


Web Service API Styles

Client-Service Interaction Styles

Request and Response Management

RPC API (18) How can clients execute remote procedures over HTTP?  

Message API (27) How can clients send commands, notifications, or other 
information to remote systems over HTTP while avoiding 
direct coupling to remote procedures?

Resource API (38) How can a client manipulate data managed by a remote 
system, avoid direct coupling to remote procedures, and 
minimize the need for domain-specific APIs?

Request/Response (54) What’s the simplest way for a web service to process a 
request and provide a result?

Request/Acknowledge
(59)

How can a web service safeguard systems from spikes in 
request load and ensure that requests are processed even 
when the underlying systems are unavailable?

Media Type 
Negotiation (70)

How can a web service provide multiple representations of 
the same logical resource while minimizing the number of 
distinct URIs for that resource?

Linked Service (77) Once a service has processed a request, how can a client 
discover the related services that may be called, and also 
be insulated from changing service locations and URI 
patterns?

Service Controller (85) How can the correct web service be executed without hav-
ing to write complex parsing and routing logic?

Data Transfer
Object (94)

How can one simplify manipulation of request and 
response data, enable domain layer entities, requests, and 
responses to vary independently, and insulate services from 
wire-level message formats?

Request Mapper (109) How can a service process data from requests that are struc-
turally different yet semantically equivalent?

Response Mapper (122) How can the logic required to construct a response be 
reused by multiple services?



Web Service Implementation Styles

Web Service Infrastructures

Web Service Evolution

Transaction Script (134) How can developers quickly implement web service logic?

Datasource Adapter (137) How can a web service provide access to internal resources 
like database tables, stored procedures, domain objects, or 
files with a minimum amount of custom code?

Operation Script (144) How can web services reuse common domain logic without 
duplicating code?

Command Invoker (149) How can web services with different APIs reuse common 
domain logic while enabling both synchronous and asyn-
chronous request processing?

Workflow Connector (156) How can web services be used to support complex and 
long-running business processes?

Service Connector (168) How can clients avoid duplicating the code required to use 
a specific service and also be insulated from the intricacies 
of communication logic?

Service Descriptor (175) How can development tools acquire the information neces-
sary to use a web service, and how can the code for Service 
Connectors be generated?

Asynchronous Response 
Handler (184)

How can a client avoid blocking when sending a request?

Service Interceptor (195) How can common behaviors like authentication, caching, 
logging, exception handling, and validation be executed 
without having to modify the client or service code?

Idempotent Retry (206) How can a client ensure that requests are delivered to a web 
service despite temporary network or server failures?

Single-Message
Argument (234)

How can a web service with an RPC API (##) become less 
brittle and easily accommodate new parameters over time 
without breaking clients?

Dataset Amendment (237) How can a service augment the information it sends or 
receives while minimizing the probability of breaking 
changes?

Tolerant Reader (243) How can clients or services function properly when some of 
the content in the messages or media types they receive is 
unknown or when the data structures vary?

Consumer-Driven 
Contracts (250)

How can a web service API reflect its clients’ needs while 
enabling evolution and avoiding breaking clients?
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Foreword
by Martin Fowler

One of the inevitable truisms of enterprise applications is that they are not
islands. You may be focused on solving a particular business problem, but in
order to do that you won’t be able to capture all the data you need yourself, or
develop all the processing. Even if you had the time, that data and processing is
being done elsewhere, and duplication is both wasteful and leads to messy
inconsistencies. As a result, almost all enterprise applications need to communi-
cate with other applications. These foreign systems are often not in the same
organization, but are provided by some third-party organization.

For many years, one of the hardest parts of this kind of collaboration was
just to get some kind of communication path. Often these applications were
written on different platforms, with different languages, on different operating
systems supporting different communication protocols. But in the past decade,
the web has appeared as a solution to the connection problem. Almost all sys-
tems can open port 80 and talk text over it.

But that still leaves many questions around how they should talk. Should
they use an RPC-style API, a message-oriented API, or this fashionable REST
stuff? Should logic be embedded in services directly or delegated to underlying
objects? How can we change services that are already in use without breaking
clients?

Generally in my series, the books have featured topics that haven’t been cov-
ered much elsewhere, but there have already been too many books about vari-
ous aspects of web services. As a result, when a draft of Robert’s book came to
me across the ether, I didn’t think I would be interested in it. What changed my
mind was that it brings together these key questions into a single handbook, in
a style that I like to see in a technical book that’s worth the effort of reading.

First, he takes the approach of breaking up the topic area into patterns, so
we have vocabulary to talk about these topics. Then he goes into each pattern,
explaining how each one works and how to choose between them. As a result,
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you are able to see the various approaches to web service design and decide
what will work for you in your context. He provides code examples, so you can
see how these patterns might work in practice, yet the patterns are general
enough to apply to many technology stacks. 

The result is a book that collects the important design decision points for
using web services in a style that focuses on principles that are likely to be valu-
able despite changes in technology. 

