
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672337628
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672337628
https://plusone.google.com/share?url=http://www.informit.com/title/9780672337628
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672337628
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672337628/Free-Sample-Chapter

24in

Hours

SamsTeachYourself

800 East 96th Street, Indianapolis, Indiana, 46240 USA

Aram Cookson
Ryan DowlingSoka
Clinton Crumpler

Unreal®

Engine 4 Game
Development

Editor-in-Chief

Greg Wiegand

Executive Editor

Laura Lewin

Marketing Manager

Stephane Nakib

Development Editor

Sheri Replin

Managing Editor

Sandra Schroeder

Senior Project

Editor

Lori Lyons

Copy Editor

Kitty Wilson

Indexer

Larry D. Sweazy

Proofreader

Paula Lowell

Technical Editors

Rusel DeMaria
Jack Mamais
Martin Murphy

Editorial Assistant

Olivia Basegio

Cover Designer

Chuti Prasertsith

Compositor

codeMantra

Sams Teach Yourself Unreal® Engine 4 Game Development in 24 Hours
Copyright © 2016 by Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
 reproduction, storage in a retrieval system, or transmission in any form or by any means,
 electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions,
request forms, and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearsoned.com/permissions/. No patent liability is
assumed with respect to the use of the information contained herein. Although every precaution
has been taken in the preparation of this book, the publisher and author assume no responsibility
for errors or omissions. Nor is any liability assumed for damages resulting from the use of the
information contained herein.

ISBN-13: 978-0-672-33762-8
ISBN-10: 0-672-33762-2

Library of Congress Control Number: 2016904542

First Printing June 2016

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark or
service mark.

Unreal® is a trademark or registered trademark of Epic Games, Inc. in the United States of America
and elsewhere.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but
no warranty or fitness is implied. The information provided is on an “as is” basis. The authors
and the publisher shall have neither liability nor responsibility to any person or entity with
respect to any loss or damages arising from the information contained in this book or programs
 accompanying it.

Special Sales
For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales
 department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearson.com.

http://www.pearsoned.com/permissions/

Contents at a Glance

 HOUR 1 Introducing Unreal Engine 4 ..1

 2 Understanding the Gameplay Framework ...21

 3 Coordinates, Transforms, Units, and Organization . 37

 4 Working with Static Mesh Actors . 53

 5 Applying Lighting and Rendering . 75

 6 Using Materials . 89

 7 Using Audio System Elements . 109

 8 Creating Landscapes and Foliage . 123

 9 World Building . 139

 10 Crafting Effects with Particle Systems . 161

 11 Using Skeletal Mesh Actors . 181

 12 Matinee and Cinematics . 203

 13 Learning to Work with Physics . 223

 14 Introducing Blueprint Visual Scripting System . 245

 15 Working with Level Blueprints . 269

 16 Working with Blueprint Classes . 287

 17 Using Editable Variables and the Construction Script . 311

 18 Making Key Input Events and Spawning Actors . 325

 19 Making an Action Encounter . 341

 20 Creating an Arcade Shooter: Input Systems and Pawns 355

 21 Creating an Arcade Shooter: Obstacles and Pickups . 377

 22 Working with UMG . 407

 23 Making an Executable . 429

 24 Working with Mobile . 441

Index . 465

Companion Files: To gain access to project files and downloads, go to the book’s companion

website at www.sty-ue4.com.

