradigm or methodology
wherein “business functions” are enumerated as services, organized into logical
domains, and somehow managed over their lifetimes. While SOA can help busi-
ness personnel articulate their needs in a way that comes more naturally than,
say, object-oriented analysis, there are still many ways to implement services. This
book focuses on several technical solutions that may be used to create a SOA.

Summary

By eliminating coupling to specific computing platforms, web services have
helped us overcome one of the main impediments to software reuse. However,
there are many ways to go about designing services, and developers are con-
fronted with a long list of questions that must be resolved. This book will help
you find the solutions that are most appropriate for your situation.

This page intentionally left blank

303

Index

A
Abstract Data Transfer Object, 105

Dataset Amendment, 241
ActiveX controls, 4, 277
Adapter [GoF], 269. See also Datasource

Adapter; Gateway [POEAA]
Address formatting, Linked Service

pattern, 79
Addressability, Resource API, 43–44
AJAX (Asynchronous JavaScript and

XML), 43, 278
Anonymous class, 187, 277
Anonymous method, 187, 277
Apache Subversion

external definitions, 291
URL for, 278. See also Version control

Apache URLs
Apache Software Foundation, 277
Axis2, 277
CXF, 277
ODE, 278
ServiceMix, 278
Software Foundation, 277
Struts, 278
Subversion, 278. See also Version con-

trol
Thrift, 278
web server, 277
web services projects, 277
XMLBeans, 278

APIs. See Web service API styles
Architectural Styles and...Software Archi-

tectures, 133
ASCII (American Standard Code for

Information Exchange), 278

ASP.NET MVC
definition, 278
Front-Controller, 85

Asynchronous JavaScript and XML
(AJAX), 43, 278

Asynchronous processing
Asynchronous Response Handler,

184
Command Invoker, 149
Consumer-Driven Contracts, 255
Correlation Identifiers, 270
Intercepting Loggers, 201
Message API, 30
Message Oriented Middleware, 59
relation to Temporal Coupling, 10
race conditions, 288
Request/Acknowledge, 59
Request Mapper, 113
Request/Response, 57
Resource APIs, 44
RPC API, 22
Service Connector, 170

Asynchronous Response Handler, 184
Client-Side Callback, 185–188
forms of, 185–188
Message API, 30
overview, 184–188
Polling Method, 185
Request/Acknowledge, 59
Request/Response, 57
Resource API, 44
RPC API, 22
Service Connector, 170
temporal coupling, 10
use for, 166

304 INDEX

Asynchronous Response Handler,
considerations

launching concurrent web service
requests, 188

long-running operations, 188
temporal coupling, 189

Asynchronous Response Handler,
examples

Client-Side Callback and Resource
APIs, 193–194

Client-Side Callback and RPC APIs,
192–193

Polling Methods and Resource APIs,
190–191

Polling Methods and RPC APIs,
189

Asynchrony
Message API, 30
Resource API, 44
RPC API, 22

Atom Publishing Protocol, 278
breaking changes, 230, 231
Datasource Adapter, 139
Linked Services, 80
Open Data Protocol, 287
Resource API, 40
Service Connector, 171
Service Descriptor, 180

Atomicity, web service implementation,
132

Authentication
Basic Authentication, 278
breaking changes, 231
Datasource Adapter, 140
Digest Authentication, 281
Enterprise Service Bus, 224
Message API, 28, 30
Microsoft Enterprise Library, 286
Resource API, 44
Service Connector, 173
Service Contracts, 15
Service Descriptor, 176
Service Interceptor, 195, 267
web service API styles, 13

Autonomy, web service API styles,
15–16

Axis2, URL for, 277

B
Backward compatibility. See Web service

evolution
BAM (Business Activity Monitoring), 162
Basic Authentication, 278
Binary message encoding

BSON, 279
Data Transfer Objects, 100
Data Transfer Objects and Google

Protocol Buffers, 99
design considerations for web service

APIs, 17
Message API, 30
MTOM, 286
RPC API, 23
Service Connector, 171

Black-box reuse, 279
components, 4

Blocking, avoiding. See also Asynchro-
nous Response Handler

client-side, Request/Response pattern,
57

Message API, 30
Resource API, 44
RPC API, 22

Books and publications
Architectural Styles and...Software

Architectures, 133
Growing Object-Oriented Software...,

255
Patterns of Enterprise Application

Architecture, 13, 133
Bottom up design, 15

Datasource Adapter, 140
BPEL (Business Process Execution Lan-

guage), 279
Apache ODE, 278
Orchestration Engine, 224
Workflow Connector, 159
WS-BPEL, 293

Breaking changes, causes of
media types, structural changes to,

229–230
messages, structural changes to,

229–230
Service Descriptor changes, 230–231
summary of causes, 228–229

INDEX 305

Breaking changes, mitigating. See
Consumer-Driven Contracts;
Tolerant Reader

Breaking clients, avoiding, 79
Broker services

Linked Service, 77
Virtual Service, 222

BSD Sockets API, 279
BSON, 279
Business Activity Monitoring (BAM), 162
Business Process Execution Language

(BPEL), 279
Byte order. See Endianness

C
Cache/caching, 45, 279. See also Proxy

servers; Reverse proxy
commodity caching technologies, 45
Consumer-Driven Contracts, 253
HTTP Post, 41
Idempotent Retry, 173
Intercepting Exception Handler, 204
Origin Server, 288
perimeter caches, 52
Representational State Transfer, 289
Request/Response and intermediaries, 57
Resource APIs and REST, 46
Resource APIs and Service Interceptors,

49
Server-Driven Negotiation, 73
Service Gateway, 172
Service Interceptor, 195
web service state management, 133
WS-Reliable Messaging, 217

Cacheable responses, 46
Callback service

Orchestration Engine, 224
Request/Acknowledge, 63–65, 68
Workflow Connector, 158–162

