
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321832047
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321832047
https://plusone.google.com/share?url=http://www.informit.com/title/9780321832047
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321832047
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321832047/Free-Sample-Chapter


DevOps 
Troubleshooting



This page intentionally left blank 



DevOps 
Troubleshooting
Linux® Server Best Practices

Kyle Rankin

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City



Many of the designations used by manufacturers and sellers to distinguish their 
products are claimed as trademarks. Where those designations appear in this book, 
and the publisher was aware of a trademark claim, the designations have been 
printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make 
no expressed or implied warranty of any kind and assume no responsibility for 
errors or omissions. No liability is assumed for incidental or consequential damages 
in connection with or arising out of the use of the information or programs 
contained herein.

The publisher offers excellent discounts on this book when ordered in quantity 
for bulk purchases or special sales, which may include electronic versions and/or 
custom covers and content particular to your business, training goals, marketing 
focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Cataloging-in-Publication Data is on fi le with the Library of Congress.

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is 
protected by copyright, and permission must be obtained from the publisher prior 
to any prohibited reproduction, storage in a retrieval system, or transmission in any 
form or by any means, electronic, mechanical, photocopying, recording, or likewise. 
To obtain permission to use material from this work, please submit a written request 
to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle 
River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13:  978-0-321-83204-7
ISBN-10:  0-321-83204-3

Text printed in the United States on recycled paper at RR Donnelley in 
Crawfordsville, Indiana.
First printing, November 2012

Editor-in-Chief
Mark Taub

Executive Editor
Debra Williams Cauley

Development Editor
Michael Thurston

Managing Editor
John Fuller

Project Editor
Elizabeth Ryan

Copy Editor
Rebecca Rider

Indexer
Richard Evans

Proofreader
Diane Freed

Technical Reviewer
Bill Childers

Publishing Coordinator
Kim Boedigheimer

Compositor
Kim Arney



This book wouldn’t be possible without the support of my wife, Joy, 
who once again helped me manage my time so I could complete the 
book, only this time while carrying our fi rst child, Gideon. I’d also 
like to dedicate this book to my son, Gideon, who so far is easier to 
troubleshoot than any server.



This page intentionally left blank 



vii

Contents

Preface  xiii
Acknowledgments xix
About the Author xxi

CHAPTER 1 Troubleshooting Best Practices 1
Divide the Problem Space 3
Practice Good Communication When Collaborating 4

Conference Calls 4
Direct Conversation 5
Email 6
Real-Time Chat Rooms 7
Have a Backup Communication Method 8

Favor Quick, Simple Tests over Slow, Complex Tests 8
Favor Past Solutions 9
Document Your Problems and Solutions 10
Know What Changed 12
Understand How Systems Work 13
Use the Internet, but Carefully 14
Resist Rebooting 15

CHAPTER 2 Why Is the Server So Slow? Running Out of CPU, 
RAM, and Disk I/O  17
System Load 18

What Is a High Load Average? 20
Diagnose Load Problems with top  20

Make Sense of top Output 22
Diagnose High User Time 24
Diagnose Out-of-Memory Issues 25
Diagnose High I/O Wait 27

Troubleshoot High Load after the Fact 29
Confi gure sysstat 30
View CPU Statistics 30



viii   Contents

View RAM Statistics 31
View Disk Statistics 32
View Statistics from Previous Days 33

CHAPTER 3 Why Won’t the System Boot? Solving Boot Problems 35
The Linux Boot Process 36

The BIOS 36
GRUB and Linux Boot Loaders 37
The Kernel and Initrd 38
/sbin/init 39

BIOS Boot Order 45
Fix GRUB 47

No GRUB Prompt 47
Stage 1.5 GRUB Prompt 48
Misconfi gured GRUB Prompt 49
Repair GRUB from the Live System 49
Repair GRUB with a Rescue Disk 50

Disable Splash Screens 51
Can’t Mount the Root File System 51

The Root Kernel Argument 52
The Root Device Changed 52
The Root Partition Is Corrupt or Failed 55

Can’t Mount Secondary File Systems 55

CHAPTER 4 Why Can’t I Write to the Disk? Solving Full 
or Corrupt Disk Issues 57
When the Disk Is Full 58

Reserved Blocks 59
Track Down the Largest Directories 59

Out of Inodes 61
The File System Is Read-Only 62
Repair Corrupted File Systems 63
Repair Software RAID 64

CHAPTER 5 Is the Server Down? Tracking Down the Source 
of Network Problems 67
Server A Can’t Talk to Server B 68

Client or Server Problem 69
Is It Plugged In? 69



Contents   ix

Is the Interface Up? 70
Is It on the Local Network? 71
Is DNS Working? 72
Can I Route to the Remote Host? 74
Is the Remote Port Open? 76
Test the Remote Host Locally 76

Troubleshoot Slow Networks 78
DNS Issues 79
Find the Network Slowdown with traceroute 80
Find What Is Using Your Bandwidth with iftop 81

Packet Captures 83
Use the tcpdump Tool 84
Use Wireshark 88

CHAPTER 6 Why Won’t the Hostnames Resolve? Solving DNS 
Server Issues 93
DNS Client Troubleshooting 95

No Name Server Confi gured or Inaccessible 
Name Server 95

Missing Search Path or Name Server Problem 97
DNS Server Troubleshooting 98

Understanding dig Output 98
Trace a DNS Query 101
Recursive Name Server Problems 104
When Updates Don’t Take 107

CHAPTER 7 Why Didn’t My Email Go Through? Tracing 
Email Problems 119
Trace an Email Request 120
Understand Email Headers 123
Problems Sending Email 125

Client Can’t Communicate with the Outbound 
Mail Server 126

Outbound Mail Server Won’t Allow Relay 130
Outbound Mail Server Can’t Communicate 

with the Destination 131
Problems Receiving Email 135

Telnet Test Can’t Connect 136
Telnet Can Connect, but the Message Is Rejected 137
Pore Through the Mail Logs 138



x   Contents

CHAPTER 8 Is the Website Down? Tracking Down Web 
Server Problems  141
Is the Server Running? 143

Is the Remote Port Open? 143
Test the Remote Host Locally 144

Test a Web Server from the Command Line 146
Test Web Servers with Curl 146
Test Web Servers with Telnet 148

HTTP Status Codes 149
1xx Informational Codes 150
2xx Successful Codes 150
3xx Redirection Codes 151
4xx Client Error Codes 152
5xx Server Error Codes 153

Parse Web Server Logs 154
Get Web Server Statistics 158
Solve Common Web Server Problems 163

Confi guration Problems 163
Permissions Problems 164
Sluggish or Unavailable Web Server 166

CHAPTER 9 Why Is the Database Slow? Tracking Down 
Database Problems 171
Search Database Logs 172

MySQL 173
PostgresSQL 173

Is the Database Running? 174
MySQL 174
PostgresSQL 175

Get Database Metrics 177
MySQL 177
PostgresSQL 179

Identify Slow Queries 182
MySQL 182
PostgresSQL 183



Contents   xi

CHAPTER 10 It’s the Hardware’s Fault! Diagnosing Common 
Hardware Problems 185
The Hard Drive Is Dying 186
Test RAM for Errors 190
Network Card Failures 191
The Server Is Too Hot 192
Power Supply Failures 194

Index  197



This page intentionally left blank 



xiii

Preface

DevOps describes a world where developers, Quality Assurance (QA), and 
systems administrators work more closely together than in many tradi-
tional environments. Although DevOps is already recognized as a boon to 
rapid software deployment and automation, an often-overlooked benefi t 
of the DevOps approach is the rapid problem solving that occurs when 
the whole team can collaborate to troubleshoot a problem on a system. 
Unfortunately, developers, QA, and sysadmins have gaps in their trouble-
shooting skills that they often resolve by blaming each other for problems 
on the system. This book aims to bridge those gaps and guide all groups 
through a standard set of troubleshooting practices that they can apply as 
a team to some of the most common Linux server problems. 

Although the overall topics covered in the book are traditionally the 
domain of sysadmin, in a DevOps environment, developers and QA also 
fi nd themselves troubleshooting network problems, setting up web serv-
ers, and diagnosing high load, even if they may not have a background in 
Linux administration. What makes this book more than just a sysadmin 
troubleshooting guide is the audience and focus. This book assumes the 
reader may not be a Linux sysadmin, but instead is a talented developer or 
QA engineer in a DevOps organization who may not have much system-
level Linux experience. That said, if you are a sysadmin, you won’t be left 
out either. Included are troubleshooting techniques that can supplement 
the skills of even senior sysadmin—just written in an accessible way.

In a traditional enterprise environment without DevOps principles, trou-
bleshooting is as dysfunctional as development is. When there is a server 
problem, if you can even get developers and sysadmin on the same call, 
you can expect everyone to fall into their traditional roles—the sysadmin 
will only look at server resources and logs; the developers will wait for 



xiv   Preface

the inevitable blame to be heaped on them for their “bloated” or “buggy” 
code, at which point they will complain about the unstable, underpowered 
server; or maybe everyone will redirect the blame at QA for not fi nding the 
problem before it hit production. All the while, the actual problem is not 
any closer to being solved.