http://www.sty-ue4.com

Table of Contents

HOUR 1: Introducing Unreal Engine 4 1

Installing Unreal ..2

Creating Your First Project ...4

Learning the Interface ...7

View Modes and Visualizers ..14

Playing a Level ...16

Summary ...17

Q&A ..18

Workshop ..18

Exercise ...19

HOUR 2: Understanding the Gameplay Framework 21

Available Resources ..21

Asset References and the Reference Viewer ...29

Gameplay Framework ..30

Summary ...35

Q&A ..35

Workshop ..35

Exercise ...36

HOUR 3: Coordinates, Transforms, Units, and Organization 37

Understanding Cartesian Coordinates ..37

Working with Transforms..38

Assessing Units and Measurements ...42

Organizing a Scene ...45

Summary ...50

Q&A ..51

Workshop ..51

Exercise ...52

Table of Contents v

HOUR 4: Working with Static Mesh Actors 53

Static Mesh Assets ..53

Static Mesh Editor ...54

Viewing UV Layouts ...57

Collision Hulls ...59

Static Mesh Actors ..66

Summary ...73

Q&A ..73

Workshop ..73

Exercise ...74

HOUR 5: Applying Lighting and Rendering 75

Learning Light Terminology ...75

Understanding Light Types ..76

Using Light Properties ...82

Building Lighting..83

Summary ...87

Q&A ..87

Workshop ..87

Exercise ...88

HOUR 6: Using Materials 89

Understanding Materials..89

Physically Based Rendering (PBR) ..90

Material Input Types ...91

Creating Textures ...94

Making a Material ..96

Summary ..105

Q&A ...105

Workshop ...106

Exercise ..107

HOUR 7: Using Audio System Elements 109

Introducing Audio Basics ..109

Using Sound Actors ..112

Controlling Sounds with Audio Volumes ...119

vi Sams Teach Yourself Unreal® Engine 4 Game Development in 24 Hours

Summary ..120

Q&A ...120

Workshop ...121

Exercise ..122

HOUR 8: Creating Landscapes and Foliage 123

Working with Landscapes ..123

Sculpting Shapes and Volumes ..127

Using Foliage...133

Summary ..136

Q&A ...136

Workshop ...137

Exercise ..137

HOUR 9: World Building 139

Building Worlds ..140

World Building Process ...141

Summary ..157

Q&A ...157

Workshop ...158

Exercise ..159

HOUR 10: Crafting Effects with Particle Systems 161

Understanding Particles and Data Types ...161

Working with Cascade ..162

Using Common Modules ...168

Setting Up Materials for Particles ...172

Triggering Particle Systems ..176

Summary ..177

Q&A ...177

Workshop ...178

Exercise ..179

HOUR 11: Using Skeletal Mesh Actors 181

Defining Skeletal Meshes ..181

Importing Skeletal Meshes ...186

Learning Persona ...191

Table of Contents vii

Using Skeletal Mesh Actors ..199

Summary ..201

Q&A ...201

Workshop ...202

Exercise ..202

HOUR 12: Matinee and Cinematics 203

Matinee Actors ...203

Matinee Editor..206

Curve Editor ...212

Working with Other Tracks ...215

Working with Cameras in Matinee ..216

Summary ..220

Q&A ...220

Workshop ...221

Exercise ..222

HOUR 13: Learning to Work with Physics 223

Using Physics in UE4 ...223

Simulating Physics ...227

Using Physical Materials ...230

Working with Constraints ..234

Using Force Actors...239

Summary ..241

Q&A ...241

Workshop ...242

Exercise ..242

HOUR 14: Introducing Blueprint Visual Scripting System 245

Visual Scripting Basics ...245

Understanding the Blueprint Editor ...247

Fundamental Concepts in Scripting ...252

Summary ..264

Q&A ...264

Workshop ...265

Exercise ..266

viii Sams Teach Yourself Unreal® Engine 4 Game Development in 24 Hours

HOUR 15: Working with Level Blueprints 269

Actor Collision Settings ...271

Assigning Actors to Events ...272

Assigning Actors to Reference Variables ...274

Summary ..284

Q&A ...284

Workshop ...285

Exercise ..286

HOUR 16: Working with Blueprint Classes 287

Using Blueprint Classes ..287

The Blueprint Editor Interface ...289

Working with the Components ..291

Working with the Timeline ...296

Scripting a Pulsating Light ..300

Summary ..307

Q&A ...308

Workshop ...308

Exercise ..309

HOUR 17: Using Editable Variables and the Construction Script 311

Setting Up ..311

Making Editable Variables ...312

Using the Construction Script ..314

Summary ..321

Q&A ...321

Workshop ...322

Exercise ..323

HOUR 18: Making Key Input Events and Spawning Actors 325

Why Spawning Is Important..325

Creating a Blueprint Class to Spawn ..326

Setting Up the Spawner Blueprint ..329

Spawning an Actor from a Class ..332

Summary ..336

Table of Contents ix

Q&A ...336

Workshop ...336

Exercise ..337

HOUR 19: Making an Action Encounter 341

Project Game Modes ...341

Knowing Characters’ Abilities ...342

Using Blueprint Classes ..344

Actor and Component Tags ..350

Summary ..351

Q&A ...351

Workshop ...352

Exercise ..352

HOUR 20: Creating an Arcade Shooter: Input Systems and Pawns 355

Identifying Requirements with a Design Summary ..356

Creating a Game Project ...356

Creating a Custom Game Mode ...359

Creating a Custom Pawn and Player Controller ...361

Controlling a Pawn’s Movement ..365

Setting Up a Fixed Camera ...371

Summary ..373

Q&A ...373

Workshop ...374

Exercise ..375

HOUR 21: Creating an Arcade Shooter: Obstacles and Pickups 377

Creating an Obstacle Base Class ..378

Making Your Obstacle Move ..381

Damaging the Pawn ...384

Restarting the Game on Death ..388

Creating a Health Pickup ...391

Creating an Actor Spawner ...397

Cleaning Up Old Obstacles ...403

Summary ..403

x Sams Teach Yourself Unreal® Engine 4 Game Development in 24 Hours

Q&A ...404

Workshop ...405

Exercise ..405

HOUR 22: Working with UMG 407

Creating a Widget Blueprint ..407

Navigating the UMG Interface ...408

Creating a Start Menu ...413

Sample Menu System ...425

Summary ..426

Q&A ...426

Workshop ...427

Exercise ..427

HOUR 23: Making an Executable 429

Cooking Content ..429

Packaging a Project for Windows...430

Resources for Android and iOS Packaging ...435

Accessing Advanced Packaging Settings ..436

Summary ..437

Q&A ...438

Workshop ...438

Exercise ..439

HOUR 24: Working with Mobile 441

Developing for Mobile Devices ...442

Using Touch ...454

Using a Device’s Motion Data ..459

Summary ..462

Q&A ...462

Workshop ...463

Exercise ..464

Index 465

Preface

Unreal Engine 4 is a powerful game engine used by many professional and indie game

developers. When using a tool such as Unreal Engine for the first time, figuring out where to

begin can be a daunting task. This books provides a starting point by introducing you to the

interface, workflow, and many of the editors and tools Unreal Engine 4 has to offer. It will

help you get a strong foundation you can later build on, and it will spark your interest to

explore Unreal Engine and game design further. Each chapter is designed to get you up and

running quickly in key areas.

Who Should Read This Book
If you want to learn to make games, applications, or interactive experiences but don’t

know where to begin, this book and Unreal Engine are for you. This book is for anyone

interested in understanding the fundamentals of Unreal Engine. Whether you are new to

game development, a hobbyist, or a student learning to become a professional, you will find

something useful in these pages.

How This Book Is Organized
and What It Covers
Following the Sam’s Teach Yourself approach, this book is organized into 24 chapters that

should take approximately 1 hour each to work through:

 Hour 1, “Introducing Unreal Engine 4”: This hour gets you up and running by

 showing you how to download and install Unreal Engine 4 and introduces you to the

Editor interface.

 Hour 2, “Understanding the Gameplay Framework”: This hour introduces you to

the concept of the Gameplay Framework, a key component of every project created

in UE4.

 Hour 3, “Coordinates, Transforms, Units, and Organization”: This hour helps you

understand how the measurement, control, and organizational systems work in UE4.

 Hour 4, “Working with Static Mesh Actors”: In this hour, you learn how to import

3D models and use the Static Mesh Editor.

xii Sams Teach Yourself Unreal® Engine 4 Game Development in 24 Hours

 Hour 5, “Applying Lighting and Rendering”: In this hour, you learn how to place

lights in a level and how to change their properties.

 Hour 6, “Using Materials”: This hour teaches you how to use textures and materials

in UE4.

 Hour 7, “Using Audio System Elements”: In this hour, you learn to import audio

files, create Sound Cue assets, and place Ambient Sound Actors into a level.