Canonical Data Model [EIP], 222
Castor, 279. See also Data binding

Data Transfer Object, 97
Channel Adapters [EIP], 222
Chatty service contracts

Datasource Adapters and Latency, 140
Latency, 16
Service Descriptor, 177

Chunky data transfers, 100–101
Chunky service contracts, 177–178

Data Transfer Object, 100
Latency, 16

Circular references, DTOs, 95
Cited works, 297–300
Client preferences, supporting, 44

Client-driven negotiation, Media Type
Negotiation, 72–73

Client/server constraints, Resource API,
46

Client-service coupling, Service Connec-
tor considerations, 173

Client-service interactions
Client-Service Interactions, 51
summary of patterns, 53. See also

specific patterns
Client-side behaviors, Service Connector

considerations, 173
Client-Side Callback, 185–188, 192, 193
Client-side crashes, Idempotent Retry

considerations, 211–212
Client-specific DTOs, 100
Coarse-grained service contracts,

177–178, 250
Code on demand, REST, 46

Plug-in, 288
Code-First strategy

Data Transfer Object, 98
Service Controller, 90
Service Descriptor, 179–181
Single-Message Argument, 234

Code-First vs. Contract-First
data binding, DTOs, 98–99
Service Controllers, 90
Service Descriptors, 179–181

Collections, DTOs, 100–101
Command [GoF], 269
Command implementation patterns,

Command Invoker considerations,
152–153

Command Invoker, 149
alternative to Transaction Script, 135
benefits of, 150
description, 132
effects on web service evolution, 266
example, 153–155

306 INDEX

Command Invoker, continued
Message API, 30
Operation Script, 146
overview, 149–150
Transaction Script, 135
use for, 132

Command Invoker, considerations
command implementation patterns,

152–153
forwarding requests to background

processes, 151–152
invoking commands within web

services, 150–151
using with Request Mapper, 152

Command Messages [EIP], 29, 269
Commands, invoking within web

services, 150–151
Commodity caching technologies,

leveraging, 45
Apache CXF, 277
Common Object Request Broker

Architecture (CORBA), 279
Data Transfer Objects, 97, 270
distributed objects, 4
RPC API, 18
use in services, 2

Compensation, 157
service autonomy, 16
Workflow Connector, 157

Complex processes, running. See Work-
flow Connector

Composition. See Object composition;
Service composition

Connection management, 170
Connectivity problems, handling. See

Idempotent Retry
Connector coupling, Service Connector

considerations, 173
Consumer-Driven Contracts, 250. See

also Service contracts; Tolerant
Reader

backward and forward compatibility,
250–253

description, 228
design considerations for web service

APIs, 15
documentation, 251–252

effects on web service evolution,
268

integration tests, 252–253
overview, 250–253
uses for, 228
Service Descriptor, 179
Tolerant Reader, 246

Consumer-Driven Contracts,
considerations

complexity, 255
exchanging tests, 254
integration testing, 254
long-running asynchronous services,

255
modifying contracts, 254
platform dependencies, 255
real service implementation, 254
reasonable expectations, 255
scope, 255
stub implementation, 254
test strategies, 255
versioning contracts, 254

Consumer-Driven Contracts, examples
C#, 256–260
ISO Schematron, 260–263
NUnit, 256–260

Content negotiation. See Media Type
Negotiation

Content type. See Media type
Content-Based Router [EIP], 270
Contract-First vs. Code-First. See also

Code-First strategy
data binding, DTOs, 98–99
Service Controller, 89, 90
Service Descriptor, 179–181

Control flow, rules for, 159
Conversations, 280. See also Service

composition
Converting input data, Service Connec-

tors, 171
CORBA (Common Object Request Bro-

ker Architecture), 279. See also
Common Object Request Broker
Architecture

Correlation. See also Correlation Identi-
fier [EIP]

Workflow Connector, 161

INDEX 307

Correlation Identifier [EIP], 270
Command Invoker, 153

Coupling
Asynchronous Response Handler, 189
client-service, Service Connector con-

siderations, 173
Command Invoker, 149
connector, Service Connector consider-

ations, 173
data binding, DTOs, 98
data structure, 10
Datasource Adapter, 140
function, 9–10
Idempotent Retry, 206
loose, 9–10
Media Type Negotiation, 70
Message API, 27
Operation Script, 146
Request/Acknowledge, 59
Request/Response, 56
Resource API, 38
Service Connector, 173
Service Controller, 89
Service Descriptor, 178, 231
Service Interceptor, 197
Single-Message Argument, 235
temporal, 10. See also Asynchronous

Response Handler; Request/
Acknowledge

Tolerant Reader, 101
Transaction Script considerations, 135
URI, 10. See also Linked Services; Reg-

istry; Service Connectors; Virtual
Services

Crashes, Idempotent Retry consider-
ations, 211–212

Cross-language service development. See
Apache URLs, Thrift

Cross-machine calls, 8
CRUD (Create, Read, Update, Delete),

38–39, 42, 280
definition, 289
Idempotent Retry, 209
Resource API, 38, 42
Service Controller, 90
Table Module, 274

CXF. See Apache URLs, CXF

D
Daemon, definition, 280
Data binding See also Apache URLs,

XMLBeans; Castor; JAXB (Java API
for XML Binding); WCF

cause of breaking changes, 230
Data Transfer Object, 94–101
definition, 280
instructions for DTOs, 95
JAXB, 285
late binding, 285
leveraging with Dataset Amendment,

240
Request Mapper, 109, 111
Response Mapper, 123, 126
Service Controller, 86, 88
technologies, 86–87
Tolerant Reader, 245–246

Data binding, DTOs
considerations, 98–99
Contract-First vs. Code-First, 98–99
overview, 97–98
proprietary formats, 99
schema validation, 99
strong coupling to messages, 98