Martin Fowler
http://martinfowler.com

http://martinfowler.com
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Foreword
by Ian Robinson

Distributed application development often starts well. And just as often it ends
badly. Point, add web reference, click: That’s the sound of a developer pointing
a loaded client at your carefully crafted service interface. By substituting tooling
for design, we somehow turned all that loose coupling into plain irresponsible
promiscuity; come release time, we all have to join the lockstep jump.

In a more cautious era, we’d have just said: “No. Don’t distribute.” And in
large part that advice still holds true today. A layer is not a tier. Blowing a three-
layered application architecture out to distributed proportions is foolishness
writ large, no matter how many open standards you implement. 

But today’s applications are rarely islands. Where a business’s capabilities are
scattered across organizational boundaries, so too are the systems that auto-
mate them. Some form of service orientation, both within and between compa-
nies, is necessary if we are to support the distributed nature of the modern
supply chain.

The web, or rather, the technology that underpins the web, has proven enor-
mously resourceful in this respect. Whether or not you’re aware of—or even
carelessly indifferent to—the web’s prominent place in the history of distributed
systems, there’s inevitably something of the web about a sound majority of the
services you’ve built or used. For all its purported transport agnosticism, SOAP,
in practice, has tended to ride the HTTP train. Hidden, but not forgotten, the
web has shouldered the services burden for several years now.

When we look at the web services landscape today, we see that there are at
least three ways to accommodate the web in the software we build. The web
has succeeded not because of the overwhelming correctness of its constituency,
but because of its tolerance for the many architectural styles that inhabit and
sometimes overrun its borders. Some services and applications are simply
behind the web. They treat the web as an unwelcome but nonetheless necessary
narrow gateway through which to access objects and procedures. Adjust your
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gaze, and you’ll see that some services are on the web; that is, they treat HTTP
not as a brute transport, but rather as the robust coordination and transfer pro-
tocol described in RFC 2616. Last, you’ll see some (very few) that are of the
web. These use the web’s founding technologies—in particular, URIs and HTTP
and generalized hypermedia representation formats such as HTML—to present
a web of data, including data that describes how to access and manipulate more
data, to consumers.

This book brings together the need for caution and defensive design when
distributing systems with the several ways of using the web to enable distribu-
tion. As a compendium of sound strategies and techniques, it rivals the hard-
won experience of many of my friends and colleagues at ThoughtWorks. It’s a
book about getting things done on the web; it’s also a book about not backing
yourself into a corner. By balancing the (necessary) complexity of shielding a
service’s domain and data from that army of cocked clients with the simplicity
that begets internal quality and service longevity, it may just help you avoid the
midnight lockstep deployment.

Ian Robinson
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Preface

When I started working on this book I wasn’t entirely sure what SOA and
REST were. I knew that I wasn’t the only one who felt this way. Most discus-
sions on these topics were rife with ambiguity, hyperbole, misinformation, and
arguments that appealed to emotion rather than reason. Still, as a developer
who had struggled with distributed object technologies, I was fascinated by web
services. I saw them as a pragmatic way to integrate systems and reuse common
business logic. 

Since then, REST has gained significant momentum, WS* services have
established a solid foothold, and SOA was proclaimed dead [Manes]. Through
it all, my fascination with web services never waned. As mobile, cloud, and
Software-as-a-Service (SaaS) platforms cause software to become increasingly
distributed, the importance of web services will only continue to increase. We
live in exciting times indeed!

What Is This Book About?

This book is a catalogue of design solutions for web services that leverage
SOAP/WSDL or follow the REST architectural style. The goal was to produce a
concise reference that codifies fundamental web service design concepts. Each
pattern describes a known and proven solution to a recurring design problem.
However, the patterns are not meant to be recipes that are followed precisely. In
fact, a given pattern might never be implemented in exactly the same way twice.
This catalogue also doesn’t invent new solutions. Rather, the patterns in this
book were identified over long periods of time by developers who noticed that
certain problems could be solved by using similar design approaches. This book
captures and formalizes those ideas.

Services can be implemented with many different technologies. SOA practi-
tioners, for example, often say that technologies as diverse as CORBA and
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DCOM, to the newer software frameworks developed for REST and SOAP/
WSDL, can all be used to create services. This book focuses exclusively on web
services. Unfortunately, this term is somewhat overloaded as well. Some use it
to refer to any callable function that uses WSDL. The term has also been used
to describe RESTful services (re: [Richardson, Ruby]). This book uses the term
web service to refer to software functions that can be invoked by leveraging
HTTP as a simple transport over which data is carried (e.g., SOAP/WSDL ser-
vices) or by using HTTP as a complete application protocol that defines the
semantics for service behavior (e.g., RESTful services). 

Who Is This Book For?