 Hour 8, “Creating Landscapes and Foliage”: In this hour, you learn to work with

UE4’s landscape system to create your own landscapes and how to use the foliage

 system.

 Hour 9, “World Building”: In this hour, you apply what you learned in the previous

hours and create a level.

 Hour 10, “Crafting Effects with Particle Systems”: In this hour, you learn the

 fundamental controls of Cascade, which you can use to craft dynamic particle effects.

 Hour 11, “Using Skeletal Mesh Actors”: In this hour, you learn about the Persona

Editor and the different asset types needed to bring characters and creatures to life.

 Hour 12, “Matinee and Cinematics”: In this hour, you learn to use the Matinee

Editor and animate cameras and meshes.

 Hour 13, “Learning to Work with Physics “: In this hour, you learn to make Actors

simulate physics to respond to the world around them, and you also learn how to

 constrain them.

 Hour 14, “Introducing Blueprint Visual Scripting System”: In this hour, you are

introduced to basic scripting concepts and learn to use the Level Blueprint Editor.

 Hour 15, “Working with Level Blueprints”: In this hour, you learn about Blueprint

event sequences and create a collision event that responds to the player’s actions.

 Hour 16, “Working with Blueprint Classes”: In this hour, you learn how to create a

Blueprint class, use Timeline, and create a simple Pickup Actor.

 Hour 17, “Using Editable Variables and the Construction Script”: In this hour, you

learn to use the Construction Script and editable variables to make modifiable Actors.

 Hour 18, “Making Key Input Events and Spawning Actors”: In this hour, you learn

to make a keyboard input event that spawns an Actor during gameplay.

 Hour 19, “Making an Action Encounter”: In this hour, you use an existing Game

mode and Blueprint classes to design and create your own first- or third-person action-

based obstacle course.

Preface xiii

 Hour 20, “Creating an Arcade Shooter: Input System and Pawns”: In this hour, you

begin work on a 1990s arcade-style space shooter. You learn about the input system

and user-controlled Actors called Pawns.

 Hour 21, “Creating an Arcade Shooter: Obstacles and Pickups”: In this hour, you

continue working on the arcade shooter game, creating asteroid obstacles and health

pickups, and you learn how to utilize Blueprint class inheritance.

 Hour 22, “Working with UMG”: In this hour, you learn to use the Unreal Motion

Graphics UI designer and make a start menu.

 Hour 23, “Making an Executable”: In this hour, you learn the quick path to

 preparing a project for deployment to other devices.

 Hour 24, “Working with Mobile”: In this hour, you learn optimization guidelines

and techniques for working with mobile devices and some simple ways to utilize touch

and motion sensors.

We hope you enjoy this book and benefit from it. Good luck on your journey with the UE4

game engine!

Companion Files: To gain access to project files and downloads, go to the book’s companion

website at www.sty-ue4.com.

http://www.sty-ue4.com

About the Authors

Aram Cookson is a professor in the Interactive Design and Game Development (ITGM)

department at the Savannah College of Art and Design (SCAD). He has a B.F.A in Sculpture

and an M.F.A. in Computer Art. After finishing his M.F.A., he went on to help start the ITGM

program and served as the graduate coordinator for 9 years. Over the past 15 years, Aram

has developed and taught a range of game art and design courses in classrooms and online,

utilizing the Unreal Engine technology.

Ryan DowlingSoka is a technical artist working on the Gears of War franchise at Microsoft

Studio’s The Coalition, located in Vancouver, British Columbia. He works primarily on

content features for the team, crafting systems for destruction, foliage, visual effects, post-

processes, and user interfaces in Unreal Engine 4. Previously, he worked at Microsoft,

developing experiences for the Microsoft HoloLens in Unity5. Ryan is an expert in a variety

of entertainment software creation packages, including Maya, Houdini, Substance Designer,

Photoshop, Nuke, and After Effects. Ryan holds a B.F.A. in Visual Effects from Savannah

College of Art and Design. With a passion for interactive storytelling, rooted in playing

1990s console role-playing games (Baldur’s Gate II and Planescape: Torment), Ryan focuses

on applying interactive technical solutions to solving difficult problems in modern gaming.

When not working on video games, Ryan can be found swing dancing his evenings away

with his wife.

Clinton Crumpler is currently a senior environment artist at Microsoft Studio’s

The Coalition, located in Vancouver, British Columbia. Previously an artist at Bethesda’s

Battlecry Studios, KIXEYE, Army Game Studio, and various other independent studios,

Clinton’s primary focus areas are environment art, shader development, and art direction.

Clinton has released multiple video tutorials in collaboration with Digital Tutors, with a

focus on game art development for Unreal Engine. He completed an M.F.A. in Interactive

and Game Design and a B.F.A. in Animation at Savannah College of Art and Design

(SCAD) in Savannah, Georgia. Prior to attending SCAD, he received a B.F.A. in Graphic

Design at Longwood University, located in Farmville, Virginia. More information and his

digital works are available at www.clintoncrumpler.com.

http://www.clintoncrumpler.com

Dedication

Tricia, Naia, and Elle: I love you all. —Aram

To Grandpa Bob: Thank you for the constant support through my education and
career. Without your contributions to my future, I would not be where I am today,

and I am ever grateful. —Ryan

To Amanda: Thanks for driving me across the desert while I wrote. —Clinton

Acknowledgments

To my family: Thank you for being so understanding and patient, and for giving me the

time to get this done.

Mom and Dad: Thank you for buying my first computer (TRS-80).

Luis: Thank you for thinking of me. You were an awesome department chair.

To Laura, Sheri, Olivia, and all the reviewers: Thank you for all your efforts.

Epic Games: Thank you for developing, and continuing to develop, such amazing

 technology and games.

—Aram

A big thank you to Samantha for tolerating and accommodating my weekends being

entirely consumed at a keyboard. Your patience and support through this process have been

invaluable.

—Ryan

Big thanks go out to my best friend, Brian, for always helping me become a better writer

and editing my works and always increasing my confidence through brotherly support.

Thanks to Amanda and her family for supporting me while I wrote this during our move

cross-country. Your understanding and help are always appreciated.