Data mapping, DTOs, 97
Data structures

accommodating variability. See Toler-
ant Reader

changing. See Dataset Amendment
coupling, 10
Wildcard-Content, 237
XML Extension Points, 237–239

Data Transfer Object Collections,
100–101

Data Transfer Object [POEAA], 270
Data Transfer Object

circular references, 95
data binding instructions, 95
data mapping, 97
Data Transfer Object Collections,

100–101
Dataset Amendment, example,

241–242
description, 84
effects on web service evolution, 265
overview, 94–98

308 INDEX

Data Transfer Object, continued
parsing request data, 95–96
serializing/deserializing data, 94–95
Tolerant Reader considerations,

245–246
use for, 84

Data Transfer Object, considerations
chunky data transfers, 100–101
client-specific Data Transfer Objects,

100
collections, 100–101
convenience, 99
Data Transfer Object size, 100
message formats, 100
naming, 99
serialization, 100
Tolerant Reader patterns, 101
work effort, 100

Data Transfer Object, data binding
considerations, 98–99
Contract-First vs. Code-First, 98–99
overview, 97–98
proprietary formats, 99
schema validation, 99
strong coupling to messages, 98

Data Transfer Object, examples
abstract Data Transfer Object,

105–108
JSON requests, with data binding,

103–105
using common code, 101–103

Data type preferences, Service Controller,
88

Database access. See Datasource Adapter
Dataset, definition, 280
Dataset Amendment

abstract types, 241
client-specific structures, 240
cluttered data structures, 240–241
considerations, 240–241
description, 228
with DTOs, example, 241–242
example, 241–242
leveraging data binding, 240
optional data, 240
overview, 237–240
uses for, 228

Datasource Adapter. See also Adapter
[GoF]

creating, 139
description, 131
effects on web service evolution, 266
example, 141–143
overview, 137–139
use for, 131

Datasource Adapter, considerations
access privileges, 140
coupling, 140
custom code, 140
Domain Models, 141
ease of use, 140
latency, 140–141
provider assumptions, 139
service API styles, 140

DCOM (Distributed Component Object
Model), 281

Deadlock, definition, 280
Delay time, specifying, 208–209
Delegation of work, Message API, 30
DELETE method, Resource API, 41–42
Denial of Service (DoS), 280–281
Dependency Injection, 270. See also

Inversion of Control [IoC]
Deserializing data

definition, 7
description, 281
DTOs (Data Transfer Objects), 94–95,

100
response streams, 171

Digest Authentication, 281
Distributed objects, 3–6
Distributed transactions, 281. See also

WS-AT (Web Services Atomic Trans-
actions)

vs. Autonomy and Web Service Design
Considerations, 15–16

vs. Local Transactions, 145
DLL (Dynamic Link Library), 282
Document APIs. See Message API
Document Messages [EIP], 29, 271
Documentation

Consumer-Driven Contracts, 251–252
Service Descriptors, 181

Document-Literal-Wrapped, 270

INDEX 309

DOM (Document Object Model), 282.
See also JAXP (Java API for XML
Processing)

Domain Façade [POEAA], 141
Domain Layer [DDD], 271
Domain logic, reusing. See Command

Invoker; Operation Script
Domain Model [POEAA], 271. See also

ORM (Object Relational Mapper)
Domain Models, Datasource Adapter, 141
Domain objects, 282
Domain-specific APIs, minimizing. See

Resource API
DoS (Denial of Service), 280–281
DTO. See Data Transfer Object
Dynamic Link Library (DLL), 282

E
EBCDIC (Extended Binary Coded

Decimal Interchange Code), 282
Encapsulation

access to remote systems, 172
web service API styles, 14–15

Endianness, 282
Enterprise Service Bus. See ESB (Enter-

prise Service Bus)
Error handling, Request/Acknowledge

pattern, 61
Error Message [EIP], 271
ESB (Enterprise Service Bus)

Canonical Data Model [EIP], 222
Channel Adapters [EIP], 222
effects on web service evolution, 268
Message Routers [EIP], 222
Message Translator [EIP], 222–223
open source. See Apache URLs,

ServiceMix
primary objectives, 221
transport mapping, 223–224
Virtual Services [IBM, ESB Patterns],

222
ESB (Enterprise Service Bus), messages

canonical set, 222
converting to canonical form, 222–223
Guaranteed Delivery [EIP], 223–224
Message Stores [EIP], 223–224
Orchestration Engines, 224–225

routing, 222
workflow management, 224–225

Event Messages [EIP], 29
Evolution of web service. See Web service

evolution
Exception handlers, intercepting,

204–205. See also Service Interceptor
Exception handling. See Service Interceptor
Extended Binary Coded Decimal Inter-

change Code (EBCDIC), 282
Extensible Markup Language (XML)

definition, 282
namespaces, ignoring, 245

Extensible Stylesheet Language Transfor-
mations (XSLT), 283

Extensible XML Application Markup
(XMAL), 283

External pattern descriptions. See also
specific patterns

Adapter [GoF], 269
Command [GoF], 269
Command Message [EIP], 269
Content-Based Router [EIP], 270
Correlation Identifier [EIP], 270
Data Transfer Object [POEAA], 270
Dependency Injection, 270
Document Message [EIP], 271
Document-Literal-Wrapped, 270
Domain Layer [DDD], 271
Domain Model [POEAA], 271
Error Message [EIP], 271
Façade [GoF], 271
Factory Method [GoF], 271
Front Controller [POEAA], 271
Gateway [POEAA], 272
Interceptor [POSA2], 272
Mapper [POEAA], 272
Mediator [GoF], 272
Message Bus [EIP], 272
Message [EIP], 272
Message Router [EIP], 272
Message Store [EIP], 273
Normalizer [EIP], 273
One-Way Message Exchange, 273
Operation Script [POEAA], 273
Pipes and Filters [EIP], 273
Post Once Exactly, 273