In a DevOps organization, cooperation between all the teams is stressed, 
but when it comes to troubleshooting, often people still fall into their tra-
ditional roles even if there’s no blame game. Why? Well, even if every-
one wants to work together, without the same troubleshooting skills and 
techniques, everyone may still be waiting on everyone else to troubleshoot 
their part. The goal of this book is to get every member of your DevOps 
team on the same page when it comes to Linux troubleshooting. When 
everyone has the same Linux troubleshooting skills, the QA team will bet-
ter be able to diagnose problems before they hit production, developers 
will be better at tracking down why that latest check-in doubled the load 
on the system, and sysadmins can be more confi dent in their diagnoses, so 
when a problem strikes, everyone can pitch in to help.

This book is broken into ten chapters based on some of the most com-
mon problems you’ll face on Linux systems, and the chapters are ordered 
so that techniques you learn in some of the earlier chapters (particularly 
about how to diagnose high load and how to troubleshoot network prob-
lems) can be helpful as you get further into the book. That said, I realize 
you may not read this book cover-to-cover, but instead you will probably 
just turn to the chapter that’s relevant to your particular problem. So when 
topics in other chapters are helpful, I will point you to them.

 ■ Chapter 1: Troubleshooting Best Practices Before you learn how 
to troubleshoot specifi c problems, it may be best to learn an overall 
approach to troubleshooting that you can apply to just about any kind 
of problem, even outside of Linux systems. This chapter talks about 
general troubleshooting principles that you will use when you try spe-
cifi c troubleshooting steps throughout the rest of the book.

 ■ Chapter 2: Why Is the Server So Slow? Running Out of CPU, RAM, 
and Disk I/O This chapter introduces troubleshooting principles 
that you will apply to one of the most common problems you’ll have 



Preface   xv

to solve: Why is the server slow? Whether you are in QA and are try-
ing to fi gure out why the latest load test is running much slower; you 
are a developer trying to fi nd out if your program is I/O bound, RAM 
bound, or CPU bound; or you are a sysadmin who isn’t sure whether 
a load of 8, 9, or 13 is OK, this chapter will give you all the techniques 
you need to solve load problems.

 ■ Chapter 3: Why Won’t the System Boot? Solving Boot Problems Any 
number of different problems can stop a system from booting. Whether 
you have ever thought about the Linux boot process or not, this chap-
ter helps you track down boot problems by fi rst walking you through 
a healthy Linux boot process, and then discussing what it looks like 
when each stage in that boot process fails.

 ■ Chapter 4: Why Can’t I Write to the Disk? Solving Full or Corrupt 
Disk Issues Just about anyone who has used Linux for a period of 
time has run across a system where they can’t write to the disk. It could 
be that you are a developer who enabled debugging in your logs and 
you accidentally fi lled the disk, or you could simply be the victim of 
fi le system corruption. In either case, this chapter helps you track down 
what directories are using up the most space on the system and how to 
repair corrupted fi le systems.

 ■ Chapter 5: Is the Server Down? Tracking Down the Source of Net-
work Problems No matter where you fi t in a DevOps organization, 
network troubleshooting skills are invaluable. Sometimes it can be dif-
fi cult to track down networking problems because they often impact 
a system in strange ways. This chapter walks you through how to iso-
late and diagnose a network problem step-by-step by testing problems 
on different network layers. This chapter also lays the groundwork 
for troubleshooting techniques for specifi c network services (such as 
DNS) covered in the rest of the book.

 ■ Chapter 6: Why Won’t the Hostnames Resolve? Solving DNS Server 
Issues DNS can be one of the trickier services to troubleshoot 
because even though so much of the network relies on it, many users 
are unfamiliar with how it works. Whether you are a web developer 
who gets DNS service for your site on a web GUI via your registrar, or a 
sysadmin in charge of a full BIND instance, these DNS troubleshooting 



xvi   Preface

techniques will prove invaluable. This chapter will trace a normal, suc-
cessful DNS request and then elaborate on the DNS troubleshooting 
covered in Chapter 5 with more specifi c techniques for fi nding prob-
lems in DNS zone transfers, caching issues, and even syntax errors.

 ■ Chapter 7: Why Didn’t My Email Go Through? Tracing Email Prob-
lems Email was one of the fi rst services on the Internet and still is 
an important way to communicate. Whether you are tracing why your 
automated test emails aren’t being sent, why your software’s email 
notifi cations are stuck, or why mail delivery is down for your entire 
company, this chapter helps you solve a number of email problems, 
including misconfi gured relay servers and DNS-related mail server 
issues. This chapter even shows you how to send an email “by hand” 
with telnet.

 ■ Chapter 8: Is the Website Down? Tracking Down Web Server Prob-
lems So many of the applications we interact with on a daily basis 
are based on the Web. In fact, if you are a software developer, there’s a 
good chance web programming is at least a part of what you develop, 
and if you are a sysadmin, you are likely responsible for at least one 
web server. Web server troubleshooting is a large topic, but for the pur-
poses of this chapter, you only learn about the common problems you 
are likely to run into with two of the most popular web servers today: 
Apache and Nginx. This chapter discusses how to pull server status and 
how to identify the cause of high server load as well as other common 
debugging techniques.

 ■ Chapter 9: Why Is the Database Slow? Tracking Down Database 
Problems Just like much of the software you use on a daily basis is 
on the Web, much of the software you use stores its data in some sort of 
database. This chapter is similar to Chapter 8, only its focus is on trou-
bleshooting problems with two popular open source database servers: 
MySQL and PostgresSQL. As with Chapter 8, it discusses how to pull 
load metrics from these databases and how to identify problem queries 
as well as other causes of high load.

 ■ Chapter 10: It’s the Hardware’s Fault! Diagnosing Common Hard-
ware Problems With all this focus on software, we should also dis-
cuss one of the most common causes of server problems: hardware 



Preface   xvii

failures. The problem with hardware failures is that often hardware 
doesn’t fail outright. Instead, segments of RAM have errors, hard drive 
sectors fail, or Ethernet cards drop random packets. What’s worse, 
these failures often cause software problems that are almost impos-
sible to track down. This chapter discusses how to troubleshoot some 
common hardware failures, from bad RAM, to failing hard drives, to 
dying network cards. This chapter contains hardware troubleshooting 
techniques you can apply anywhere—from a production rackmount 
server to your personal laptop.



This page intentionally left blank 



xix

Acknowledgments

THANKS TO DEBRA for advocating for this book, from the fi rst time the idea 
came up all the way through to it becoming a real book. Thanks also to 
Trotter and Bill for all of their feedback along the way. Finally, thanks to 
all of the broken systems I’ve worked on through the years that helped me 
hone my troubleshooting skills.



This page intentionally left blank 



xxi

About the Author

Kyle Rankin is a senior systems administrator and DevOps engineer; the 
current president of the North Bay Linux Users’ Group; author of The 
Offi cial Ubuntu Server Book, Knoppix Hacks, Knoppix Pocket  Reference, 
Linux Multimedia Hacks, and Ubuntu Hacks; and a contributor to a num-
ber of other books. Rankin is an award-winning columnist for Linux™ 
Journal and has written for PC Magazine, TechTarget websites, and other 
publications. He speaks frequently on open source software, including at 
SCALE, OSCON, Linux World Expo, Penguicon, and a number of Linux 
Users’ Groups.



This page intentionally left blank 



67

CHAPTER 5

Is the Server Down? 
Tracking Down the Source 
of Network Problems



68

MOST SERVERS ARE ATTACHED to some sort of network and generally use 
the network to provide some sort of service. Many different problems can 
creep up on a network, so network troubleshooting skills become crucial 
for anyone responsible for servers or services on those servers. Linux pro-
vides a large set of network troubleshooting tools, and this chapter dis-
cusses a few common network problems along with how to use some of 
the tools available for Linux to track down the root cause.

Network troubleshooting skills are invaluable for every member of a 
DevOps team. It’s almost a given that software will communicate over the 
network in some way, and in many applications, network connectivity is 
absolutely vital for the software to function. When there is a problem with 
the network, everyone from the sysadmin, to the QA team, to the entire 
development staff will probably take notice. Whether your networking 
department is a separate group or not, when your entire DevOps team 
works together on diagnosing networking problems, you will get a better 
overall view of the problem. Your development team will give you the deep 
knowledge of how your software operates on the network; your QA team 
will explain how the application behaves under unusual circumstances and 
provide you with a backlog of networking bug history; and your sysadmin 
will provide you with an overall perspective of how networked applica-
tions work under Linux. Together you will be able to diagnose networking 
problems much faster than any team can individually. 

Server A Can’t Talk to Server B
Probably the most common network troubleshooting scenario involves 
one server being unable to communicate with another server on the net-
work. This section will use an example in which a server named dev1 can’t 
access the web service (port 80) on a second server named web1. Any 
number of different problems could cause this, so we’ll run step by step 
through tests you can perform to isolate the cause of the problem. 

Normally when troubleshooting a problem like this, you might skip a few 
of these initial steps (such as checking the link), since tests further down 
the line will also rule them out. For instance, if you test and confi rm that 
DNS works, you’ve proven that your host can communicate on the local 



Server A Can’t Talk to Server B   69

network. For this example, though, we’ll walk through each intermediary 
step to illustrate how you might test each level.