—Clinton

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value

your opinion and want to know what we’re doing right, what we could do better, what areas

you’d like to see us publish in, and any other words of wisdom you’re willing to pass our

way.

We welcome your comments. You can email or write to let us know what you did or

didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name

and email address. We will carefully review your comments and share them with the author

and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Sams Publishing

ATTN: Reader Feedback

 800 East 96th Street

 Indianapolis, IN 46240 USA

Reader Services

Register your copy of Sams Teach Yourself Unreal Engine 4 Game Development in 24 Hours

at informit.com for convenient access to updates and corrections as they become available.

To start the registration process, go to informit.com/register and log in or create an account*.

Enter the product ISBN, 9780672337628, and click Submit.

*Be sure to check the box that you would like to hear from us in order to receive exclusive

discounts on future editions of this product.

HOUR 20
Creating an Arcade Shooter:

Input Systems and Pawns

What You’ll Learn in This Hour:

 Identifying requirements with a design summary

 Creating a new project

 Making a custom Game Mode

 Creating a custom Pawn and Player Controller

 Controlling a Pawn’s movement

 Setting up a fixed camera

When making a new video game, you almost always have the player take control of something

in the game world. This can mean a full character or a simple object. What is important is

that the player does something, like press a key or pull a trigger, and something in the game

responds. In UE4, you use Player Controllers to interpret those physical actions and Pawns to act

them out. This hour explores these concepts and helps you create your first game—a simple

arcade shooter. You will learn how to determine requirements from a design brief, how to create

and set up a new project, how to spawn and use a Pawn, and how to set up a game camera.

NOTE

Hour 20 Setup
In this hour, you begin to create a game from scratch. You will create a Blank project with Starter
Content. In the Hour_20 folder (available on the book’s companion website at www.sty-ue4.com),
you will find the assets that you need to work with along with a version of the game called
H20_AcradeShooter that you can use to compare your results.

http://www.sty-ue4.com

356 HOUR 20: Creating an Arcade Shooter: Input Systems and Pawns

Identifying Requirements with a Design
Summary
No two games are exactly alike. It is important to focus on the fundamental elements you want

to include in a game. In this hour, you will make a simple arcade shooter, similar to Space

Invaders or Asteroids. Before you can create the game, you need to determine the requirements

and features.

Your design in this case is simple: The player controls a spaceship that can move left or right and

has to either dodge or destroy asteroids that are in the way.

Identifying Requirements
It is crucially important to take some time when starting a project to determine what types of

interactions are necessary to make the design a reality. Understanding the requirements for a

game helps you focus production. For the game you create in this hour, you can break down the

design summary into the following component parts:

 The player controls a spaceship.

 The spaceship can move left or right.

 Asteroids are in the player’s way, moving downward.

 The spaceship can shoot the asteroids to destroy them.

Breaking down the summary brings up some things you need to keep in mind. The design tells

you that you will need an Actor in the game that the player can control; in UE4, these are called

Pawns. The design also tells you that the movement of the spaceship is limited to one axis. This

requirement means you need to set up input bindings for that one axis. Because you know the

player is constrained, you can also assume that the camera is fixed and that the player does

not control it. You also see what obstacles the player will face and that another type of input is

needed to fire a projectile.

Creating a Game Project
The first thing you always need to do when creating a new game is create a new project in UE4.

UE4 provides a lot of great starting content and templates for new projects. You can also create

fantastic experiences from scratch by using the Blank Project template during project creation.

Creating a Game Project 357

TIP

Setting Your Startup Level
You can change the default start level that the game and the Editor use by selecting Project Settings >

Maps & Modes. Changing Editor Default Map to the map you are currently working on can speed up
your process, and changing Game Default Map changes the map the game uses to start (when play-
ing in Standalone).

In the following Try It Yourself, you create a new blank project and an empty map to use as a

blank canvas to build your game-creation experience.

▼TRY IT YOURSELF

Create a New Project and Default Level

Follow these steps to create a new blank project and replace the default level with a new empty
level as the foundation for your arcade shooter:

 1. Launch the UE4 Project Browser and go to the New Project tab, as shown in Figure 20.1.

 2. Select the Blank Project template.

 3. Target the project to Desktop/Console.

 4. Set the Quality setting to Maximum Quality.

 5. Set the folder location for your project to be stored.

 6. Name the new project ArcadeShooter.

 7. Click the Create Project button to create your new project.

 8. When your new project loads, select File > New Level (or press Ctrl+N).

 9. Choose the Default template from the New Level dialog.

 10. Select File > Save As (or press Ctrl+Shift+S).

 11. In the Save Level As dialog, right-click the Content directory and select New Folder. Rename
the new folder Maps.

 12. Make sure the Maps directory is selected and in the Name field, name the map Level_0.

 13. Click Save.

 14. In the Project Settings panel, click Maps & Modes.

 15. Set both Game Default Map and Editor Startup Map to Level_0.

358 HOUR 20: Creating an Arcade Shooter: Input Systems and Pawns

TIP

The Maps Folder
While you can store level UAssets in any directory inside the Content directory, it is highly
 recommended that you store all levels in a directory named Maps. As long as your level is within a
folder named Maps, it will show up in drop-down lists like the ones for the game default map. It will
also make using the UE4 Front End executable for distribution and cooking slightly simpler by finding
your levels automatically.

Now that you have created a basically empty level, you can move on to setting up the game’s

logic and systems.

▼

FIGURE 20.1
The New Project tab in the UE4 Project Browser.

Creating a Custom Game Mode 359

Creating a Custom Game Mode
You need a place to store your game’s logic and behaviors. In UE4, each level has its own

Blueprint, which is one place to store game logic, but putting too much scripting in the Level

Blueprint means a lot of copying and pasting down the road to transfer that logic to new levels

and maps. Instead, UE4 has the concept of a Game Mode. Like Level Blueprints, Game Modes

can store complex behaviors related to a game, but unlike with Level Blueprints, that behavior

can be shared between multiple levels.

The Game Mode is responsible for defining the behavior of the game being played and enforcing

rules. The Game Mode holds information about items a player begins the game with, what

 happens when the player dies or the game ends, game time limits, and scores.