310 INDEX

External pattern descriptions, continued
Prototype [GoF], 273
Proxy [GoF], 274
Record Set [POEAA], 274
Remote Proxy [GoF], 274
Service Layer [POEAA], 274
Singleton [GoF], 274
Table Module [GoF], 274
Template Method [GoF], 275
Transaction Script [POEAA], 275

F
Façade [GoF], 271. See also Gateway

[POEAA]
Factory Method [GoF], 271
Failed retries, Idempotent Retry consider-

ations, 211–212
Fail-over, definition, 283
Fault message, 283. See also SOAP
Fine grained objects, 3
Fire-and-forget queues, 60. See also One-

Way Message Exchange
Firewalls, 57, 283
Forward compatibility. See Web service

evolution
Front Controller [POEAA], 85–86, 271.

See also Service Controllers
Function coupling, 9–10

G
Gateway [POEAA], 272. See also Adapter

[GoF]; Façade [GoF]; Mediator
[GoF]; Service Gateways

GET method, Resource API, 41–42
Git, definition, 283
Git Submodules, definition, 283
Google Protocol Buffers, 283
Governance, 284. See also Regression

tests; SCM (Software Configuration
Management)

Growing Object-Oriented Software...,
255

Guaranteed Delivery [EIP], 223–224

H
Hackable URIs, 44
HEAD method, Resource API, 41–42

HTTP (Hypertext Transfer Protocol)
definition, 284
direct coupling to remote procedures,

avoiding. See Message API
methods supported, discovering, 41
remote procedure execution. See

Message API; RPC API
server methods, selecting, 171
status codes, Resource API, 42

HTTP client, URL for, 277
HTTPD, URL for, 277
Hyperlinks, Linked Services, 80
Hypermedia, definition, 284

I
Idempotent operations, Resource API,

42–43
Idempotent Retry

delay time, specifying, 208–209
description, 166
overview, 206–211
race conditions, 208
strategy, implementing, 171
use for, 166

Idempotent Retry, considerations
client-side crashes, 211–212
criteria for adoption, 211
failed retries, 211–212

Idempotent Retry, examples
message delivery assurance, 217–219
retry manager, 212–217
WS-RM (Web Services Reliable

Messaging), 217–219
IDL (Interface Definition Language), 284.

See also CORBA; DCOM
IIS (Internet Information Services), 284
In-Only. See One-Way Message

Exchange
Integration tests, Consumer-Driven

Contracts, 252–253
Intercepting

exception handlers, Service Interceptor
example, 204–205

loggers, Service Interceptor example,
201–303

validators, Service Interceptor example,
199–200

INDEX 311

Interceptor [POSA2], 272. See also Ser-
vice Interceptor

Intermediaries, Request/Response pat-
tern, 57

Inversion of Control [IoC], 145. See also
Dependency Injection

ISO Schematron, Consumer-Driven
Contracts, 260–263

J
JAXB (Java API for XML Binding), 285.

See also Data binding
JAXP (Java API for XML Processing), 284.

See also DOM (Document Object
Model); SAX (Simple API for XML)

JAX-RS (Java API for RESTful Web Ser-
vices), 47, 284

JAX-WS (Java API for XML Web Ser-
vices), 284

JMS (Java Message Service), 285
JSON (JavaScript Object Notation)

binary-coded serialization. See BSON
definition, 285
DTOs with data binding, example,

103–105
with Request Mapper, 112

JSON RPC, 285
JSON Schema, 285
JUnit, 285
JXPath, URL for, 277

L
Late binding

definition, 285
Message API, 30
Resource API, 45

Latency. See also Response time
Datasource Adapter, 140–141
definition, 285
Request Mapper, 113
web service API styles, 16

Layered systems, 46
Leveraging commodity caching

technologies, 45
Linked Services

adding/removing services, 79
address formatting, 79

benefits of, 78–79
breaking clients, avoiding, 79
description, 53
effects on web service evolution, 265
examples, 80–82
overview, 77–79
Response Mapper, 125–126
use for, 53
Web service calls, sequence of, 77
workflow guidance, 78–79

Linked Services, considerations
hyperlinks, 80
security, 80
using with Resource APIs, 79–80

Load balancing, 5–6, 285–286
Local objects, 3–6
Location transparency, 22, 173–174
Loggers, intercepting, 201–303. See also

Service Interceptor
Long-running processes, 188. See also

Workflow Connector
Loose coupling, 9–10
Lost Update Problem, 49, 286

M
Man-in-the-Middle Attack (MITM), 286
Mapper [POEAA], 272. See also Request

Mapper; Response Mapper
Marshal. See Serializing data
Media preferences. See Media Type

Negotiation
Media Type Negotiation

content negotiation, 71–73
description, 53
media type preferences, 70
overview, 70–73
Request Handler, selecting, 71–72
URIs, as file extensions, 70
use for, 53

Media Type Negotiation, considerations
client-driven negotiations vs. WS-Dis-

covery, 73–74
code duplication, 74
server- vs. client-driven negotiations,

73
Service Connectors, 74
Service Controllers, 73

312 INDEX

Media Type Negotiation, examples
client-driven negotiations, 75–76
HTTP Accept headers, 74
indicating preferred types, 74
server-driven negotiations, 74–75

Media type preferences, 70
Media types. See also MIME (Multipur-

pose Internet Mail Extensions)
definition, 286
metadata, getting, 41
structural changes to, 229–230

Mediator [GoF], 272. See also Gateway
[POEAA]