Client or Server Problem
One quick test you can perform to narrow down the cause of your problem 
is to go to another host on the same network and try to access the server. In 
this example, you would fi nd another server on the same network as dev1, 
such as dev2, and try to access web1. If dev2 also can’t access web1, then 
you know the problem is more likely on web1, or on the network between 
dev1, dev2, and web1. If dev2 can access web1, then you know the problem 
is more likely on dev1. To start, let’s assume that dev2 can access web1, so 
we will focus our troubleshooting on dev1.

Is It Plugged In?
The fi rst troubleshooting steps to perform are on the client. You fi rst want 
to verify that your client’s connection to the network is healthy. To do this 
you can use the ethtool program (installed via the ethtool package) to verify 
that your link is up (the Ethernet device is physically connected to the 
network). If you aren’t sure what interface you use, run the /sbin/ifconfi g 
command to list all the available network interfaces and their settings. So 
if your Ethernet device was at eth0

$ sudo ethtool eth0

Settings for eth0:

     Supported ports: [ TP ]

     Supported link modes:   10baseT/Half 10baseT/Full 

                               100baseT/Half 100baseT/Full 

                               1000baseT/Half 1000baseT/Full 

     Supports auto-negotiation: Yes

     Advertised link modes:  10baseT/Half 10baseT/Full 

                               100baseT/Half 100baseT/Full 

                               1000baseT/Half 1000baseT/Full 

     Advertised auto-negotiation: Yes

     Speed: 100Mb/s

     Duplex: Full

     Port: Twisted Pair

     PHYAD: 0

     Transceiver: internal



70   Chapter 5 ■ Is the Server Down? Tracking Down the Source of Network Problems  

     Auto-negotiation: on

     Supports Wake-on: pg

     Wake-on: d

     Current message level: 0x000000ff (255)

     Link detected: yes

Here, on the fi nal line, you can see that Link detected is set to yes, so dev1 is 
physically connected to the network. If this was set to no, you would need 
to physically inspect dev1’s network connection and make sure it was con-
nected. Since it is physically connected, you can move on.

NOTE ethtool has uses beyond simply checking for a link. It can also be used to diagnose and 
correct duplex issues. When a Linux server connects to a network, typically it autonegoti-
ates with the network to see what speeds it can use and whether the network supports 
full duplex. The Speed and Duplex lines in the example ethtool output illustrate what a 
100Mb/s, full duplex network should report. If you notice slow network speeds on a host, 
its speed and duplex settings are a good place to look. Run ethtool as in the previous 
example, and if you notice Duplex set to Half, then run

$ sudo ethtool -s eth0 autoneg off duplex full

 Replace eth0 with your Ethernet device.

Is the Interface Up?
Once you have established that you are physically connected to the net-
work, the next step is to confi rm that the network interface is confi gured 
correctly on your host. The best way to check this is to run the ifconfi g 
command with your interface as an argument. So to test eth0’s settings, 
you would run

$ sudo ifconfig eth0

eth0      Link encap:Ethernet  HWaddr 00:17:42:1f:18:be  

          inet addr:10.1.1.7  Bcast:10.1.1.255  Mask:255.255.255.0

          inet6 addr: fe80::217:42ff:fe1f:18be/64 Scope:Link

          UP BROADCAST MULTICAST  MTU:1500  Metric:1

          RX packets:1 errors:0 dropped:0 overruns:0 frame:0

          TX packets:11 errors:0 dropped:0 overruns:0 carrier:0

          collisions:0 txqueuelen:1000 

          RX bytes:229 (229.0 B)  TX bytes:2178 (2.1 KB)

          Interrupt:10 



Server A Can’t Talk to Server B   71

Probably the most important line in this is the second line of output, 
which tells us our host has an IP address (10.1.1.7) and subnet mask 
(255.255.255.0) confi gured. Now, whether these are the correct settings for 
this host is something you will need to confi rm. If the interface is not 
confi gured, try running sudo ifup eth0 and then run ifconfi g again to see 
if the interface comes up. If the settings are wrong or the interface won’t 
come up, inspect /etc/network/interfaces on Debian-based systems or /etc/ 
sysconfi g/ network_scripts/ifcfg-<interface> on Red Hat-based systems. It 
is in these fi les that you can correct any errors in the network settings. Now 
if the host gets its IP through DHCP, you will need to move your trouble-
shooting to the DHCP host to fi nd out why you aren’t getting a lease.

Is It on the Local Network?
Once you see that the interface is up, the next step is to see if a default gate-
way has been set and whether you can access it. The route command will 
display your current routing table, including your default gateway:

$ sudo route -n

Kernel IP routing table

Destination     Gateway      Genmask          Flags Metric Ref     Use Iface

10.1.1.0        *             255.255.255.0    U     0      0        0 eth0

default         10.1.1.1     0.0.0.0           UG    100    0        0 eth0

The line you are interested in is the last line, which starts with default. Here 
you can see that the host has a gateway of 10.1.1.1. Note that the -n option 
was used with route so it wouldn’t try to resolve any of these IP addresses 
into hostnames. For one thing, the command runs more quickly, but more 
important, you don’t want to cloud your troubleshooting with any potential 
DNS errors. If you don’t see a default gateway confi gured here, and the host 
you want to reach is on a different subnet (say, web1, which is on 10.1.2.5), 
that is the likely cause of your problem. To fi x this, either be sure to set 
the gateway in /etc/network/interfaces on Debian-based systems or /etc/ 
sysconfi g/network_scripts/ifcfg-<interface> on Red Hat-based systems, or 
if you get your IP via DHCP, be sure it is set correctly on the DHCP server 
and then reset your interface with the following on Debian-based systems:

$ sudo service networking restart



72   Chapter 5 ■ Is the Server Down? Tracking Down the Source of Network Problems  

The following would be used on Red Hat-based systems:

$ sudo service network restart

On a side note, it’s amazing that these distributions have to differ even on 
something this fundamental.

Once you have identifi ed the gateway, use the ping command to confi rm 
that you can communicate with the gateway:

$ ping -c 5 10.1.1.1

PING 10.1.1.1 (10.1.1.1) 56(84) bytes of data.

64 bytes from 10.1.1.1: icmp_seq=1 ttl=64 time=3.13 ms

64 bytes from 10.1.1.1: icmp_seq=2 ttl=64 time=1.43 ms

64 bytes from 10.1.1.1: icmp_seq=3 ttl=64 time=1.79 ms

64 bytes from 10.1.1.1: icmp_seq=5 ttl=64 time=1.50 ms

--- 10.1.1.1 ping statistics ---

5 packets transmitted, 4 received, 20% packet loss, time 4020ms

rtt min/avg/max/mdev = 1.436/1.966/3.132/0.686 ms

As you can see, we were able to successfully ping the gateway, which means 
that we can at least communicate with the 10.1.1.0 network. If you couldn’t 
ping the gateway, it could mean a few things. It could mean that your gate-
way is blocking ICMP packets. If so, tell your network administrator that 
blocking ICMP is an annoying practice with negligible security benefi ts 
and then try to ping another Linux host on the same subnet. If ICMP isn’t 
being blocked, then it’s possible that the switch port on your host is set to 
the wrong VLAN, so you will need to further inspect the switch to which 
it is connected.

Is DNS Working?
Once you have confi rmed that you can speak to the gateway, the next thing 
to test is whether DNS functions. Both the nslookup and dig tools can be used 
to troubleshoot DNS issues, but since you need to perform only basic test-
ing at this point, just use nslookup to see if you can resolve web1 into an IP:

$ nslookup web1

Server: 10.1.1.3

Address: 10.1.1.3#53



Server A Can’t Talk to Server B   73

Name: web1.example.net

Address: 10.1.2.5

In this example DNS is working. The web1 host expands into web1.example.net 
and resolves to the address 10.1.2.5. Of course, make sure that this IP 
matches the IP that web1 is supposed to have! In this case, DNS works, so 
we can move on to the next section; however, there are also a number of 
ways DNS could fail.

No Name Server Confi gured or Inaccessible Name Server If you see 
the following error, it could mean either that you have no name servers 
confi gured for your host or they are inaccessible: 

$ nslookup web1

;; connection timed out; no servers could be reached

In either case you will need to inspect /etc/resolv.conf and see if any name 
servers are confi gured there. If you don’t see any IP addresses confi gured 
there, you will need to add a name server to the fi le. Otherwise, if you see 
something like the following, you need to start troubleshooting your con-
nection with your name server, starting off with ping:

search example.net

nameserver 10.1.1.3

If you can’t ping the name server and its IP address is in the same subnet 
(in this case, 10.1.1.3 is within the subnet), the name server itself could be 
completely down. If you can’t ping the name server and its IP address is in 
a different subnet, then skip ahead to the Can I Route to the Remote Host? 
section, but only apply those troubleshooting steps to the name server’s IP. 
If you can ping the name server but it isn’t responding, skip ahead to the 
Is the Remote Port Open? section.

Missing Search Path or Name Server Problem It is also possible that 
you will get the following error for your nslookup command:

$ nslookup web1

Server: 10.1.1.3



74   Chapter 5 ■ Is the Server Down? Tracking Down the Source of Network Problems  

Address: 10.1.1.3#53

** server can’t find web1: NXDOMAIN

Here you see that the server did respond, since it gave a response: server 
can’t fi nd web1. This could mean two different things. One, it could mean 
that web1’s domain name is not in your DNS search path. This is set in 
/etc/resolv.conf in the line that begins with search. A good way to test this is 
to perform the same nslookup command, only use the fully qualifi ed domain 
name (in this case, web1.example.net). If it does resolve, then either always 
use the fully qualifi ed domain name, or if you want to be able to use just 
the hostname, add the domain name to the search path in /etc/resolv.conf.