This book is aimed at professional enterprise architects, solution architects, and
developers who are currently using web services or are thinking about using
them. These professionals fall into two distinct groups. The first group creates
software products (e.g., commercial, open source SaaS applications). The sec-
ond develops enterprise applications for corporate IT departments. While this
catalogue is tailored for software professionals, it can also be used in academia.

What Background Do You Need?

Pattern authors often provide code examples to illustrate design solutions.
Most catalogues aren’t meant to be platform-specific, but the author must still
choose which languages, frameworks, and platforms to use in the examples.
While a plethora of new languages have become popular in recent years, I
decided to use Java and C# for two reasons. First, these languages have a signif-
icant market share (i.e., a large installed base of applications) and are quite
mature. Second, most readers probably use or have used these languages and
are therefore familiar with their syntax. I will assume that the reader has an
intermediate to advanced understanding of these languages and of several
object-oriented programming (OOP) concepts.

The patterns in this catalogue make heavy use of a few web service frame-
works popular with Java and C# developers. These frameworks encapsulate the
most common functions used by web service developers. This book does not
identify the patterns used within these frameworks. Instead, it identifies pat-
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terns that developers use when leveraging these frameworks to build web ser-
vices. Here are the frameworks that are used in this book: 

• SOAP/WSDL frameworks:

– The Java API for XML Web Services (JAX-WS)

– Apache CXF 

– Microsoft’s Windows Communication Foundation (WCF)

• REST frameworks:

– The Java API for RESTful Web Services (JAX-RS)

– Microsoft’s WCF

• Data-binding frameworks:

– The Java Architecture for XML Binding (JAXB)

– Microsoft’s DataContractSerializer and other serializers (e.g., XmlSerializer)

It is assumed that the reader will at least have a basic acquaintance with the
following:

• JavaScript Object Notation (JSON)

• Extensible Markup Language (XML)

• XML Schema Definition Language

• XML Path Language (XPath)

• Extensible Stylesheet Language Transformation (XSLT)

• The Web Services Description Language (WSDL) 

Organization of This Book

Following a general introduction in Chapter 1, the patterns in this catalogue are
grouped into six chapters.

• Chapter 2, Web Service API Styles: This chapter explores the primary API
styles used by web services. The ramifications of selecting the right style
cannot be underestimated because, once a style is chosen, it becomes very
hard to change direction. 
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• Chapter 3, Client-Service Interactions: This chapter presents the founda-
tions for all client-service interactions. These patterns may be used with
any service design style. Given an understanding of these patterns, you can
devise complex conversations in which multiple parties exchange data
about a particular topic over short or extended periods of time.

• Chapter 4, Request and Response Management: Software applications are
frequently organized into layers that contain logically related entities. This
chapter identifies the common Service Layer [POEAA] entities that are
used to manage web requests and responses. The intent of these patterns is
to decouple clients from the underlying systems used by the service.

• Chapter 5, Web Service Implementation Styles: Services may be imple-
mented in various ways. They may have intimate knowledge of resources
such as database tables, they may coordinate the activities of an Object
Relational Mapper (ORM) or direct calls to legacy APIs, or they may for-
ward work to external entities. This chapter looks at the ramifications of
each approach.

• Chapter 6, Web Service Infrastructures: Certain tasks are so generic that
they can be used over and over again. This chapter discusses some of the
most common and basic infrastructure concerns pertinent to client and
service developers. A few patterns common to corporate SOA infrastruc-
tures are also reviewed.

• Chapter 7, Web Service Evolution: Developers strive to create services that
will remain compatible with clients which evolve at different rates. This
goal, however, is quite difficult to achieve. This chapter reviews the factors
that cause clients to break and discusses two common versioning strate-
gies. You’ll also see how services can be augmented to meet client require-
ments while avoiding a major software release.

Supporting information is provided in the Appendix, Bibliography, and
Glossary.

The Pattern Form Used in This Book

There are many ways to present patterns, from the classic style of Christopher
Alexander [Alexander] to the highly structured forms of the Gang of Four
[GoF] and Pattern-Oriented Software Architecture [POSA] books. The conven-
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tion used in this book was influenced by the Alexandrian form and the style
used in Enterprise Integration Patterns [EIP]. Hopefully you will find that the
conversational style makes the patterns easy to read. Only a few recurring
headers are used to demarcate content. Each design pattern is described using
the following conventions.

• Pattern name: The pattern name describes the solution in a few words.
The name provides a handle or identifier for the solution, and is a part of
the larger pattern language presented in the book. The goal was to use
evocative names that can be easily understood and used in everyday con-
versations. Many of the pattern names in this book are already quite
common.

• Context: The context follows the pattern name and is expressed in no
more than a few sentences. It identifies the general scenario in which the
pattern might apply. Of course, all of these patterns apply to web services,
but some are only relevant to certain situations. This section may refer to
other patterns to help set the context.

• Problem: The problem to solve is stated as a single question. You should
be able to read the problem and quickly determine if the pattern is relevant
to the design challenge you are facing. This section is marked off between
two horizontal bars.