Game modes are the glue between many of the different systems in a game. Game mode

Blueprints hold the characters or Pawns you are using and also reference which HUD class to

use, which spectator class to used, and the game state and player state classes that control the

information necessary for multiplayer experiences.

At the most basic level, the Game Mode sets the rules of the current game—for example, how

many players can join, how level transitions are handled, information about when the game is

paused or active, and game-specific behaviors like win and loss conditions.

Creating a new Game Mode is easy. In the Content Browser, right-click and select Blueprint

Class to open the Pick Parent Class window, which is where you can select Game Mode, as

shown in Figure 20.2.

360 HOUR 20: Creating an Arcade Shooter: Input Systems and Pawns

FIGURE 20.2
The Pick Parent Class window. This commonly used window offers several class options, including the Game
Mode option you need now.

▼ TRY IT YOURSELF

Create a New Game Mode Blueprint Class

Follow these steps to create a new Game Mode Blueprint class to store the game’s logic:

 1. In the Content Browser, right-click and select Folder.

 2. Name this folder Blueprints.

 3. Double-click the Blueprints folder to open into it.

 4. In the Content Browser, right-click and select Blueprint Class.

 5. In the Pick Parent Class window that appears, select Game Mode.

 6. Name your new Game Mode ArcadeShooter_GameMode.

 7. Select File > Save All (or press Ctrl+S).

Creating a Custom Pawn and Player Controller 361

Now that you have a new Game Mode, you need to tell UE4 to load it instead of the default

Game Mode. You do this in the Project Settings panel.

TIP

Level Overrides
Sometimes it is necessary to use different Game Modes during different parts of a game. Each level
can also override the Game Mode and class settings. To change these settings on a per-level basis,
select Window > World Settings and find the Game Mode Override property. This property works
exactly as it does in the Project Settings panel. Also, when you add a Game Mode Override setting,
you can override other properties, such as those for Pawns or HUD classes, which can be especially
useful when you’re prototyping new features.

There is only ever one Game Mode present per level—either the default Game Mode set in

the Project Settings panel or the Game Mode set on a per-level basis. In a multiplayer game,

the Game Mode only ever runs on the server, and the results of the rules and state are sent

 (replicated) to each client.

▼TRY IT YOURSELF

Set the New Default Game Mode

Follow these steps to use the Maps & Modes section of the Project Settings panel to set the
default Game Mode for your game:

 1. Select Edit > Project Settings.

 2. In the Project Settings panel, click the Maps & Modes section.

 3. In the Default Modes section, click the Default GameMode field to open the search box for
all Game Modes.

 4. Select your newly created ArcadeShooter_GameMode Game Mode.

Creating a Custom Pawn and Player
Controller
In UE4, Actors that are controlled directly by players or artificial intelligence (AI) are called

Pawns. These Pawns can be practically anything: dinosaurs, humans, monsters, vehicles, bouncy

balls, spaceships, even animate food. Any player- or AI-controlled entity in a game is a Pawn.

Some games may not have physical or visible representations of players, but Pawns are still used

to represent the physical locations of players in the game world.

362 HOUR 20: Creating an Arcade Shooter: Input Systems and Pawns

Pawns define the visible appearance of the controlled objects and also can control movement,

physics, and abilities. It is often useful to think of them as the physical bodies of the player in

the game world.

The non-physical representation of a player is a Controller. Controllers are the interface between

a Pawn and the player or AI controlling it.

Controllers are Actors that can possess and control Pawns. Again, Controllers are non-physical

and usually do not directly determine physical properties (e.g., appearance, movement, physics)

of the possessed Pawn. Instead, they are more the representation of the will or intent of the player.

There is a one-to-one relationship between Controllers and Pawns—in other words, one

Controller per Pawn and one Pawn per Controller. With this in mind, Pawns can be possessed

(i.e., controlled) by AI through an AI Controller or by a player through a Player Controller.

The default Player Controller handles most behavior you need for your game, but you should

create your own Pawn.

Inheriting from the Default Pawn
To create a Pawn, you can create a new Blueprint class. This time, however, you start with a

class from the All Classes section of the Pick Parent Class window that has a few more features

already premade for you. When you create a Blueprint class, you expand the All Classes to get

access to all the classes in the project. As shown in Figure 20.3, you can look through this list for

specific classes. In this case, you want to use the DefaultPawn class because it automatically sets

up some of the behaviors that you are going to need in your game.

FIGURE 20.3
In the Pick Parent Class window, expand the All Classes subsection and search for the Pawn you want, such
as DefaultPawn.

TIP

Class Inheritance
Inheriting from an existing class allows generalized behaviors to be shared with extreme ease.
By inheriting from the DefaultPawn class, for example, you create a class that is a clone of several
generalized behaviors but that has the ability to make specific changes. If improvements are
made to the DefaultPawn class (or any of its parents), your Pawn will automatically receive those
 improvements as well.

Using inheritance throughout a project helps you avoid repetition and inconsistent work.

Creating a Custom Pawn and Player Controller 363

 You now have a new Pawn class, and you need to understand the different parts that make up

the class. Double-click your new Hero_Spaceship class in the Content Browser to open it in the

Blueprint Class Editor.

Look at the component hierarchy. By default, there are three components in a DefaultPawn

class: CollisionComponent, MeshComponent, and MovementComponent (see Figure 20.4).

These three components handle the major types of behaviors a Pawn is responsible for.

FIGURE 20.4
The component hierarchy in the Blueprint Class Editor for a DefaultPawn class.

▼TRY IT YOURSELF

Create Custom Pawn and Player Controller Classes

Follow these steps to create a new Blueprint class that inherits from the DefaultPawn class and
create a new Blueprint class that inherits from the Player-Controller class:

 1. In the Content Browser, navigate to the Blueprints folder.

 2. Right-click in the Content Browser and select Blueprint Class.

 3. In the Pick Parent Class window that appears, expand the All Classes category.

 4. In the Search field, type defaultPawn and select the DefaultPawn class from the results.
Click Select at the bottom of the window.