If even the fully qualifi ed domain name doesn’t resolve, then the problem 
is on the name server. The complete method for troubleshooting all DNS 
issues is covered in Chapter 6, but here are some basic pointers. If the 
name server is supposed to have that record, then that zone’s confi gura-
tion needs to be examined. If it is a recursive name server, then you will 
have to test whether or not recursion is working on the name server by 
looking up some other domain. If you can look up other domains, then 
you must check if the problem is on the remote name server that does 
contain the zones.

Can I Route to the Remote Host?
After you have ruled out DNS issues and see that web1 is resolved into 
its IP 10.1.2.5, you must test whether you can route to the remote host. 
Assuming ICMP is enabled on your network, one quick test might be to 
ping web1. If you can ping the host, you know your packets are being 
routed there and you can move to the next section, Is the Remote Port 
Open? If you can’t ping web1, try to identify another host on that network 
and see if you can ping it. If you can, then it’s possible web1 is down or 
blocking your requests, so move to the next section. If you can’t ping any 
hosts on the remote network, packets aren’t being routed correctly. One of 
the best tools to test routing issues is traceroute. Once you provide traceroute 
with a host, it will test each hop between you and the host. For example, a 
successful traceroute between dev1 and web1 would look like this:



Server A Can’t Talk to Server B   75

$ traceroute 10.1.2.5

traceroute to 10.1.2.5 (10.1.2.5), 30 hops max, 40 byte packets

1 10.1.1.1 (10.1.1.1) 5.432 ms 5.206 ms 5.472 ms

2 web1 (10.1.2.5) 8.039 ms 8.348 ms 8.643 ms

Here you can see that packets go from dev1 to its gateway (10.1.1.1), and 
then the next hop is web1. This means it’s likely that 10.1.1.1 is the gateway 
for both subnets. On your network you might see a slightly different out-
put if there are more routers between you and your host. If you can’t ping 
web1, your output would look more like the following:

$ traceroute 10.1.2.5

traceroute to 10.1.2.5 (10.1.2.5), 30 hops max, 40 byte packets

1 10.1.1.1 (10.1.1.1) 5.432 ms 5.206 ms 5.472 ms

2 * * *

3 * * *

Once you start seeing asterisks in your output, you know that the problem 
is on your gateway. You will need to go to that router and investigate why 
it can’t route packets between the two networks. Instead you might see 
something more like

$ traceroute 10.1.2.5

traceroute to 10.1.2.5 (10.1.2.5), 30 hops max, 40 byte packets

1 10.1.1.1 (10.1.1.1) 5.432 ms 5.206 ms 5.472 ms

1 10.1.1.1 (10.1.1.1) 3006.477 ms !H 3006.779 ms !H 3007.072 ms

In this case, you know that the ping timed out at the gateway, so the host is 
likely down or inaccessible even from the same subnet. At this point, if you 
haven’t tried to access web1 from a machine on the same subnet as web1, 
try pings and other tests now.

NOTE If you have one of those annoying networks that block ICMP, don’t worry, you can 
still troubleshoot routing issues. You just need to install the tcptraceroute package 
(sudo apt-get install tcptraceroute), then run the same commands as for traceroute, 
only substitute tcptraceroute for traceroute.



76   Chapter 5 ■ Is the Server Down? Tracking Down the Source of Network Problems  

Is the Remote Port Open?
So you can route to the machine but you still can’t access the web server on 
port 80. The next test is to see whether the port is even open. There are a 
number of different ways to do this. For one, you could try telnet:

$ telnet 10.1.2.5 80

Trying 10.1.2.5...

telnet: Unable to connect to remote host: Connection refused

If you see Connection refused, then either the port is down (likely Apache isn’t 
running on the remote host or isn’t listening on that port) or the fi rewall 
is blocking your access. If telnet can connect, then, well, you don’t have a 
networking problem at all. If the web service isn’t working the way you 
suspected, you need to investigate your Apache confi guration on web1. 
Troubleshooting web server issues is covered in Chapter 8.

Instead of telnet, I prefer to use nmap to test ports because it can often detect 
fi rewalls. If nmap isn’t installed, use your package manager to install the nmap 
package. To test web1, type the following:

$ nmap -p 80 10.1.2.5

Starting Nmap 4.62 ( http://nmap.org ) at 2009-02-05 18:49 PST

Interesting ports on web1 (10.1.2.5):

PORT STATE SERVICE

80/tcp filtered http

Aha! nmap is smart enough that it can often tell the difference between a 
closed port that is truly closed and a closed port behind a fi rewall. Nor-
mally when a port is actually down, nmap will report it as closed. Here it 
reported it as fi ltered. What this tells us is that some fi rewall is in the way 
and is dropping the packets to the fl oor. This means you need to investi-
gate any fi rewall rules on the gateway (10.1.1.1) and on web1 itself to see 
if port 80 is being blocked.

Test the Remote Host Locally
At this point, we have either been able to narrow the problem down to a 
network issue or we believe the problem is on the host itself. If we think 



Server A Can’t Talk to Server B   77

the problem is on the host itself, we can do a few things to test whether 
port 80 is available.

Test for Listening Ports
One of the fi rst things you should do on web1 is test whether port 80 is lis-
tening. The netstat -lnp command will list all ports that are listening along 
with the process that has the port open. You could just run that and parse 
through the output for anything that is listening on port 80, or you could 
use grep to show only things listening on port 80:

$ sudo netstat -lnp | grep :80

tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 919/apache

The fi rst column tells you what protocol the port is using. The second and 
third columns are the receive and send queues (both are set to 0 here). 
The column you want to pay attention to is the fourth column, as it lists 
the local address on which the host is listening. Here the 0.0.0.0:80 tells us 
that the host is listening on all of its IPs for port 80 traffi c. If Apache were 
listening only on web1’s Ethernet address, you would see 10.1.2.5:80 here.

The fi nal column will tell you which process has the port open. Here you 
can see that Apache is running and listening. If you do not see this in your 
netstat output, you need to start your Apache server.

Firewall Rules
If the process is running and listening on port 80, it’s possible that web1 
has some sort of fi rewall in place. Use the iptables command to list all 
of your fi rewall rules. If your fi rewall is disabled, your output will look 
like this:

$ sudo /sbin/iptables -L

Chain INPUT (policy ACCEPT)

target     prot opt source               destination         

Chain FORWARD (policy ACCEPT)

target     prot opt source               destination         

Chain OUTPUT (policy ACCEPT)

target     prot opt source               destination         



78   Chapter 5 ■ Is the Server Down? Tracking Down the Source of Network Problems  

Notice that the default policy is set to ACCEPT. It’s possible, though, that your 
fi rewall is set to drop all packets by default, even if it doesn’t list any rules. 
If that is the case you will see output more like the following:

$ sudo /sbin/iptables -L

Chain INPUT (policy DROP)

target     prot opt source               destination         

Chain FORWARD (policy DROP)

target     prot opt source               destination         

Chain OUTPUT (policy DROP)

target     prot opt source               destination         

On the other hand, if you had a fi rewall rule that blocked port 80, it might 
look like this:

$ sudo /sbin/iptables -L -n

Chain INPUT (policy ACCEPT)

target     prot opt source               destination

REJECT     tcp  --  0.0.0.0/0            0.0.0.0/0           tcp dpt:80 reject-with

Êicmp-port-unreachable

Chain FORWARD (policy ACCEPT)

target     prot opt source               destination

Chain OUTPUT (policy ACCEPT)

target     prot opt source               destination

Clearly, in the latter case you would need to modify the fi rewall rules to 
allow port 80 traffi c from the host.

Troubleshoot Slow Networks
In a way, it’s easier to troubleshoot network problems when something 
doesn’t work at all. When a host is unreachable, you can perform the trou-
bleshooting steps discussed earlier until the host is reachable again. When 
the network is just slow, however, sometimes it can be a bit tricky to track 
down why. This section discusses a few techniques you can use to track 
down the cause of slow networks.



Troubleshoot Slow Networks   79

DNS Issues
Although DNS is blamed more often than it should be for network prob-
lems, when DNS does have an issue, it can often result in poor network 
performance. For instance, if you have two DNS servers confi gured for 
a domain and the fi rst one you try goes down, your DNS requests will 
wait 30 seconds before they time out and go to the secondary DNS server. 
Although this will defi nitely be noticeable when you run tools like dig 
or nslookup, DNS issues can cause apparent network slowdowns in some 
unexpected ways; this is because so many services rely on DNS to resolve 
hostnames to IP addresses. Such issues can even affect your network trou-
bleshooting tools.

Ping, traceroute, route, netstat, and even iptables are great examples of network 
troubleshooting tools that can degrade during DNS issues. By default, all 
of these tools will attempt to resolve IP addresses into hostnames if they 
can. If there are DNS problems, however, the results from each of these 
commands might stall while they attempt to look up IP addresses and 
fail. In the case of ping or traceroute, it might seem like your ping replies are 
taking a long time, yet when they do fi nally come through, the round-trip 
time is relatively low. In the case of route, netstat, and iptables, the results 
might stall for quite some time before you get output. The system is wait-
ing for DNS requests to time out.