• Forces: The forces provide more detail on the problem. This section, which
follows the problem definition, explores some of the reasons why the
problem is difficult to solve and presents alternative solutions that have
been tried but may not work out so well. The goal of this narrative is to
naturally lead you to the solution.

• Solution summary: This section provides a brief description of the design
solution, in a few sentences. Despite its terseness, you should be able to
quickly understand how the problem can be solved. The solution summary
typically describes the primary entities that comprise the design, their
responsibilities and relationships, and the way they work together to solve
the problem. The solution is not meant to be an absolute prescription that
has one and only one implementation. Rather, it should be viewed as a
general template that can be implemented in many different ways. The
written summary is usually accompanied by a diagram to supplement the
narrative. The primary mechanisms used in this book include sequence
diagrams and class diagrams. In some cases, the solution is modeled
through nonstandard graphical depictions. This section is demarcated by
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two horizontal bars, just like the problem section. The intent was to make
it easy for readers to quickly find the problem and solution summary.   

• Solution detail: This section presents several aspects of the solution in a
prosaic style. It expands on the solution summary to explore how the pri-
mary elements of the solution are employed in order to solve the problem
and resolve the forces. Since every solution has benefits and drawbacks, this
section reviews the consequences and additional factors you may need to
consider. I also point out related patterns that may be found elsewhere in
this book or in other pattern catalogues. This is done for a variety of rea-
sons. Some of the patterns in this book are actually specializations of exist-
ing patterns, and I felt that it was only right to acknowledge the original
source. Other patterns are complementary to the pattern being discussed,
or may be considered as an alternative. 

• Considerations: This section discusses additional factors you may need to
consider when using the pattern. Such factors include design considerations,
related technologies, and a variety of other pertinent topics. Bulleted lists are
used to help the reader skim this section and hone in on specific topics of
interest. This section does not occur in each and every pattern.

• Examples: This section is meant to supplement the prior sections. You
should be able to understand the essence of a pattern without having to
read this section. Some patterns offer several examples to help you under-
stand the many ways in which the pattern may be implemented. Other
patterns only provide a few examples to facilitate understanding.

The examples in this book take many forms. The most common form is
Java and C# code. Other examples use XML, JSON, XSD, and WSDL. All
attempts were made to keep the examples as simple as possible, so a number
of things were left out (e.g., exception-handling blocks, thread management,
most queuing and database-related logic, etc.). In some cases, the examples
only include enough code to convey the basic idea of the pattern. In other
cases, the code examples provide much more detail because I felt that omit-
ting such detail would have left the reader with too many questions.

Please note that this is not meant to be a book on how to use a specific
API; there are many great books out there for such matters. Rather, these
code samples are provided to deepen your understanding of abstract
design solutions. Furthermore, just as the pattern descriptions provide a
template, so too do the code examples. This means that you probably
won’t want to copy any code verbatim.
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Pattern Categories Not Covered 

A vast array of topics has been included under the umbrella of service design.
However, many of these subjects are quite deep and have already been covered
extensively in other works. The content of this catalogue has therefore been con-
strained to only include the most fundamental solutions relevant to web service
design. The following topics have been avoided or only covered lightly.

• Enterprise integration patterns: While web services provide a great way to
integrate disparate applications, the topic of integration is exceedingly
deep. Hohpe and Woolf’s book, Enterprise Integration Patterns: Design-
ing, Building, and Deploying Messaging Solutions [EIP], does a great job
of showing how integration can occur through middleware solutions that
primarily leverage queuing technologies. This book builds on and refers to
many of their patterns.

• Workflow/orchestration: Workflow technologies provide the means to
define the flow of execution through a set of related activities managed by
a central controller. Workflows are frequently triggered by web services
and often interact with external web services to send or receive data.
Workflows may be relatively short in duration (i.e., a few seconds), or may
transpire over days, weeks, or even months. The subject of workflow is far
beyond the scope of this book, and is addressed by such catalogues as
http://workflowpatterns.com [van der Aalst, et al.].

• Event-driven architecture: An alternative to the “command and control”
architectural style exemplified by workflows is event-driven architecture
(EDA). With EDA, there is no centralized controller. Instead, clients and
services communicate with each other in a much more fluid, dynamic, and
often unpredictable way when specific events occur within their respective
domains. Sometimes the rules for EDA are described through choreogra-
phy. For more information on this topic I recommend the following:

www.complexevents.com/category/applications/eda/

• Choreography: Choreography, like EDA, is not a “command and control”
architectural style. Instead, it suggests that parties adopt a rules-based
approach that declares the sequence of allowed exchanges between parties
as if seen by an external observer. This concept has yet to see wide adoption. 

www.complexevents.com/category/applications/eda/
http://workflowpatterns.com
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• Security: Matters such as authentication, authorization, data confidential-
ity, data integrity, nonrepudiation, techniques used to harden network
infrastructures, and other security concerns are not discussed in any detail
as these subjects are incredibly deep and have been covered extensively in
other works.