 5. Rename the new Pawn Blueprint class Hero_Spaceship.

 6. Right-click in the Content Browser and select Blueprint Class.

 7. In the Pick Parent Class window that appears, expand the Common Classes category and
select Player Controller.

 8. Rename the new Player Controller Blueprint class Hero_PC.

364 HOUR 20: Creating an Arcade Shooter: Input Systems and Pawns

CollisionComponent handles both physics collisions of the Pawn and trigger overlaps of the

Pawn with volumes or Actors in the level. It represents the physical volume of the Pawn and can

be shaped to fit the Pawn’s simplified form. CollisionComponent does not show up in a game

and is not part of the Pawn’s visual representation.

MeshComponent controls the visuals in a game. Right now for your game, this MeshComponent

class is a sphere, meaning that the visual representation of your Pawn is a sphere. You can

replace or modify MeshComponent to make your Pawn look like anything you desire. You can

add other types of components here to change the visuals, including Particle Emitters, Skeletal

Meshes, 2d Sprites, and complex hierarchies of Static Meshes.

MovementComponent controls your Pawn’s movement. Using MovementComponent is a

 convenient way of handling player movement. Complex tasks (such as checking for collision

and handling velocity) are simplified through the convenient interface of MovementComponent.

Because you haven’t changed it yet, your Pawn is currently just a simple sphere. You can change

this by replacing MeshComponent completely or by changing its Static Mesh reference. In the

next Try It Yourself, you will import the UFO mesh used by many of the UE4 content examples

and then replace the current Pawn’s mesh with it.

▼ TRY IT YOURSELF

Make the Spaceship Look Good

Your new Pawn is pretty drab as a sphere. Follow these steps to improve its looks:

 1. In the root folder in the Content Browser, right-click and select New Folder to create a new
folder.

 2. Rename this new folder Vehicles.

 3. Open the Vehicles folder and click the Import button.

 4. In the Import dialog, navigate to the Hour_20/RawAssets/Models folder that comes with the
book.

 5. Select the UFO.FBX file and click Open.

 6. In the FBX Import Options dialog that appears, leave all the settings at their defaults and
click Import All.

 7. In the Content Browser click Save All (or press Ctrl+S).

 8. In the Content Browser, navigate to the Blueprints folder and double-click the
Hero_Spaceship Blueprint class UAsset to open it in the Blueprint Class Editor.

 9. If the Editor shows only the Class Defaults panel, then in the note beneath the panel title,
click the Open Full Blueprint Editor link.

Controlling a Pawn’s Movement 365

Controlling a Pawn’s Movement
UE4 makes controlling a Pawn’s movement very easy. Because you inherited your Pawn from

the DefaultPawn class, all the heavy lifting has already been done. To see just how simple it is to

control your Pawn’s movement, you can test your work.

First, you need to tell the Game Mode to spawn the player using your new Hero_Spaceship

Pawn by default. You set this in the class Defaults panel in the Game Mode’s Blueprint Class

Editor or in the Maps & Modes section of the Project Settings panel.

In the next Try It Yourself, you set the Hero_Spaceship Pawn class as the default Pawn class in

ArcadeShooter_GameMode. You also set the Player Controller class to Hero_PC.

▼ 10. In the Components panel, select MeshComponent; in the Details panel, select the Static
Mesh drop-down, type UFO in the search box, and select the UFO UAsset from the search
results.

 11. In the Details panel, set the transform’s Scale property to 0.75, 0.75, 0.75 to fit the UFO’s
bulk inside the CollisionComponent’s radius.

 12. In the toolbar, click Compile and then click Save.

▼TRY IT YOURSELF

Set the DefaultPawn and PlayerController Classes

The Game Mode needs to know which Pawn and Player Controller you want to be spawned when
the game starts. Follow these steps to set these things now:

 1. In the Content Browser, navigate to the Blueprints folder and double-click the
ArcadeShooter_GameMode Blueprint class UAsset.

 2. In the class Defaults panel, in the Classes category, find the Default Pawn Class property
and click its down arrow.

 3. Select the Hero_Spaceship Blueprint class.

 4. Also in the class Defaults panel, click the down arrow next to the Player Controller property
and select the Hero_PC Blueprint class.

 5. In the toolbar, click Compile and then click Save.

366 HOUR 20: Creating an Arcade Shooter: Input Systems and Pawns

With Hero_Spaceship set up to be the Game Mode’s default Pawn, you are ready to test your

Pawn’s movement. In the Level Editor toolbar, click Play, as shown in Figure 20.5. When the

game starts, use the arrow keys or WSAD to move around. You can also use the mouse to look

around. When you are done, press the Esc key to stop.

CAUTION

Using a Player Start
If things don’t seem to be working, it may be because there is no Player Start Actor in the scene.
If you don’t see Player Start in your World Outliner panel, you can easily add a new one by going to
Modes > Basic > Player Start and dragging it into the world. Remember to rotate the Player Start
Actor to the direction in which you want your Pawn to come out looking!

FIGURE 20.5
Click the Play button on the toolbar to instantly test your game while staying in the Editor.

Although your Pawn can move freely, a couple things don’t seem to match your design brief.

First, the camera is first person instead of top-down and fixed. Second, your Pawn is moving

forward and backward as well as side to side. In this case, you want to pull back from all the

features that UE4 has provided you and put in some logic to lock things down.

Disabling the Default Movement
The DefaultPawn class does a lot automatically, but in this case, you want to more manual

control. Luckily, it’s pretty simple to get that control. The DefaultPawn class’s Defaults panel

contains a property called Add Default Movement Bindings, which is selected by default. By

unselecting this property, you can disable the DefaultPawn class’s basic movement and overwrite

its behavior and bindings with your own (see Figure 20.6).

FIGURE 20.6
In the Class Defaults of the Pawn, disable the Add Default Movement Bindings check box.

Controlling a Pawn’s Movement 367

 Setting Up Input Action and Axis Mappings
A locked spaceship isn’t exactly what you want. It looks like you quickly swung from too much

freedom to none at all, and you need to add back some user control. One part of this is binding

different keypresses to different actions. Taking an input—like a joystick movement, a keypress,

or a trigger pull—and registering a specific action with that input is called input binding, and you

do this at the Project level.