In all of the cases mentioned, it’s easy to bypass DNS so your trouble-
shooting results are accurate. All of the commands we discussed earlier 
accept an -n option, which disables any attempt to resolve IP addresses into 
hostnames. I’ve just become accustomed to adding -n to all of the com-
mands I introduced you to in the fi rst part of this chapter unless I really 
do want IP addresses resolved.

NOTE  Although we’ll get into this more in Chapter 8, DNS resolution can also affect your web 
server’s performance in an unexpected way. Some web servers are configured to resolve 
every IP address that accesses them into a hostname for logging. Although that can make 
the logs more readable, it can also dramatically slow down your web server at the worst 
times—when you have a lot of visitors. Instead of serving traffic, your web server can get 
busy trying to resolve all of those IPs.



80   Chapter 5 ■ Is the Server Down? Tracking Down the Source of Network Problems  

Find the Network Slowdown with traceroute
When your network connection seems slow between your server and a 
host on a different network, sometimes it can be diffi cult to track down 
where the real slowdown is. Especially in situations where the slowdown 
is in latency (the time it takes to get a response) and not overall band-
width, it’s a situation traceroute was made for. traceroute was mentioned 
earlier in the chapter as a way to test overall connectivity between you 
and a server on a remote network, but traceroute is also useful when you 
need to diagnose where a network slowdown might be. Since traceroute 
outputs the reply times for every hop between you and another machine, 
you can trace down servers that might be on a different continent or 
gateways that might be overloaded and causing network slowdowns. For 
instance, here’s part of a traceroute between a server in the United States 
and a Chinese Yahoo server:

$ traceroute yahoo.cn

traceroute to yahoo.cn (202.165.102.205), 30 hops max, 60 byte packets

 1  64-142-56-169.static.sonic.net (64.142.56.169)  1.666 ms  2.351 ms  3.038 ms

 2  2.ge-1-1-0.gw.sr.sonic.net (209.204.191.36)  1.241 ms  1.243 ms  1.229 ms

 3  265.ge-7-1-0.gw.pao1.sonic.net (64.142.0.198)  3.388 ms  3.612 ms  3.592 ms

 4  xe-1-0-6.ar1.pao1.us.nlayer.net (69.22.130.85)  6.464 ms  6.607 ms  6.642 ms

 5  ae0-80g.cr1.pao1.us.nlayer.net (69.22.153.18)  3.320 ms  3.404 ms  3.496 ms

 6  ae1-50g.cr1.sjc1.us.nlayer.net (69.22.143.165)  4.335 ms  3.955 ms  3.957 ms

 7  ae1-40g.ar2.sjc1.us.nlayer.net (69.22.143.118)  8.748 ms  5.500 ms  7.657 ms

 8  as4837.xe-4-0-2.ar2.sjc1.us.nlayer.net (69.22.153.146)  3.864 ms  3.863 ms  3.865 ms

 9  219.158.30.177 (219.158.30.177)  275.648 ms  275.702 ms  275.687 ms

10  219.158.97.117 (219.158.97.117)  284.506 ms  284.552 ms  262.416 ms

11  219.158.97.93 (219.158.97.93)  263.538 ms  270.178 ms  270.121 ms

12  219.158.4.65 (219.158.4.65)  303.441 ms *  303.465 ms

13  202.96.12.190 (202.96.12.190)  306.968 ms  306.971 ms  307.052 ms

14  61.148.143.10 (61.148.143.10)  295.916 ms  295.780 ms  295.860 ms

...

Without knowing much about the network, you can assume just by looking 
at the round-trip times that once you get to hop 9 (at the 219.158.30.177 
IP), you have left the continent, as the round-trip time jumps from 3 mil-
liseconds to 275 milliseconds.



Troubleshoot Slow Networks   81

Find What Is Using Your Bandwidth with iftop
Sometimes your network is slow not because of some problem on a remote 
server or router, but just because something on the system is using up all 
the available bandwidth. It can be tricky to identify what process is using 
up all the bandwidth, but there are some tools you can use to help identify 
the culprit.

top is such a great troubleshooting tool that it has inspired a number of 
similar tools like iotop to identify what processes are consuming the most 
disk I/O. It turns out there is a tool called iftop that does something similar 
with network connections. Unlike top, iftop doesn’t concern itself with pro-
cesses but instead lists the connections between your server and a remote 
IP that are consuming the most bandwidth (Figure 5-1). For instance, with 
iftop you can quickly see if your backup job is using up all your bandwidth 
by seeing the backup server IP address at the top of the output.

iftop is available in a package of the same name on both Red Hat- and 
Debian-based distributions, but in the case of Red Hat-based distributions, 

Figure 5-1 Sample iftop output



82   Chapter 5 ■ Is the Server Down? Tracking Down the Source of Network Problems  

you might have to fi nd it from a third-party repository. Once you have it 
installed, just run the iftop command on the command line (it will require 
root permissions). Like with the top command, you can hit Q to quit.

At the very top of the iftop screen is a bar that shows the overall traffi c 
for the interface. Just below that is a column with source IPs followed by 
a column with destination IPs and arrows between them so you can see 
whether the bandwidth is being used to transmit packets from your host 
or receive them from the remote host. After those columns are three more 
columns that represent the data rate between the two hosts over 2, 10, and 
40 seconds, respectively. Much like with load averages, you can see whether 
the bandwidth is spiking now, or has spiked some time in the past. At 
the very bottom of the screen, you can see statistics for transmitted data 
(TX) and received data (RX) along with totals. Like with top, the interface 
updates periodically.

The iftop command run with no arguments at all is often all you need 
for your troubleshooting, but every now and then, you may want to take 
advantage of some of its options. The iftop command will show statistics 
for the fi rst interface it can fi nd by default, but on some servers you may 
have multiple interfaces, so if you wanted to run iftop against your second 
Ethernet interface (eth1), type iftop -i eth1. 

By default iftop attempts to resolve all IP addresses into hostnames. One 
downside to this is that it can slow down your reporting if a remote DNS 
server is slow. Another downside is that all that DNS resolution adds extra 
network traffi c that might show up in iftop! To disable network resolution, 
just run iftop with the -n option.

Normally iftop displays overall bandwidth used between hosts, but to help 
you narrow things down, you might want to see what ports each host is 
using to communicate. After all, if you knew a host was consuming most 
of your bandwidth over your web port, you would perform different 
troubleshooting than if it was connecting to an FTP port. Once iftop is 
launched, press P to toggle between displaying all ports and hiding them. 
One thing you’ll notice, though, is that sometimes displaying all the ports 
can cause hosts you are interested in to fall off the screen. If that happens, 



Packet Captures   83

you can also hit either S or D to toggle between displaying ports only from 
the source or only from the destination host, respectively. Showing only 
source ports can be useful when you run iftop on a server, since for many 
services, the destination host uses random high ports that don’t neces-
sarily identify what service is being used, but the ports on your server are 
more likely to correspond to a service on your machine. You can then fol-
low up with the netstat -lnp command referenced earlier in this chapter to 
fi nd out what service is listening on that port.

Like with most Linux commands, iftop has an advanced range of options. 
What we covered should be enough to help with most troubleshooting 
efforts, but in case you want to dig further into iftop’s capabilities, just type 
man iftop to read the manual included with the package.

Packet Captures
Although the techniques mentioned in this chapter should help you 
troubleshoot a wide range of networking problems, some problems are 
so subtle or low-level that the only way to track them down is to dig down 
into the protocol itself and examine individual packets as they go back 
and forth. Because of the low-level and tedious nature of analyzing packet 
dumps, you should try to use it as a last resort. That said, this type of 
troubleshooting can be quite effective, particularly to identify hosts on 
your local network that are misbehaving, hosts with misconfi gured net-
work settings, or debugging communications between your own client 
and server software. Packet dumps are less effective for troubleshooting if 
you are unfamiliar with the protocols you are examining since you can’t 
tell correct traffi c from errors, or if you allow yourself to get buried in 
volumes of packets and can’t see the problem for all of the normal traffi c.

When you capture packets, it’s most effective if you can capture them on 
both sides of a communication, especially if there is a router or fi rewall 
between two hosts. If a machine between the two hosts is the cause of the 
problem, you’re more likely to detect it when you can see whether packets 
sent from host A arrive on host B exactly as they are sent. For instance, if 
you see host B send a reply back to host A that never gets there, you can be 
confi dent that the problem is somewhere in between the two hosts. 



84   Chapter 5 ■ Is the Server Down? Tracking Down the Source of Network Problems  

A great example of where packet captures come into play occurred some 
time back when I was troubleshooting a host that seemed to have trouble 
communicating with a different server. Connections would sometimes 
just die out, yet at other times things seemed relatively fi ne, if slow. Noth-
ing can be trickier to troubleshoot than an intermittent problem. After a 
series of different troubleshooting steps, we captured packets both from 
the problem host and the destination server. 