Supporting Web Site and contact information

Companion information for this book may be found at 

www.ServiceDesignPatterns.com

www.ServiceDesignPatterns.com
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From Objects 
to Web 
Services

Chapter 1

From Objects 
to Web Services

Web services have been put into practical use for many years. In this time,
developers and architects have encountered a number of recurring design chal-
lenges related to their usage. We have also learned that certain design
approaches work better than others to solve certain problems. This book is for
software developers and architects who are currently using web services or are
thinking about using them. The goal is to acquaint you with some of the most
common and fundamental web service design solutions and to help you deter-
mine when to use them. All of the concepts discussed here are derived from
real-life lessons. Proven design solutions will also be demonstrated through
code examples.

Service developers are confronted with a long list of questions.

• How do you create a service API, what are the common API styles, and
when should a particular style be used?

• How can clients and services communicate, and what are the foundations
for creating complex conversations in which multiple parties exchange
data over extended periods of time?

• What are the options for implementing service logic, and when should a
particular approach be used?

• How can clients become less coupled to the underlying systems used by a
service?

• How can information about a service be discovered?

• How can generic functions like authentication, validation, caching, and
logging be supported on the client or service?
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• What changes to a service cause clients to break?

• What are the common ways to version a service?

• How can services be designed to support the continuing evolution of busi-
ness logic without forcing clients to constantly upgrade? 

These are just a few of the questions that must be answered. This book will
help you find solutions that are appropriate for your situation.

In this chapter, you’ll learn what services are and how web services address
the shortcomings of their predecessors.

What Are Web Services? 

From a technical perspective, the term service has been used to refer to any
software function that carries out a business task, provides access to files (e.g.,
text, documents, images, video, audio, etc.), or performs generic functions like
authentication or logging. To these ends, a service may use automated work-
flow engines, objects belonging to a Domain Model [POEAA], commercial
software packages, APIs of legacy applications, Message-Oriented Middleware
(MOM), and, of course, databases. There are many ways to implement ser-
vices. In fact, technologies as diverse as CORBA and DCOM, to the newer
software frameworks developed for REST and SOAP/WSDL, can all be used to
create services. 

This book primarily focuses on how services can be used to share logical
functions across different applications and to enable software that runs on dis-
parate computing platforms to collaborate. A platform may be any combina-
tion of hardware, operating system (e.g., Linux, Windows, z/OS, Android,
iOS), software framework (e.g., Java, .NET, Rails), and programming language.
All of the services discussed in this book are assumed to execute outside of the
client’s process. The service’s process may be located on the same machine as
the client, but is usually found on another machine. While technologies like
CORBA and DCOM can be used to create services, the focus of this book is on
web services. Web services provide the means to integrate disparate systems and
expose reusable business functions over HTTP. They either leverage HTTP as a
simple transport over which data is carried (e.g., SOAP/WSDL services) or use
it as a complete application protocol that defines the semantics for service
behavior (e.g., RESTful services).
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Web services were conceived in large part to address the shortcomings of dis-
tributed-object technologies. It is therefore helpful to review some history in
order to appreciate the motivation for using web services.

From Local Objects to Distributed Objects

Objects are a paradigm that is used in most modern programming languages to
encapsulate behavior (e.g., business logic) and data. Objects are usually “fine-
grained,” meaning that they have many small properties (e.g., FirstName, LastName)
or methods (e.g., getAddress, setAddress). Since developers who use objects often
have access to the internals of the object’s implementation, the form of reuse
they offer is frequently referred to as white-box reuse. Clients use objects by
first instantiating them and then calling their properties and methods in order
to accomplish some task. Once objects have been instantiated, they usually
maintain state between client calls. Unfortunately, it wasn’t always easy to use
these classes across different programming languages and platforms. Compo-
nent technologies were developed, in part, to address this problem.

Terminology

Web service developers often use different terms to refer to equivalent 
roles. Unfortunately, this has caused a lot of confusion. The following 
table is therefore provided for clarification and as a reference. The first 
column lists names used to denote software processes that send requests 
or trigger events. The second column contains terms for software func-
tions that respond or react to these requests and events. The terms appear-
ing under each column are therefore synonymous.

Client Service

Requestor Provider

Service consumer Service provider

This book uses the terms “client” and “service” because they are com-
mon to both SOAP/WSDL services and RESTful services.
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Components were devised as a means to facilitate software reuse across dis-
parate programming languages (see Figure 1.1). The goal was to provide a
means whereby software units could be assembled into complex applications
much like electronic components are assembled to create circuit boards. Since
developers who use components cannot see or modify the internals of a compo-
nent, the form of reuse they offer is called black-box reuse. Components group
related objects into deployable binary software units that can be plugged into
applications. An entire industry for the Windows platform arose from this con-
cept in the 1990s as software vendors created ActiveX controls that could be
easily integrated into desktop and web-based applications. The stipulation was
that applications could not access the objects within components directly.
Instead, the applications were given binary interfaces that described the objects’
methods, properties, and events. These binary interfaces were often created
with platform-specific interface definition languages (IDLs) like the Microsoft
Interface Definition Language (MIDL), and clients that wished to use compo-
nents frequently had to run on the same computing platform.