Memory
releasing, 6
server utilization, 5

Message API
Asynchronous Response Handler pat-

tern, 30
asynchrony, 30
binary encoding, 30–31
blocking, avoiding, 30
Command Invoker, 30
Command Messages [EIP], 29
considerations, 29–31
delegation of work, 30
Document Messages [EIP], 29
effects on web service evolution, 264
Event Messages [EIP], 29
interacting with. See Service Connector
late binding, 30
message types, 29
overview, 14, 27–29
Request/Acknowledge pattern, 30
Service Connectors, 29–30
Service Contracts, 29–30
Service Descriptors, 29
Workflow Connector, 30

Message API, examples
SOAP and WSDL, 31–33
without WSDL, 33–37

Message Bus [EIP], 272
Message [EIP], 272
Message formats, DTOs, 100
Message Routers [EIP], 222, 272
Message Stores [EIP], 223–224, 273

Message Translator [EIP], 222–223
Message Transmission Optimization

Mechanism (MTOM), 286
Message types, Message API, 29
Message-Oriented Middleware (MOM),

web service alternative, 8–9
Messages. See also Request and response

management; WS-RM (Web Services
Reliable Messaging)

accommodating variability. See Toler-
ant Reader

delivery assurance, Idempotent Retry
example, 217–219

structural changes to, 229–230
Messages, ESB

canonical set, 222
converting to canonical form, 222–223
Guaranteed Delivery [EIP], 223–224
Message Stores [EIP], 223–224
Orchestration Engines, 224–225
routing, 222
workflow management, 224–225

Microformat, definition, 286
MIDL (Microsoft Interface Definition

Library), 287
MIME (Multipurpose Internet Mail

Extensions), 287. See also Media
type

MITM (Man-in-the-Middle Attack), 286
MOM (Message-Oriented Middleware),

web service alternative, 8–9
MSMQ (Microsoft Message Queuing),

287
MTOM (Message Transmission Optimi-

zation Mechanism), 286
MVC pattern. See ASP.NET MVC

N
NAck (Negative Acknowledgment), 61
Naming DTOs, 99
Negotiating media preferences. See Media

Type Negotiation
Network efficiency, Service Descriptors,

177–178
Nondeterministic content models, 287
Normalizer [EIP], 273

INDEX 313

Notification. See Event Messages [EIP]
NUnit, 256–260, 287

O
Object composition, 280. See also Service

composition
Object Relational Mapper (ORM), 287.

See also Domain Model
Objects

distributed, 3–6
drawbacks, 5–6
fine grained, 3
load balancing, 5–6
local, 3–6
memory, releasing, 6
scalability, 5–6
server memory utilization, 5
in web services, 3–6

OData (Open Data Protocol), 142–143,
287

ODE. See Apache URLs, ODE
One-Way Message Exchange, 273. See

also Fire-and-Forget
Operation Script [POEAA], 273
Operation Scripts

alternative to Transaction Script, 135
description, 131
effects on web service evolution, 266
examples, 146–148
overview, 144–145
use for, 131

Operation Scripts, considerations
application gateways, 146
duplication of application logic, 145–146
Inversion of Control [IoC], 145
local vs. distributed transactions, 145

OPTIONS verb, Resource API, 41–42
Orchestration, effects on web service

evolution, 266
Orchestration Engines, 224–225
Origin server, 288
ORM (Object Relational Mapper), 287.

See also Domain Model
OSI (Open Systems Interconnection)

Model, 287
Out-of-process calls, 8

P
Parsing

request data, DTOs, 95–96
URIs with Service Controller, 87

Partial failures, web service API styles,
16–17

Patterns of Enterprise Application Archi-
tecture, 13, 133

Pipeline, 288. See also Pipes and Filters
[EIP]

Pipes and Filters [EIP]. See also Pipeline
alternative to Workflow Connector,

156–157
description, 273
Service Interceptor, 196

Plug-in, definition, 288
use with Resource API, 43

Polling, Request/Acknowledge pattern,
62–63

Polling Method, Asynchronous Response
Handler, 185–188

POST method, 41–42
Postel's Law, 244–245, 288. See also

Robustness Principle
Post-Once-Exactly, 42, 273
Post-Once-Exactly [Nottingham, Marc],

210
POX (Plain Old XML), 288
Procedure invocation with Resource API,

example, 48
Proprietary formats, data binding DTOs, 99
Prototype [GoF], 273
Provider. See Service
Proxies, RPC API, 21–22. See also Service

Connectors
Proxy [GoF], 274. See also Remote Proxy

[GoF]
Proxy servers, 57. See also Cache/caching;

Reverse proxy
Pryce, Nat, 255
Publish/Subscribe, 63–65
PUT method, Resource API, 41–42

Q
Queries, examples, 48–49
Queues, Request/Acknowledge pattern, 60

314 INDEX

R
Race conditions, 208, 288
Record Set [POEAA], 274
Reference Objects [DDD]. See Domain

objects
Registry, 273
Regression tests, 289. See also Gover-

nance
Relays, Request/Acknowledge pattern,

63–65
Remote Procedure Call (RPC). See RPC

(Remote Procedure Call)
Remote Proxy [GoF], 274. See also Proxy

[GoF]; Service Connectors
Representational State Transfer (REST),

40, 46, 289
Request and response management. See

also Data Transfer Object; Request
Mapper; Response Mapper; Service
Controllers

data exchange. See Data Transfer
Object

evaluating requests. See Service Con-
trollers

receiving requests. See Service Control-
lers

routing requests. See Service Control-
lers

serializing/deserializing data. See Data
Transfer Object

summary of patterns, 84
Request dispatch, Service Connectors,

170
Request Handlers, 71–72, 86
Request Identifier. See Correlation Identi-

fier [EIP]
Request Mapper. See also Mapper

[POEAA]
description, 84
effects on web service evolution, 266
example, using XSL, 113–121
overview, 109–111
use for, 84
using with Command Invoker, 152