To set input binding, select Settings > Project Settings and then open the Input section of the

Project Settings panel. At the top of this section are two lists in the Bindings section: Action

Mappings and Axis Mappings. The difference between these two sections is subtle but important.

Action mappings are for single keypress and release inputs. These are usually used for jumping,

shooting, and other discrete events. Axis mappings are for continuous input, such as movement,

turning, and camera control. Both types of mappings can be used simultaneously and

 picking the right type of binding for your actions will make creating complex and rich player

 interactions easier.

Axis mappings work slightly differently depending on the hardware generating an input. Some

hardware (such as mice, joysticks, or gamepads) return input values to UE4 in a range from −1

to 1. UE4 can scale that value, depending on how much the user wants to let the input influence

the game. Keyboards, however, separate up and down and left and right to different keys and

don’t provide a continuous range of input. A key is either pressed or it isn’t, so when you’re

 binding a key as an axis mapping, UE4 needs to be able to interpret that pressed key as a value

on that same −1 to 1 scale.

▼TRY IT YOURSELF

Disable Default Movement

In the game you are creating, the default Pawn is doing more than you need. Follow these steps
to disable this behavior through the Hero_Spaceship Pawn’s Blueprint class defaults:

 1. In the Content Browser, navigate to the Blueprints folder and double-click the
Hero_Spaceship Blueprint class.

 2. In the Class Defaults panel, in the Pawn category, ensure that the Add Default Movement

Bindings property’s check box is unchecked to disable this feature.

 3. In the toolbar, click Compile and then click Save.

 4. Play again and notice that you can no longer move around. The camera is still in first
 person, but your spaceship is now locked where it was spawned.

368 HOUR 20: Creating an Arcade Shooter: Input Systems and Pawns

For movement, you use axis mappings, and in your arcade shooter, you are limiting the player’s

movement to a single axis, so the player can move either left or right. In the next Try It Yourself,

you set up the input bindings to support left and right movement for your Pawn.

▼ TRY IT YOURSELF

Create the MoveRight Set of Mappings

In the following steps, you set up the game to be prepared for user input. Bind all the appropriate
keys and the left gamepad thumbstick to left and right movement. Any bindings that will cause
the user to move left instead of right should have a value of −1.0 set for their scale.

 1. Select Edit > Project Settings.

 2. In the Project Settings panel, select the Input category.

 3. Under the Bindings category, find the Axis Mappings property, click the + icon beside it.

 4. Expand the Axis Mappings field by clicking the arrow to the left of it, and rename the
 mapping MoveRight.

 5. Click the arrow to the left of the MoveRight binding to expand the key binding list.

 6. Click the + icon beside the MoveRight field four times to create five None mappings.

 7. Click the down arrow next to each None field and replace each field to match Figure 20.7.

 8. Ensure that each Scale property is set to match Figure 20.7.

FIGURE 20.7
The Axis Mappings settings for MoveRight, which have three parts each: the name of the mapping, the key
or axis that is being bound, and the amount positive or negative of the input that should be accumulated
each second.

At the top of the Axis Mappings properties in the Project Settings panel is a field where you input

the name for the action that is to be performed. You click the + symbol beside the action name

to add a new binding. Each binding has two parts: the input that is being bound and a scale

next to it that modulates the result.

Controlling a Pawn’s Movement 369

You want the game to treat keypresses, like A and D, as a continuous axis. To do this, you need

to have some of those keys be negative; in other words, when you press left, you want the axis to

go down, and when you press right, you want the axis to go up.

For thumbstick axes (e.g., Gamepad Left Thumbstick X-Axis), the negative values are already

calculated, so the scale should usually just be 1.0.

In this example, the keys A and D, the left arrow and right arrow keys, and the Gamepad

Left Thumbstick are all being bound to the MoveRight action. This brings up an important

 distinction: By using Action Mappings and Axis Mappings, you can bind multiple different

input methods to the same event. This means less testing and duplication of Blueprint scripts

in your project, and it means everything becomes more readable. Instead of having Blueprint

scripts checking whether the A key is pressed, the Blueprint can just update movement when

the MoveRight event is triggered.

But just creating an input binding doesn’t make things move. Now you need to actually use

the MoveRight action.

Using Input Events to Move a Pawn
You are now ready to set up movement again. You have a fancy input axis called MoveRight

and a Pawn that is just itching to move again. First, you need to open the Blueprint Class Editor

of your Pawn and go to the Event Graph. Here, you can begin to lay down behaviors that will

fire when your MoveRight action is triggered.

In the Event Graph, right-clicking and searching for your action by name, MoveRight, brings

up the InputAxis MoveRight event into the graph, as shown in Figure 20.8.

FIGURE 20.8
Axis mappings show up by name under Axis Events. There are also Axis Values functions and Pawn functions,
but these functions are not what you are looking for in this case.

370 HOUR 20: Creating an Arcade Shooter: Input Systems and Pawns

Once you have an axis event, you can query the axis value and convert it into movement.

To do this you need a few more Blueprint nodes, starting with Add Movement Input.

This function works with MovementComponent to interpret a value and a world space direction

to move the Pawn in.

By hooking up the InputAxis MoveRight event’s execution pin and the value that is returned

in Axis Value to Add Movement Input, MovementComponent can take the player’s inputs and

move the Pawn in a world direction.

Since you want the spaceship to move left or right on input, you need to take the vector coming

from the Pawn’s right axis. You can get this vector by using the Get Actor Right Vector node

and plugging its Return Value into the Add Movement Input’s World Direction (see Figure 20.9).

FIGURE 20.9
The finished graph of the Add Movement Input.

▼ TRY IT YOURSELF

Hook Up the MoveRight Axis Mapping to the Pawn’s Movement

With the MoveRight axis mapping, the Pawn needs to know how to interpret the values that come
from the mapping. Follow these steps to hook up the simple graph required to tell the Pawn how
to move on player input:

 1. In the Content Browser, navigate to the Blueprints folder and double-click the
Hero_Spaceship Pawn’s Blueprint class to open the Blueprint Class Editor.