Objects were eventually deployed to remote servers in an effort to share and
reuse the logic they encapsulated (see Figure 1.2). This meant that the memory
that was allocated for clients and distributed objects not only existed in sepa-
rate address spaces but also occurred on different machines. Like components,
distributed objects supported black-box reuse. Clients that wished to use dis-
tributed objects could leverage a number of remoting technologies like
CORBA, DCOM, Java Remote Method Invocation (RMI), and .NET Remot-

Client

A Single Process On One Machine

Customer Component

Platform-Specific
Interface

Customer
Object

Address
Object

*

Figure 1.1  Components were devised as a means to facilitate reuse across 
disparate programming languages. Unfortunately, they were often created 

for specific computing platforms.
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ing. The compilation process for these technologies produced a binary library
that included a Remote Proxy [GoF]. This contained the logic required to com-
municate with the remote object. As long as the client and distributed object
used the same technologies, everything worked pretty well. However, these
technologies had some drawbacks. They were rather complex for developers to
implement, and the process used to serialize and deserialize objects was not
standardized across vendor implementations. This meant that clients and
objects created with different vendor toolkits often had problems talking to
each other. Additionally, distributed objects often communicated over TCP
ports that were not standardized across vendor implementations. More often
than not, the selected ports were blocked by firewalls. To remedy the situation,
IT administrators would configure the firewalls to permit traffic over the
required ports. In some cases, a large number of ports had to be opened. Since
hackers would have more network paths to exploit, network security was often
compromised. If traffic was already permitted through the port, then it was
often already provisioned for another purpose.

Distributed objects typically maintained state between client calls. This led to
a number of problems that hindered scalability.

• Server memory utilization degraded with increased client load. 

• Effective load-balancing techniques were more difficult to implement and
manage because session state was often reserved for the client. The result
was that subsequent requests were, by default, directed back to the server
where the client’s session had been established. This meant that the load
for client requests would not be evenly distributed unless a sophisticated

Client

Client Process Server Process for Distributed Object

Network

Proxy
Customer Object

Stub

Figure 1.2  Objects were frequently used in distributed scenarios. 
When a client invoked a method on the proxy’s interface, the proxy 
would dispatch the call over the network to a remote stub, and the 

corresponding method on the distributed object would be invoked. As 
long as the client and distributed object used the same technologies, 

everything worked pretty well.
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infrastructure (e.g., shared memory cache) was used to access the client’s
session from any server.

• The server had to implement a strategy to release the memory allocated for
a specific client instance. In most cases, the server relied on the client to
notify it when it was done. Unfortunately, if the client crashed, then the
server memory allocated for the client might never be released.

In addition to these issues, if the process that maintained the client’s session
crashed, then the client’s “work-in-progress” would be lost.  

Why Use Web Services?

Web services make it relatively easy to reuse and share common logic with
such diverse clients as mobile, desktop, and web applications. The broad reach
of web services is possible because they rely on open standards that are ubiqui-
tous, interoperable across different computing platforms, and independent of
the underlying execution technologies. All web services, at the very least, use
HTTP and leverage data-interchange standards like XML and JSON, and
common media types. Beyond that, web services use HTTP in two distinct
ways. Some use it as an application protocol to define standard service behav-
iors. Others simply use HTTP as a transport mechanism to convey data.
Regardless, web services facilitate rapid application integration because, when
compared to their predecessors, they tend to be much easier to learn and
implement. Due to their inherent interoperability and simplicity, web services
facilitate the creation of complex business processes through service composi-
tion. This is a practice in which compound services can be created by assem-
bling simpler services into workflows.

Web services establish a layer of indirection that naturally insulates clients
from the means used to fulfill their requests (see Figure 1.3). This makes it possi-
ble for clients and services to evolve somewhat independently as long as break-
ing changes do not occur on the service’s public interface (for more on breaking
changes, refer to the section What Causes Breaking Changes? in Chapter 7). A
service owner may, for example, redesign a service to use an open source library
rather than a custom library, all without having to alter the client.
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Web Service Considerations and Alternatives

While web services are appropriate in many scenarios, they shouldn’t be used in
every situation. Web services are “expensive” to call. Clients must serialize all
input data to each web service (i.e., the request) as a stream of bytes and trans-
mit this stream across computer processes (i.e., address spaces). The web service
must deserialize this stream into a data format and structure it understands
before executing. If the service provides a “complex type” as a response (i.e.,
something more than a simple HTTP status code), then the web service must
serialize and transmit its response, and the client must deserialize the stream
into a format and structure it understands. All of these activities take time. If
the web service is located on a different machine from the client, then the time it
takes to complete this work may be several orders of magnitude greater than
the time required to complete a similar in-process call.