Request Mapper, considerations
adoption criteria, 111–112
client dependencies, 112

code complexity, 112
integration patterns, 113
latency, 113
relation to other API styles, 112
response time, 113
using with JSON, 112
web server resources, 113

Request Method Designators, 88–89
Request/Acknowledge

alternative to Request/Response pat-
tern, 61

asynchronous processing, 59–60
common steps, 61
description, 53
effects on web service evolution, 265
error handling, 61
Message API, 30
NAck (Negative Acknowledgment), 61
overview, 59–61
queues, 60
RPC API, 22
temporal coupling, 59
URI, generating, 61
use for, 53

Request/Acknowledge, considerations
callbacks, 63–65
polling, 62–63
Publish/Subscribe pattern, 63–65
relays, 63–65
Request/Acknowledge/Callback pat-

tern, 63–65
Request/Acknowledge/Relay pattern,

63–65
Request/Acknowledge, examples

leveraging WS-addressing, 68–69
Request/Acknowledge pattern, 66
Request/Acknowledge/Poll pattern, 67
Request/Acknowledge/Relay pattern,

68–69
Request/Acknowledge/Callback, 63–65
Request/Acknowledge/Poll, 67
Request/Acknowledge/Relay, 63–65,

68–69
Requester. See Client
Request/Response

description, 53
effects on web service evolution, 265

INDEX 315

overview, 54–55
Request/Acknowledge, alternative to, 61
in an RPC API, example, 58
use for, 53

Request/Response, considerations
availability issues, 56
client-side blocking, 57
firewalls, 57
intermediaries, 57
proxy servers, 57
vs. RPC (Remote Procedure Call), 57
scalability issues, 56
temporal coupling, 56–57

Requests
forwarding to background processes,

151–152
handling structural differences. See

Request Mapper
Resource API

CRUD (Create, Read, Update, Delete)
approach, 38–39, 42

DELETE method, 41–42
effects on web service evolution, 264
GET method, 41–42
HEAD method, 41–42
HTTP status codes, 42
idempotent operations, 42–43
interacting with. See Service Connector
with Linked Service pattern, 79–80
media types, 42–43
OPTIONS verb, 41–42
overview, 14, 38–43
POST method, 41–42
Post-Once-Exactly pattern, 42
PUT method, 41–42
Representational State Transfer, 40
RESTful, 39
safe operations, 42–43
Service Contracts, 41

Resource API, considerations
addressability, 43–44
asynchrony, 44
blocking, avoiding, 44
cacheable responses, 46
client preferences, supporting, 44
client/server constraints, 46
code on demand, 46

disparate clients, 43
hackable URIs, 44
late binding, 45
layered systems, 46
leveraging commodity caching technol-

ogies, 45
Lost Update Problem, 49
REST constraints, 46
service connector code generation, 44
uniform interface, 46

Resource API, examples
conditional queries and updates, 48–49
implementation in Java and JAX-RS,

47
procedure invocation, 48

Resources
accessing. See Resource API
creating, 41
creating subordinates, 41
deleting, 41
discovering HTTP methods supported,

41
media type metadata, getting, 41
POST method, 41–42
updating, 41

Response management. See Request and
response management

Response Mapper. See also Mapper
[POEAA]

description, 84
effects on web service evolution, 266
overview, 122–124
use for, 84

Response Mapper, considerations
adoption criteria, 124–125
client dependencies, 125
example, 126–130
integration patterns, 125–126
linked services, 125–126
scope of responsibility, 125
work effort, 125

Response receipt, Service Connectors, 170
Response time, 113. See also Latency
REST (Representational State Transfer),

40, 46, 289
RESTful Resource API, 39
Retry manager, 212–217

316 INDEX

Retrying request delivery. See Idempotent
Retry

Reusing domain logic. See Command
Invoker; Operation Script

Reverse proxy, 289. See also Cache;
Proxy servers

RM Destination, 217–219
RM Source, 217–219
Robustness Principle, 244. See also

Postel's Law
Routing ESB messages, 222
Routing Expressions, 86
Routing expressions, 88–89
RPC (Remote Procedure Call)

definition, 289
description, 19
vs. Request/Response pattern, 57

RPC API
Asynchronous Response Handler

pattern, 22
asynchrony, 22
binary coding, 23
blocking, avoiding, 22
considerations, 20–23
creating, code example, 23–26
creating flat APIs, 20–21
effects on web service evolution, 264
example, 58
increasing flexibility, 234–236
interacting with. See Service Connector
Location Transparency, 22
location transparency, 22
overview, 13, 18–20
proxies, 21–22
Request/Acknowledge pattern, 22
service contracts, 20
service descriptors, 21–22. See also

WSDL (Web Services Description
Language)

Service Proxies, 22
RPC controller, examples, 93
Ruby on Rails, 85, 289

S
Safe operations, Resource API, 42–43
SAX (Simple API for XML), 290. See also

JAXP (Java API for XML Processing)

Scalability
definition, 289
issues, 56
objects, effects of, 5–6

Schema. See XML Schema
Schematron, 289
SCM (Software Configuration Manage-

ment), 291. See also Governance
Secure Sockets Layer (SSL), 289. See also

TLS (Transport Security Layer)
Security

Linked Services, 80
Secure Sockets Layer (SSL), 289. See

also TLS (Transport Security
Layer)

TLS (Transport Security Layer), 291.
See also SSL (Secure Sockets
Layer)

WS-Security (Web Services Security),
294

Security, Linked Service pattern, 80
Serializing data, 7, 94–95, 100
Server- vs. client-driven negotiations, 73
Service addressability, Resource API,

43–44
Service addresses, discovering, 170
Service API styles, 13
Service composition, 280. See also Con-

versations
Service connector code generation, 44
Service Connectors

connecting to URIs, 171–172
connection management, 170
converting input data, 171
description, 166–167
deserializing response streams, 171
discovering service addresses, 170
effects on web service evolution, 267
encapsulating access to remote systems,