What we discovered in the packet dump was that a misconfi gured router 
had been trying to apply NAT (Network Address Translation) rules to our 
destination server incorrectly and had sent reply packets back to our host 
while the destination server was trying to reply to us directly. Our host was 
seeing the same reply twice, but from two different MAC addresses. What 
happened was a race where each time we tried to set up a TCP handshake, 
sometimes the destination server won the race and replied back, but other 
times the router replied back fi rst; upon seeing that reply, our host tried 
to re-initiate the handshake. Depending on who won the race, the com-
munication would continue or get reset. If we weren’t able to analyze the 
individual packets going back and forth, we may have never discovered the 
duplicate packets.

Use the tcpdump Tool
The main packet capture tool we will discuss is tcpdump. This is an old and 
proven command-line packet capture tool, and although there are more 
modern tools out there, tcpdump is a program that you should be able to fi nd 
on any Linux system. Because of how tcpdump works, you will need to run 
it with root privileges on your machine. By default, it will scan through 
your network interfaces and choose the fi rst suitable one; then it will cap-
ture, parse, and output information about the packets it sees. Here’s some 
example output from tcpdump with the -n option (so it doesn’t convert IP 
addresses to hostnames and slow things down):

$ sudo tcpdump -n

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes

19:01:51.133159 IP 208.115.111.75.60004 > 64.142.56.172.80: Flags [F.], seq 753858968, ack 

Ê1834304357, win 272, options [nop,nop,TS val 99314435 ecr 1766147273], length 0



Packet Captures   85

19:01:51.133317 IP 64.142.56.172.80 > 208.115.111.75.60004: Flags [F.], seq 1, ack 1, win 

Ê54, options [nop,nop,TS val 1766147276 ecr 99314435], length 0

19:01:51.157772 IP 208.115.111.75.60004 > 64.142.56.172.80: Flags [.], ack 2, win 272, 

Êoptions [nop,nop,TS val 99314437 ecr 1766147276], length 0

19:01:51.224021 IP 72.240.13.35.45665 > 64.142.56.172.53: 59454% [1au] AAAA? ns2.example.

Ênet. (45)

19:01:51.224510 IP 64.142.56.172.53 > 72.240.13.35.45665: 59454*- 0/1/1 (90)

19:01:51.256743 IP 201.52.186.78.63705 > 64.142.56.172.80: Flags [.], ack 1833085614, win 

Ê65340, length 0

NOTE  Whenever you are done capturing packets, just hit Ctrl-C to exit tcpdump. As tcpdump 
exits, it tells you how many packets it was able to capture and how many the kernel 
dropped.

The output of tcpdump can be a bit tricky to parse at fi rst, and I won’t go 
over all the columns, but let’s take two lines from the preceding output 
and break them down:

19:01:51.224021 IP 72.240.13.35.45665 > 64.142.56.172.53: 59454% [1au] AAAA? ns2.example.

Ênet. (45)

19:01:51.224510 IP 64.142.56.172.53 > 72.240.13.35.45665: 59454*- 0/1/1 (90)

The fi rst line tells you that at 19:01:51, the host 72.240.13.35 on port 45665 
sent a packet to 64.142.56.172 on port 53 (DNS). If you wanted to dig 
further in that line you could see that the source host sent a request for the 
AAAA record (an IPv6 IP address) for ns2.example.net. The second line 
tells you that also at 19:01:51 the host 64.142.56.172 on port 53 replied 
back to host 72.240.13.35 on port 45665, presumably with an answer to 
the query.

Since the fi rst column is a datestamp for each packet, it makes it simple to 
see how long communication takes between hosts. This can be particularly 
useful for protocols that have set timeouts (like 30-second timeouts for 
DNS requests) since you can watch the timeout occur and see the source 
host resend its request. The next major column shows the IP and port 
for the source host. The > in the line can be treated like an arrow that lets 
you know that the direction of communication is from the fi rst IP to the 



86   Chapter 5 ■ Is the Server Down? Tracking Down the Source of Network Problems  

second. Finally, the next column tells you the destination IP and port fol-
lowed by some extra fl ags, sequence numbers, and other TCP/IP informa-
tion for that packet that we won’t get into here.

Filtering Tcpdump Output Since by default tcpdump captures all of the 
packets it sees, it usually bombards you with a lot of noise that doesn’t 
help with your troubleshooting. What you want to do is pass tcpdump some 
fi ltering rules so it only shows you packets that you are interested in. For 
instance, if you were troubleshooting problems between your host and a 
server with a hostname of web1, you could tell tcpdump to only show packets 
to or from that host with

$ sudo tcpdump -n host web1

If you wanted to do the opposite, that is, show all traffi c except anything 
from web1, you would say

$ sudo tcpdump -n not host web1

You can also fi lter traffi c to and from specifi c ports. For instance, if you 
wanted to just see DNS traffi c (port 53) you would type

$ sudo tcpdump -n port 53

If you wanted to capture all of your web traffi c on either port 80 or port 
443, you would type

$ sudo tcpdump -n port 80 or port 443

You can actually get rather sophisticated with tcpdump fi lters, but it’s often 
easier to just capture a certain level of tcpdump output to a fi le and then use 
grep or other tools to fi lter it further. To save tcpdump output to a fi le, you can 
use a command-line redirect:

$ sudo tcpdump -n host web1 > outputfile



Packet Captures   87

If you want to view the packets on the command line while they are being 
saved to a fi le, add the -l option to tcpdump so it buffers the output, and then 
use tee to both display the output and save it to a fi le:

$ sudo tcpdump -n -l host web1 | tee outputfile

Raw Packet Dumps Although you might think that tcpdump already pro-
vides plenty of diffi cult-to-parse output, sometimes all that output isn’t 
enough—you want to save complete raw packets. Raw packets are par-
ticularly useful since they contain absolutely all of the information about 
communication between hosts, and a number of tools (such as Wireshark, 
which we’ll discuss briefl y momentarily) can take these raw packet dumps 
as input and display them in a much-easier-to-understand way.

The simplest way to save raw packet dumps is to run tcpdump with the -w 
option:

$ sudo tcpdump -w output.pcap

Like with other tcpdump commands, hit Ctrl-C to stop capturing packets. 
You can also use all of the same fi ltering options we’ve discussed so far 
when capturing raw packets. With raw packet dumps, you are getting the 
complete contents of the packets as best as tcpdump and your disk can keep 
up. So if someone is transferring a 1Gb fi le from your server, you might 
just capture the whole fi le in your packet dump. You may want to open up 
a second command-line session just so you can keep an eye on the size of 
the output fi le.

tcpdump provides a few options you can use to manage the size of output 
fi les. The fi rst option, -C, lets you specify the maximum size of the out-
put fi le (in millions of bytes) before it moves on to a second one. So, for 
instance, if you wanted to rotate fi les after they grow past ten megabytes, 
you can type

$ sudo tcpdump -C 10 -w output.pcap



88   Chapter 5 ■ Is the Server Down? Tracking Down the Source of Network Problems  

The fi rst output fi le will be named output.pcap.1, and once it gets to ten 
megabytes, tcpdump will close it and start writing to output.pcap.2, and so 
on, until you either kill tcpdump or you run out of disk space. If you want 
to be sure that you won’t run out of disk space, you can also add the -W 
option, which lets you limit the number of fi les tcpdump will ultimately cre-
ate. Once tcpdump reaches the last fi le, it will start from the beginning and 
overwrite the fi rst fi le in the set. So, for instance, if you want tcpdump to 
rotate to a new fi le after ten megabytes and want to make sure tcpdump only 
uses fi fty megabytes of disk space, you could limit it to fi ve rotated fi les:

$ sudo tcpdump -C 10 -W 5 -w output.pcap

Once you have these packet captures, you can use tcpdump to replay them as 
though they were happening in real time with the -r option. Just specify 
your raw packet output fi le as an argument. You can specify fi lters and 
other options like -n just as if you were running tcpdump against a live stream 
of traffi c:

$ sudo tcpdump -n -r output.pcap

The tcpdump program is full of useful options and fi lters beyond what I’ve 
mentioned here. The man page (type man tcpdump) not only goes over all of 
these options and fi lters, but it also provides a nice primer on TCP packet 
construction, so it’s worth looking through if you want to dig deeper into 
tcpdump’s abilities.

Use Wireshark
Although tcpdump is a handy tool for packet capture, when you actually 
need to parse through and analyze raw packets, the -r option sometimes 
doesn’t cut it. Luckily some tools make the process simpler. One of the 
best tools for raw packet analysis is Wireshark. It is a desktop application 
that provides a lot of sophisticated tools for packet analysis that are way 
beyond the scope of this book. At a basic level, though, Wireshark provides 
you with a much easier way to view your raw packet dumps and pinpoint 
obvious problems.



Packet Captures   89

The Wireshark package should be packaged and available for major Linux 
distributions, and it even has clients for Windows and Mac systems. Once 
installed, you can launch it via your desktop environment or just type 
wireshark on the command line. If you type wireshark followed by your raw 
packet fi le, it will go ahead and open it up as it starts. 

As Figure 5-2 shows, Wireshark separates its GUI into a few sections. The 
main pane below the toolbar displays basic packet information like you 
might fi nd in default tcpdump output. What’s useful about Wireshark is that 
its columns are a bit simpler to read, plus it color-codes packets based on 
protocol and will even highlight error packets in red. The color coding 
in this main pane makes it a bit simpler to fi lter through your traffi c and 
identify possible problems.

Once you click on a particular packet in the main pane, the pane below it 
shows all of the detailed information in the different layers of the packet. 