Possibly more important than the problem of latency is the fact that web ser-
vice calls typically entail distributed communications. This means that client and
service developers alike must be prepared to handle partial failures [Waldo,
Wyant, Wollrath, Kendall]. A partial failure occurs when the client, service, or
network itself fails while the others continue to function properly. Networks are
inherently unreliable, and problems may arise for innumerable reasons. Connec-
tions will occasionally time out or be dropped. Servers will be overloaded from

Service Service Service Service Service
Service
Layer

Domain
Models

Table
Modules

Workflows Code
Libraries

Commercial
Packages

Legacy
Applications

Databases LDAP Files Multimedia Middleware

Domain
Layer

Data Sources

Client Applications

Figure 1.3  Web services help to insulate clients from the logic used to fulfill their 
requests. They establish a natural layer of indirection that makes it possible for 

clients and domain entities (i.e., workflow logic, Table Modules, Domain Models
[POEAA], etc.) to evolve independently.
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time to time, and as a result, they may not be able to receive or process all
requests. Services may even crash while processing a request. Clients may crash
too, in which case the service may have no way to return a response. Multiple
strategies must therefore be used to detect and handle partial failures.

In light of these inherent risks, developers and architects should first explore
the alternatives. In many cases, it may be better to create “service libraries”
(e.g., JARs, .NET assemblies) that can be imported, called, and executed from
within the client’s process. If the client and service have been created for differ-
ent platforms (e.g., Java, .NET), you may still use a variety of techniques that
enable disparate clients and services to collaborate from within the same pro-
cess. The client may, for example, be able to host the server’s runtime engine,
load the services into that environment, and invoke the target directly. To illus-
trate, a .NET client could host a Java Virtual Machine (JVM), load a Java
library into the JVM, and communicate with the target classes through the Java
Native Interface (JNI). You may also use third-party “bridging technologies.”
These options, however, can become quite complex and generally prolong the
client’s coupling to the service’s technologies.

Web services should therefore be reserved for situations in which out-of-pro-
cess and cross-machine calls “make sense.” Here are a few examples of when
this might occur.

• The client and service belong to different application domains and the
“service functions” cannot be easily imported into the client.

• The client is a complex business process that incorporates functions from
multiple application domains. The logical services are owned and man-
aged by different organizations and change at different rates.

• The divide between the client and server is natural. The client may, for
example, be a mobile or desktop application that uses common business
functions.

Developers would be wise to consider alternatives to web services even when
cross-machine calls seem justified.

• MOM (e.g., MSMQ, WebSphere MQ, Apache ActiveMQ, etc.) can be used
to integrate applications. These technologies, however, are best reserved for
use within a secured environment, far behind the corporate firewall. Fur-
thermore, they require the adoption of an asynchronous communications
style that forces all parties to tackle several new design challenges. MOM
solutions often use proprietary technologies that are platform-specific. For
complete coverage of this topic, see Enterprise Integration Patterns:
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Designing, Building, and Deploying Messaging Solutions [EIP]. Web ser-
vices often forward requests to MOM.

• A certain amount of overhead should be expected with HTTP due to the
time it takes for clients and servers to establish connections. This added
time may not be acceptable in certain high-performance/high-load scenar-
ios. A connectionless protocol like User Datagram Protocol (UDP) can be
a viable alternative for situations like these. The trade-off, however, is that
data may be lost, duplicated, or received out of order.

• Most web service frameworks can be configured to stream data. This helps
to minimize memory utilization on both the sender’s and receiver’s end
because data doesn’t have to be buffered. Response times are also minimized
because the receiver can consume the data as it arrives rather than having to
wait for the entire dataset to be transferred. However, this option is best
used for the transfer of large documents or messages rather than for real-
time delivery of large multimedia files like video and audio. For situa-
tions like these, protocols such as Real Time Streaming Protocol (RTSP,
www.ietf.org/rfc/rfc2326.txt), Real Time Transport Protocol (RTP, http://
tools.ietf.org/html/rfc3550), and Real Time Control Protocol (RTCP, http://
tools.ietf.org/html/rfc3605) are usually more appropriate than HTTP.

Services and the Promise of Loose Coupling

Services are often described as being loosely coupled. However, the definitions
for this term are varied and cover a broad array of concerns. Coupling is the
degree to which some entity (e.g., client) depends on another entity. When the
dependencies are many, the coupling is said to be high or tight (e.g., high cou-
pling, tightly coupled). Conversely, when the dependencies are few, coupling is
considered to be low or loose (e.g., low coupling, loosely coupled).

It is certainly true that web services can eliminate the client’s dependencies
on the underlying technologies used by a service. However, clients and services
can never be completely decoupled. Some degree of coupling will always exist
and is often necessary. The following list describes a few forms of coupling that
service designers must consider.