172
examples, 173–174
generating code for. See Service

Descriptors
generic functions, 170–171
HTTP server methods, selecting, 171
Idempotent Retry strategy, implement-

ing, 171

INDEX 317

incorporating services into workflows.
See Service Descriptors

Media Type Negotiation pattern, 74
Message API, 29–30
overview, 168–172
request dispatch, 170
response receipt, 170
Service Gateways, 172. See also Gate-

way [POEAA]
Service Proxy Service Connector, 171,

174. See also Service Connectors
types of, 171–172
URI management, 171
use for, 166–167

Service Connectors, considerations
client-service coupling, 173
client-side behaviors, 173
connector coupling, 173
location transparency, 173–174
unit testing, 172–173

Service consumer. See Client
Service Contracts

chatty, 177–178
chunky, 177–178
coarse-grained, 177–178
design considerations for web services,

15
Message API, 29–30
Resource API, 41
RPC API, 20
Service Descriptors, 177–178
Testing, 253
Versioning Strategies, 232
web service API styles, 15

Service Controllers. See also Front
Controller [POEAA]

creating, 86
data binding technologies, 86–87
data type preferences, 88
description, 84
Media Type Negotiation pattern, 73
overview, 85–89
parsing URIs, 87
Request Handlers, 86
Request Method Designators, 88–89
Routing Expressions, 86
routing expressions, 88–89

URI segments, 87
URI templates, 87
use for, 84
Web Methods, 86

Service Controllers, considerations
Contract-First vs. Code-First, 90
enumerating Service Controllers, 90
interface classes, 89

Service Controllers, examples
resource controllers, 91–92
RPC controller, 93

Service Descriptors
changing, 230–231
description, 166
documenting services, 175–176
effects on web service evolution, 267
generating code for Service Connectors,

176–177
Message API, 29
overview, 175–177
use for, 166

Service Descriptors, considerations
chatty service contracts, 177–178
chunky service contracts, 177–178
client-service interactions, specifying,

177
coarse-grained service contracts,

177–178
Consumer Driven Contracts, 178
Contract-First vs. Code-First, 179–181
coupling, 178–179
documentation, 181
network efficiency, 177–178
service contracts, 177–178

Service Descriptors, examples
with WADL, 182–183
with WSDL, 181–182

Service descriptors, RPC API, 21–22
Service frameworks, Service Interceptor,

197–198
Service Gateways, 172–173. See also

Gateway [POEAA]
Service Interceptor. See also Interceptor

[POSA2]
configuration files, 197
description, 166
effects on web service evolution, 267

318 INDEX

Service Interceptor, continued
overview, 195–198
Pipes and Filters [EIP], 196
service frameworks, 197–198
Template Method [GoF], 195
use for, 166

Service Interceptor, examples
exception handlers, intercepting,

204–205
loggers, intercepting, 201–303
validators, intercepting, 199–200

Service Layer [POEAA], 274
Relation to Domain Layer, 271
Request and Response Management,

83
web service API styles, 13

Service libraries, 8
Service Oriented Architecture (SOA). See

SOA (Service Oriented Architecture)
Service provider. See Service
Service Proxies, 22
Service Proxy, 171, 174. See also Remote

Proxy [GoF]
Service Registry, effects on web service

evolution, 267
ServiceMix. See Apache URLs, Service-

Mix
Session, 290. See also Session variables

design considerations for web service
implementation, state manage-
ment, 132–133

problems with distributed objects, 5–6
Reliable Messaging, 217–218

Session variables, 290. See also Session
Simple API for XML (SAX), 290. See also

JAXP (Java API for XML Processing)
Single-Message Argument, 228, 234–236
Singleton [GoF], 274
SOA (Service Oriented Architecture), def-

inition, 10–11
SOA (Service Oriented Architecture),

infrastructure patterns
ESB (Enterprise Service Bus), 221–224
Orchestration Engines, 224–225
overview, 220
Service Registry, 220–221
workflow management, 224–225

SOAP, 31–33, 291. See also Fault
message

Software Configuration Management
(SCM), 291. See also Governance

Spring, definition, 291
SSL (Secure Sockets Layer), 289. See also

TLS (Transport Security Layer)
Stafford, Randy, 13
State management, 132–133. See also

Session
Struts. See Apache URLs, Struts
Subversion. See Apache Subversion
svcUtil, definition, 291

T
Table Module [GoF], 274
Template Method [GoF], 195, 275
Temporal coupling. See also Asynchro-

nous Response Handler; Request/
Acknowledge

Asynchronous Response Handler, 189
description, 10
Request/Acknowledge pattern, 59
Request/Response pattern, 56–57

Testing
Consumer-Driven Contracts, 254–255
integration tests, 252–253
regression tests, 289. See also

Governance
unit tests, 172–173

Thrift. See Apache URLs, Thrift
TLS (Transport Security Layer), 291. See

also SSL (Secure Sockets Layer)
Tolerant Reader. See also Consumer-

Driven Contracts
description, 228
DTO (Data Transfer Object), 101
effects on web service evolution, 268
example, 246–249
overview, 243–244
Postel's Law, 244
Robustness Principle, 244
uses for, 228

Tolerant Reader, considerations
consumer-driven contracts, 246
data access, 244–245
DTOs (Data Transfer Objects), 245–246

INDEX 319

ignoring XML namespaces, 245
Postel's Law, 245
preservation of unknown content,

245
Top down design, 15
Torvalds, Linus, 283
Transaction Script

description, 131
example, 136
overview, 134–135
use for, 131

Transaction Script, considerations
alternative patterns, 135
code complexity, 135
long methods, 135
simplicity, 135
tight coupling, 135