Figure 5-2 Default Wireshark window



90   Chapter 5 ■ Is the Server Down? Tracking Down the Source of Network Problems  

In that pane you can drill down to display IP headers, the data section of 
the packet, and everything in between. Once you do, click on and expand 
a particular section of a packet; at the very bottom of the window is a 
separate pane that will show you both the hex and ASCII representation 
of that data.

Wireshark has a ton of features, including the ability to capture packets in 
its own right, and is a complicated and powerful-enough tool that it could 
be a subject for its own book. Since this is a book about troubleshooting 
and not TCP/IP itself, this section just mentions a few basic features that 
will help you with troubleshooting. 

Along the top toolbar you’ll see an input box and a button labeled Filter. 
As with tcpdump, you fi lter packet dumps so you only see packets that match 
your criteria. Unlike tcpdump, Wireshark uses a completely different syntax 
for fi lters. So, for instance, if you want to see only packets related to host 
192.168.0.1, type this in the fi lter and press Enter:

ip.addr == 192.168.0.1

To display only packets related to DNS (port 53), type

tcp.port == 53 || udp.port == 53

The fi ltering syntax for Wireshark is pretty extensive, but if you click on 
the button labeled Filter, a window pops up that gives you a good list of 
examples to get you started. From there you can also click a Help button 
that gives you more complete documentation on how to construct your 
own fi lter rules.

Another useful feature in Wireshark is the ability to pick a complete stream 
of communication between two hosts out of a large number of packets. 
Although you can certainly do this yourself by hand, you can also just 
select one sample packet you are interested in, then click Analyze g Fol-
low TCP Stream. If it’s a UDP or SSL stream, those options will be visible 
instead. Once you select that menu, a new window pops up (Figure 5-3), 



Packet Captures   91

and if it is able to piece together any content from that stream, it is dis-
played. In either case, when you close the Follow TCP Stream window, 
the main Wireshark window will have automatically fi ltered out all of the 
packets except for those related to this particular stream.

Figure 5-3 Wireshark following an HTTP stream filled with blog spam



This page intentionally left blank 



197

# (pound sign), comment indicator, 43
1xx informational codes, 150
2xx successful codes, 150–151
3xx redirection codes, 151–152
4xx client error codes, 152–153
5xx server error codes, 153–154

A
Active threads, metrics, 177
Apache

displaying web server statistics, 158–162
validating web server confi guration, 163–164

apache2ctl command, 163–164

B
BIOS (Basic Input Output System), 36–37
BIOS boot order, 45–47
Blame, establishing

human actions, 11
postmortems, 11
technology, 14

Boot issues. See also GRUB issues; Linux boot 
process; specifi c issues.

root fi le system won’t mount, 51–55
secondary fi le system won’t mount, 55–56

C
Changes

rolling back, 13
tracking, 12–13

Chat rooms as a communication method, 7–8

Client error codes, 152–153
Communication methods

backup methods, 8
chat rooms, 7–8
conference calls, 4–5
direct conversation, 5–6
email, 6–7

Conference calls as a communication method, 
4–5

Conversation as a communication method, 5–6
Copy failure, 62–63
CPU statistics, displaying. See also top 

command.
idle time, 23
iostat program, 28
sysstat package, 30–31

CPU time
system, 23
user, 23–25

CPU-bound load average, 20
curl command

parsing web server logs, 154–157
testing web servers, 146–148

D
Database metrics. See also Metrics.

active threads, 177
database statistics, 180–181
fl ush tables, 178
MySQL, 177–179
open tables, 178

Index



198   Index

Database metrics, continued
opens, 178
pg_stat_activity table, 179–180
pg_stat_all_tables table, 181–182
pg_stat_database table, 180–181
PostgresSQL, 179–182
queries per second, 178
questions from clients, 177
server process stats, 179–180
statistics, per table, 181–182
uptime, 177

Database metrics, slow queries
identifying, 182–184
MySQL, 182–183
PostgresSQL, 183–184
statistics on, 178

Database servers. See also Logs, databases.
MySQL, 174–175
PostgresSQL, 175–177
testing, 174–175

df command, 59
dig command

displaying TTL values, 109–110
DNS troubleshooting, 72–74, 95–97
recursive DNS resolution, 102–104
recursive name servers, 106
+trace argument, 102–104
zone transfer issues, 113–117

Directories, space usage, 59–61
Disk issues

corrupted fi le systems, repairing, 63–64
disk full, 58–61
hard drive failure, 186–190
label problems, diagnosing, 54
large .swp fi les, 61
large /tmp fi les, 61
out of inodes, 61–62
read-only fi le system, 62–63
reserved blocks, 59

software RAID, repairing, 64–66
space usage, displaying, 59–61
statistics, displaying, 32

Dividing the problem space, 3–4
dmesg command, 62
DNS (Domain Naming System)

caches, fl ushing, 111–112
caching, 108–112
inaccessible, 73, 95–97
missing search path, 97–98
not confi gured, 73, 95–97
overview, 94–95
recursive name servers, 95–98
testing, 72–74
troubleshooting, 95

DNS servers, troubleshooting
dig output, 98–101
DNS caches, fl ushing, 111–112
DNS caching, 108–112
recursive DNS resolution, 102–107
recursive name servers, 104–107
tracing DNS queries, 101–104
TTL (Time To Live) values, 108–112
update not taking, 107–117
zone syntax errors, 112
zone transfer issues, 113–117

Documenting troubleshooting activities, 
10–12

du command, 60
duck command, 60
Duplex issues, diagnosing, 70

E
Email

as a communication method, 6–7
greylisting, 130
headers, 123–125
spam reduction, 130, 132–133
tracing requests, 125



Index   199

Email, receiving
logs, examining, 138–140
telnet cannot connect, 136–137
telnet connects, message rejected, 

137–138
Email, sending

error codes, 129–130
outbound server can’t communicate with 

destination, 131–135
outbound server won’t allow relay, 

130–131
overview, 125–126
sending a test email, 127–129
unable to communicate with outbound 

server, 126–130
Error codes. See also HTTP status codes.

client error, 152–153
email, 129–130
informational, 150
overview, 149–150
redirection, 151–152
server error, 153–154
successful, 150–151

Error logs. See Logs.
/etc/init.d directory, 40–41
/etc/rc.local directory, 41
/etc/rcn.d directory, 41
/etc.rcS.d directory, 41
ethtool program, 69–70
Extended-status command, 178–179

F
File systems

corrupted, repairing, 63–64
read-only, 62–63

Files
listing by size, 61
space usage, displaying, 59–61
unable to save or copy, 62–63

Firewalls
detecting, 76
rules, displaying, 77–78, 145–146

5xx server error codes, 153–154
Flush tables, metrics, 178
Folders. See Directories.
4xx client error codes, 152–153
fsck command, 63–64

G
grep command

parsing web server logs, 156
searching for email ID, 132
testing MySQL, 175

Greylisting email, 130
GRUB boot loader, 37–38
GRUB issues

confi guration fi le, editing, 54
disabling splash screens, 51
version, displaying, 47

GRUB issues, prompt
misconfi gured prompt, 49
no prompt, 45–47, 47–48
stage 1.5 prompt, 48–49

GRUB issues, repairs
from the live system, 49–50
with a rescue disk, 50–51

H
Hard drive. See Disk issues.
Hardware interrupts, displaying, 23
Headers, email, 123–125
High load average, defi nition, 20
Hostnames, converting from IP addresses. See 

DNS (Domain Naming System).
HTTP status codes

1xx informational codes, 150
2xx successful codes, 150–151
3xx redirection codes, 151–152



200   Index

HTTP status codes, continued
4xx client error codes, 152–153
5xx server error codes, 153–154
overview, 149–150

I
ICMP, blocked packets, 72
ifconfi g command, 70–71
iftop command, 81–83
Informational error codes, 150
init scripts

directory for, 41
respawning, 42–45
upstart scripts, 42–45

initrd (initial RAM disk), 38–39
Inodes

defi nition, 61
running out of, 61–62
usage, displaying, 61–62

Internet, targeted searches, 14–15
intramfs fi le, 38–39
I/O wait time

diagnosing, 27–29
displaying, 23

I/O-bound load average, 20
iostat program, 27–29
iotop command, 81–83
IP addresses, converting to hostnames. See DNS 

(Domain Naming System).
iptables command

displaying fi rewall rules, 77–78, 145–146
troubleshooting DNS issues, 79

L
LILO boot loader, 37
Linux boot process. See also GRUB issues.

BIOS (Basic Input Output  System), 36–37
BIOS boot order, 45–47
GRUB boot loader, 37–38

initrd (initial RAM disk), 38–39
intramfs fi le, 38–39
LILO boot loader, 37
Linux kernel, 38–39

Linux boot process, /sbin/init program
/etc/init.d directory, 40–41
/etc/rc.local directory, 41
/etc/rcn.d directory, 41
/etc.rcS.d directory, 41
init scripts, 41–45
overview, 39
runlevels, 40
single-user mode, 40
startup scripts, 40–41
system init scripts, 41
System V init, 39–42
upstart scripts, 42–45
user-editable script, 41

Linux kernel, 38–39
Listening ports, displaying, 143, 144. See also 

Port 80.
lm-sensors package, 193
Load. See System load.
log_min_duration_statement setting, 183–184
Logs, databases

high server load, 173–174
MySQL, 173
PostgresSQL, 173
searching, 172–174

Logs, email, 138–140
Logs, web server

enabling DNS resolution, 158
parsing, 154–157

log_slow_queries variable, 182–183
long_query_time variable, 182–183

M
mdadm command, 64–66
Memory. See RAM.