• Function coupling: Clients expect services to consistently produce certain
results given certain types of input under particular scenarios. Clients are
therefore indirectly dependent on the logic implemented by web services.
The client will most certainly be affected if this logic is implemented

www.ietf.org/rfc/rfc2326.txt
http://tools.ietf.org/html/rfc3550
http://tools.ietf.org/html/rfc3550
http://tools.ietf.org/html/rfc3605
http://tools.ietf.org/html/rfc3605
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incorrectly or is changed to produce results that are not in accordance
with the client’s expectations.   

• Data structure coupling: Clients must understand the data structures that a
service receives and returns, the data types used in these structures, and the
character encodings (e.g., Unicode) used in messages. If a data structure pro-
vides links to related services, the client must know how to parse the struc-
ture for that information. The client may also need to know what HTTP
status codes the service returns. Service developers must be careful to refrain
from including platform-specific data types (e.g., dates) in data structures.

• Temporal coupling: A high degree of temporal coupling exists when a
request must be processed as soon as it’s received. The implication is that
the systems (e.g., databases, legacy or packaged applications, etc.) behind
the service must always be operational. Temporal coupling can be reduced
if the time at which a request is processed can be deferred. Web services
can achieve this outcome with the Request/Acknowledge pattern (59).
Temporal coupling is also high if the client must block and wait for a
response. Clients may use the Asynchronous Response Handler pattern
(184) to reduce this form of coupling.

• URI coupling: Clients are often tightly coupled to service URIs. That is,
they often either have a static URI for a service, or follow a simple set of
rules to construct a service URI. Unfortunately, this can make it difficult
for service owners to move or rename service URIs, or to adopt new pat-
terns for URI construction since actions like these would likely cause cli-
ents to break. The following patterns can help to reduce the client’s
coupling to the service’s URI and location: Linked Service (77), Service
Connector (168), Registry (220), and Virtual Service (222).

What about SOA?

Many definitions for Service-Oriented Architecture (SOA) have been offered.
Some see it as a technical style of architecture that provides the means to inte-
grate disparate systems and expose reusable business functions. Others, how-
ever, take a much broader view:

A service-oriented architecture is a style of design that guides all aspects of
creating and using business services throughout their lifecycle (from con-
ception to retirement). [Newcomer, Lomow, p. 13]
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Summary
Service Oriented Architecture (SOA) is a paradigm for organizing and uti-
lizing distributed capabilities that may be under the control of different
ownership domains. [OASIS Ref Model]

These viewpoints suggest that SOA is a design paradigm or methodology
wherein “business functions” are enumerated as services, organized into logical
domains, and somehow managed over their lifetimes. While SOA can help busi-
ness personnel articulate their needs in a way that comes more naturally than,
say, object-oriented analysis, there are still many ways to implement services. This
book focuses on several technical solutions that may be used to create a SOA.

Summary

By eliminating coupling to specific computing platforms, web services have
helped us overcome one of the main impediments to software reuse. However,
there are many ways to go about designing services, and developers are con-
fronted with a long list of questions that must be resolved. This book will help
you find the solutions that are most appropriate for your situation.
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long-running operations, 188
temporal coupling, 189

Asynchronous Response Handler, 
examples

Client-Side Callback and Resource 
APIs, 193–194

Client-Side Callback and RPC APIs, 
192–193

Polling Methods and Resource APIs, 
190–191

Polling Methods and RPC APIs, 
189

Asynchrony
Message API, 30
Resource API, 44
RPC API, 22

Atom Publishing Protocol, 278
breaking changes, 230, 231
Datasource Adapter, 139
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use for, 132

Command Invoker, considerations
command implementation patterns, 

152–153
forwarding requests to background 

processes, 151–152
invoking commands within web 

services, 150–151
using with Request Mapper, 152
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also Service contracts; Tolerant 
Reader

backward and forward compatibility, 
250–253

description, 228
design considerations for web service 

APIs, 15
documentation, 251–252

effects on web service evolution, 
268

integration tests, 252–253
overview, 250–253
uses for, 228
Service Descriptor, 179
Tolerant Reader, 246

Consumer-Driven Contracts, 
considerations

complexity, 255
exchanging tests, 254
integration testing, 254
long-running asynchronous services, 

255
modifying contracts, 254
platform dependencies, 255
real service implementation, 254
reasonable expectations, 255
scope, 255
stub implementation, 254
test strategies, 255
versioning contracts, 254

Consumer-Driven Contracts, examples
C#, 256–260
ISO Schematron, 260–263
NUnit, 256–260

Content negotiation. See Media Type 
Negotiation

Content type. See Media type
Content-Based Router [EIP], 270
Contract-First vs. Code-First. See also

Code-First strategy
data binding, DTOs, 98–99
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local vs. distributed transactions, 145

OPTIONS verb, Resource API, 41–42
Orchestration, effects on web service 

evolution, 266
Orchestration Engines, 224–225
Origin server, 288
ORM (Object Relational Mapper), 287. 
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