Transaction Script [POEAA], 275
Transactions, distributed, 281
Transport mapping, ESB, 223–224
Transport Security Layer (TLS), 291. See

also SSL (Secure Sockets Layer)

U
UML (Unified Modeling Language), 292
Unit testing, Service Connector consider-

ations, 172–173
Unmarshal. See Deserializing data
Updating resources, 41
URI (Uniform Resource Identifier)

acquiring, 171. See also Linked Services
connecting to. See Service Connectors
constructing, 171
as file extensions, 70
generating, 61
retrieving, 171
segments, 87
templates, 87, 292

URI coupling, 10. See also Linked Ser-
vices; Registry; Service Connectors;
Virtual Services

URI Rewrite, 292
URL encoding, 292
UTF (Unicode Transformation Format),

291
UTF-16, 291
UUID (Universally Unique Identifier), 292

V
Validation. See Service Interceptor
Validators, intercepting, 199–200
Version control, 232–233. See also

Apache Subversion
Virtual Services [IBM, ESB Patterns], 222

W
WADL (Web Application Description

Language), 182–183, 292
WCF (Windows Communication Foun-

dation), 294
Web Distributed Authoring and Version-

ing (WebDAV), 292
Web Methods, 86
Web server resources, 113
Web servers. See Apache URLs, web

server
Web service API styles. See also specific

APIs
autonomy, 15–16
bottom up design, 15
design considerations, 14–17
encapsulation, 14–15
latency, 16
partial failures, 16–17
service contracts, 15
summary of patterns, 13–14. See also

specific patterns
top down design, 15

Web service calls, sequence of, 77
Web service evolution, effects of patterns

Command Invoker, 266
Consumer-Driven Contract, 268
Datasource Adapter, 266
DTOs (Data Transfer Objects), 265
ESB (Enterprise Service Bus), 268
Linked Service, 265
Message API, 264
Operation Script, 266
Orchestration, 266
Request Mapper, 266
Request/Acknowledge, 265
Request/Response, 265
Resource API, 264
Response Mapper, 266
RPC API, 264

320 INDEX

Web service evolution, effects of patterns,
continued

Service Connector, 267
Service Descriptor, 267
Service Interceptor, 267
Service Registry, 267
summary of patterns, 228. See also

specific patterns
Tolerant Reader, 268
Workflow Connector, 266

Web service implementation
atomicity, 132
design considerations, 132–133
service composition, 133
state management, 132–133
summary of patterns, 131–132. See

also specific patterns
Web service infrastructures, 165–166. See

also specific patterns
Web service requests, launching concur-

rently, 188
Web services

alternatives, 7–9
considerations, 7–9
cross-machine calls, 8
description, 2
hosting. See Apache URLs, CXF
uses for, 6–7

Web Services Addressing (WS-Addressing),
68–69, 293

Web Services Atomic Transactions
(WS-AT), 293. See also Distributed
transactions

Web Services Description Language
(WSDL)

definition, 293
Message API example, 31–33
Service Descriptor example, 181–182

Web Services Discovery (WS-Discovery),
73–74, 293

Web Services Interoperability Basic Pro-
file (WS-I Basic Profile), 293

Web Services Interoperability (WS-I)
Organization, 293

Web Services Interoperability Technology
(WSIT), 293–294

Web Services Policy Framework (WS-Pol-
icy), 294

Web Services Reliable Messaging (WS-
RM). See WS-RM (Web Services
Reliable Messaging)

Web Services Security (WS-Security), 294
WebDAV (Web Distributed Authoring

and Versioning), 292
Wildcard-Content, 237
Windows Communication Foundation

(WCF), 294
Windows Service. See Daemon
Workflow, 158, 224–225
Workflow Connector

alternative to Transaction Script, 135
callback service, 160–162
compensation, 157
control flow, rules for, 159
correlation, 161
description, 132
effects on web service evolution, 266
example, 163
Message API, 30
overview, 156–163
Pipes and Filters [EIP] alternative,

156–157
use for, 132

Workflow Connector, considerations
BAM (Business Activity Monitoring),

162
ease of use, 162–163
maintenance, 162–163
process complexity, 162
variety of choices, 162

Workflow guidance, Linked Services,
78–79

Works cited, 297–300
Wrapper. See Adapter [GoF]
WS-Addressing (Web Services Address-

ing), 68–69, 293
WS-AT (Web Services Atomic Transac-

tions), 293. See also Distributed
transactions

WS-BPEL standard, 278
WS-Discovery (Web Services Discovery),

73–74, 293

INDEX 321

WSDL (Web Services Description
Language)

definition, 293
Message API example, 31–33
Service Descriptor example, 181–182

WSDL engine, URL for, 277
WS-I Basic Profile (Web Services Interop-

erability Basic Profile), 293
WS-I (Web Services Interoperability)

Organization, 293
Wsimport, 294
WSIT (Web Services Interoperability

Technology), 293–294
WS-Policy (Web Services Policy

Framework), 294
WS-RM (Web Services Reliable

Messaging)
description, 294
Idempotent Retry example, 217–219

RM Destination, 217–219
RM Source, 217–219

WS-Security (Web Services Security), 294

X
X.509 Certificate, 295
XMAL (Extensible XML Application

Markup), 283
XML (Extensible Markup Language)

definition, 282
namespaces, ignoring, 245

XML Extension Points, 237–239
XML schema, 99, 295
XMLBeans. See Apache URLs,

XMLBeans
XPath (XML Path Language), 295
XPath interpreter. See JXPath
XSLT (Extensible Stylesheet Language

Transformations), 283

This page intentionally left blank

	Contents
	Foreword
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 1: From Objects to Web Services
	What Are Web Services?
	From Local Objects to Distributed Objects
	Why Use Web Services?
	Web Service Considerations and Alternatives
	Services and the Promise of Loose Coupling
	What about SOA?
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