Index   201

Memtest86+ tool, 190–191
Metrics. See also Database metrics; Statistics; 

System load; specifi c metrics.
CPU idle time, 23
hardware interrupts, 23
I/O wait, 23
nice CPU time, 23
software interrupts, 23
steal time, 23
system CPU time, 23
user CPU time, 23

mke2fs tool, 64
mysql command, 174
MySQL databases

database servers, 174–175
logs, 173
metrics, 177–179
slow queries, 182–183
testing, 175

mysqladmin command, 177, 183

N
Narrowing the problem, 3–4
netstat command

displaying listening ports, 77, 144
troubleshooting DNS issues, 79

Network card failure, 191–192
Network interfaces

confi guration, checking, 70–71
displaying, 69–70

Networks
connections, checking, 69–70
settings, displaying, 69–70

Networks, slow
bandwidth consumption, tracing, 

81–83
DNS issues, 79
fi nding the slowdown, 80
packet captures, 83–88

Nginx
displaying web server statistics, 158–162
validating web server confi guration, 

163–164
nginx command, 164
Nice CPU time, displaying, 23
nmap program, 76
nosplash option, 51
nslookup tool, 72–74, 95–97

O
1xx informational codes, 150
OOM (out-of-memory) killer, 26–27
Open tables, metrics, 178
Out-of-memory issues, 25–27

P
Packet captures

overview, 83–84
raw packet dumps, 87–91
replaying captured packets, 88
tcpdump tool, 84–88
Wireshark program, 88–91

Partitions, duplicate names, 52
Past solutions, favoring, 9–10
Performance

slow or no server response. See System load.
troubleshooting slow networks, 78–83

perl command, 156–157
pg_stat_activity table, 179–180
pg_stat_all_tables table, 181–182
pg_stat_database table, 180–181
ping command

DNS troubleshooting, 96
testing local gateway, 72
troubleshooting DNS issues, 79

Port 80, testing. See also Listening ports.
servers, 76, 77–78
web servers, 143–146



202   Index

PostgresSQL databases
database servers, 175–177
logs, 173
metrics, 179–182
slow queries, 183–184
testing, 176

Postmortems, 10–12
Pound sign (#), comment indicator, 43
Power supply failure, 194–195
Processes

displaying, 29. See also top command.
RAM consumption, 25

Processes, killing
OOM (out-of-memory) killer, 26–27
top command, 21

ps command
testing MySQL, 175
testing PostgresSQL, 176

Q
Queries per second, metrics, 178
Questions from clients, metrics, 177

R
RAID (Redundant Array of Inexpensive 

Disks)
failure detection, 64–66
repairing, 64–66

RAM
DIMM failure, identifying, 191
statistics, displaying, 31–32
testing, 190–191
usage, diagnosing, 25–27

RAM-bound load average, 20
Raw packet dumps, 87–91
Rebooting, 15
Recursive DNS resolution, 102–104
Recursive name servers, 95–98
Redirection error codes, 151–152

Remote host
routing to, 74–75
testing locally, 76–78

Remote ports, testing, 76, 77–78
Rescue disk, repairing GRUB issues, 50–51
Reserved blocks, 59
Respawning init scripts, 42–45
Rolling back changes, 13
Root fi le system won’t mount

duplicate partition names, 52
root device changed, 52–55
root kernel argument, 52
root partition corrupt or failed, 55
UUID changed, 54–55

route command
displaying current route table, 71–72
troubleshooting DNS issues, 79

Routing table, displaying, 71–72
Runlevels, 40

S
sar tool, 31
Save failure, 62–63
/sbin/ifconfi g command, 69–70
/sbin/init program

/etc/init.d directory, 40–41
/etc/rc.local directory, 41
/etc/rcn.d directory, 41
/etc.rcS.d directory, 41
init scripts, 41–45
overview, 39
runlevels, 40
single-user mode, 40
startup scripts, 40–41
system init scripts, 41
System V init, 39–42
upstart scripts, 42–45
user-editable script, 41

SBL (Spam Blackhole List), 132–133



Index   203

Scripts
init, 41–45
startup, 40–41
system init, 41
upstart, 42–45
user-editable, 41

Secondary fi le system won’t mount, 55–56
sensors command, 193–194
Server error codes, 153–154
Servers. See also specifi c servers.

process statistics, 179–180
slow or no response. See System load.
too hot, 192–194

Servers, cannot communicate
blocked ICMP packets, 72
client problem versus server, 69
default gateway, pinging, 71–72
DNS, testing, 72–74
DNS inaccessible, 73
DNS not confi gured, 73
fi rewall rules, displaying, 77–78
fi rewalls, detecting, 76
within the local network, 71–72
missing search path, 73–74, 97–98
network connection, checking, 69–70
network interface, checking, 70–71
port 80, testing, 76, 77–78
remote host, routing to, 74–75
remote host, testing locally, 76–78
remote port, testing, 76, 77–78
routing table, displaying, 71–72

Single-user mode, 40
SMART tools, 186–190
smartctl command, 189
smartd daemon, 189
Software interrupts, displaying, 23
Sorting

fi les, by size, 61
top command output, 26

Space usage, displaying, 59–61
Spam Blackhole List (SBL), 132–133
Spam reduction, 130, 132–133
Speed. See Performance.
Splash screens, disabling, 51
Startup scripts, 40–41
Statistics, data fi les, 30–31. See also Metrics; 

specifi c statistics.
Statistics, displaying

CPU, 30–31
disk, 32
RAM, 31–32
for specifi c days, 33

Status codes. See Error codes; HTTP status codes.
status command, 177
Steal time, displaying, 23
Successful error codes, 150–151
.swp fi les, size issues, 61
sysstat package

CPU statistics, displaying, 30–31
disk statistics, displaying, 32
installing, 30
RAM statistics, displaying, 31–32
run frequency, modifying, 30

System CPU time, displaying, 23
System init scripts, 41
System load, diagnosing

after the fact, 29–33
high I/O wait, 27–29
high user time, 24–25
out-of-memory issues, 25–27
RAM usage, 25–27
top command, 20–24

System load, load average
CPU-bound, 20
high, 20
I/O-bound, 20
overview, 19
RAM-bound, 20



204   Index

System load, overview, 18–19
System operations, understanding, 

13–14
System V init, 39–42

T
tcpdump tool

fi ltering output of, 86
output fi le size, managing, 87
packet captures, 84–88
parsing output, 85
replaying captured packets, 88
saving output to a fi le, 86–87

tcptraceroute package, 75
telnet

cannot connect, 136–137
connects, message rejected, 137–138
displaying listening ports, 143
sending a test email, 127–129
testing a remote port, 76
testing web servers, 148–149

Testing
database servers, 174–175
DNS (Domain Naming System), 

72–74
local gateway, 72
MySQL, 175
port 80, 76, 77–78, 143–146
PostgresSQL, 176
quick versus slow, 8–9
remote hosts locally, 76–78
remote port, 77–78
simple versus complex, 8–9
web servers, 146–149

3xx redirection codes, 151–152
Time To Live (TTL) values, 108–112
/tmp fi les, size issues, 61

top command
overview, 20–22
tracing bandwidth consumption, 81–83

top command, output
example, 21
interpreting, 22–24
sorting, 26

+trace argument, 102–104
traceroute command

fi nding network slowdowns, 80
routing to a remote host, 74–75
troubleshooting DNS issues, 79

Tracing
DNS queries, 101–104
email requests, 120–123, 125

Tracking changes, 12–13
Troubleshooting, favoring past solutions, 9–10. 

See also specifi c problems.
TTL (Time To Live) values, 108–112
2xx successful codes, 150–151

U
Upstart scripts, 42–45
Uptime, metrics, 177
uptime command, 18–19
User CPU time, 23–25
User-editable script, 41

V
vi editor, 155

W
watch command, 162
Web servers

confi guration problems, 163–164
logs, enabling DNS resolution, 158
permission problems, 164–165



Index   205

server status pages, 168–169
sluggish performance, 166–168
statistics, displaying, 158–162

Web servers, unavailable
CPU-bound load, 166–168
displaying fi rewall rules, 145–146
high load, 166–168
I/O-bound load, 166–168

port 80, testing, 143–146
RAM-bound load, 166–168
testing from the command line, 146–149

Wireshark program, 88–91

Z
Zone syntax errors, 112
Zone transfer issues, 113–117


	Contents
	Preface
	Acknowledgments
	About the Author
	CHAPTER 5 Is the Server Down? Tracking Down the Source of Network Problems
	Server A Can’t Talk to Server B
	Client or Server Problem
	Is It Plugged In?
	Is the Interface Up?
	Is It on the Local Network?
	Is DNS Working?
	Can I Route to the Remote Host?
	Is the Remote Port Open?
	Test the Remote Host Locally

	Troubleshoot Slow Networks
	DNS Issues
	Find the Network Slowdown with traceroute
	Find What Is Using Your Bandwidth with iftop

	Packet Captures
	Use the tcpdump Tool
	Use Wireshark


	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z