 2. Right-click in an open space in the Event Graph and enter moveright in the search box.

 3. Select Axis Events > MoveRight from the search results.

 4. Click+drag from the InputAxis MoveRight event node’s exec out pin and place an
Add Movement input node.

Setting Up a Fixed Camera 371

 TIP

Default Pawn Goodness
In your game, you use Add Movement Input, which takes a world direction. This powerful function
can move the Pawn in any direction. The DefaultPawn class, however, gives you some convenience
 functions for this exact use case. Try replacing the Add Movement Input and Get Actor Right Vector
with the DefaultPawn class’s MoveRight function. This will have exactly the same result, but it keeps
the graph a little bit cleaner, as shown in Figure 20.10.

FIGURE 20.10
Alternative setup, showing the DefaultPawn class’s MoveRight function instead of the Add Movement
Input node.

Setting Up a Fixed Camera
Right now, your game has a camera that follows your Pawn around. This is the default, but

for the game you want to make, it isn’t quite right. Instead, you want a camera to stay fixed,

 looking down at the spaceship from above. You also don’t want it to move when the Pawn does.

▼ 5. Hook the InputAxis MoveRight event node’s Axis Value output pin to the Add Movement
Input node’s Scale Value input pin.

 6. Click+drag from the Add Movement Input node’s World Direction input pin and place a
Get Actor Right Vector node.

 7. On the toolbar, click Compile and then click Save.

 8. When this graph is all hooked up, test the game again. Pressing any of the input keys
(A, D, left arrow, right arrow) or using a compatible gamepad’s left thumbstick should move
the camera either right or left.

372 HOUR 20: Creating an Arcade Shooter: Input Systems and Pawns

To solve this quandary, you can use Camera Actors and view targets and the built-in

PlayerController class to set the view that a player sees. This setup could be done in the Level

Blueprint, but it would then be more difficult to port your game logic to a new level. Instead,

you are going to bundle this camera logic into a Game Mode. When the game begins, the Game

Mode will spawn a camera for your game and then tell the PlayerController class to use that

new camera.

In the next Try It Yourself, you use the BeginPlay event and the SPawn Actor from Class node

to create a new camera and position it with a Make Transform node before setting it as the

PlayerController class’s view target.

▼ TRY IT YOURSELF

Create and Set a Fixed-Position Camera

Follow these steps to use the ArcadeShooter_GameMode to spawn a new camera and set it as
the PlayerController class’s view target:

 1. In the Content Browser, navigate to the Blueprints folder and double-click the
ArcadeShooter_GameMode Blueprint class to open the Blueprint Class Editor.

 2. If the Editor shows only the Class Defaults panel, then in the note beneath the panel title,
click the Open Full Blueprint Editor link.

 3. In the EventGraph, locate the Event BeginPlay node, and if it doesn’t exist, create it by
 right-clicking and searching for begin play.

 4. Click+drag from the Event BeginPlay node’s exec out pin and place a SPawn Actor from

Class node.

 5. On the SPawn Actor from Class node, click the down arrow in the Select Class field, and
select CameraActor.

 6. Click+drag from the SPawnActor CameraActor node’s SPawn Transform property and place a
Make Transform node.

 7. Set the Make Transform node’s Location property to 0.0, 0.0, 1000.0.

 8. Set the Make Transform node’s Rotation property to 0.0, −90.0, 0.0.

 9. To the right of the SPawnActor CameraActor node place a new Get Player Controller node.

 10. Click+drag from the Get Player Controller node’s Return Value output pin and place a Set

View Target with Blend node.

 11. Hook the SPawnActor CameraActor node’s Return Value output pin into the Set View Target
with Blend node’s New View Target input pin.

 12. Hook the SPawnActor CameraActor node’s Exec Out pin to the Set View Target with Blend
node’s exec in pin. Figure 20.11 shows the completed GameMode Event Graph.

Q&A 373

▼ 13. On the toolbar, click Compile and then click Save.

 14. Give the game another test run. At this point the camera should be looking straight down at
your Pawn, which moves left or right when its input keys are pressed.

FIGURE 20.11
The finished Event Graph to set up a fixed camera in the Game Mode.

Summary
In this hour, you learned how to make a new UE4 project from scratch and how to get it set up

with a custom level and a new Game Mode. You learned what Pawns and Player Controllers are

and how to use them. You also learned how to disable the default movement of the DefaultPawn

class and how to hook up your own movement and inputs through the Project Settings panel.

Finally, you explored one way of setting up a fixed camera in a game.

Q&A
 Q. Why should I put all the game logic in a Game Mode instead of in a Level Blueprint?

 A. There is no requirement that game logic be put in one place or the other. Instead, it helps
to think of the separation as a way to reduce repeated work later. All the logic that is
shared between multiple levels should probably be put in a Game Mode or individual Actors,
while level-specific logic (like triggers that cause doors to open or lights to turn on) should
usually be put in Level Blueprints. You can choose to put everything in Level Blueprints, but
if you decide to make a new level, you will have a harder time making sure everything works
there and stays up to date than if you primarily use a Game Mode.

374 HOUR 20: Creating an Arcade Shooter: Input Systems and Pawns

 Q. Does a Pawn need to inherit from the default Pawn?

 A. Not at all! DefaultPawn is just a convenience class, but all its features can be replicated
with a bit of work. UE4 also comes with some other convenient Pawn classes, such as the
Character class, which contains a Skeletal Mesh component and some logic dedicated to
locomotion.

 Q. Positioning a camera by inserting raw numbers is difficult. Do I have to spawn a camera this

way?

 A. No. Another option is to place a camera in a level and then reference it in level script when
calling Set View Target with Blend. This brings the logic out of the Game Mode and makes it
level specific, allowing easier artistic control of the camera.

 Q. I don’t like the speed at which my Pawn moves. Can I change it?

 A. Absolutely. To change the Pawn’s movement speed, open up the Pawn’s Blueprint Class
Editor and select MovementComponent. In the Details panel, set the three float values that
control the Pawn’s max speed, acceleration, and deceleration.

 Q. Do I have to use only the single MeshComponent in the Hero_Spaceship Pawn Blueprint

class?

 A. No, you can use any number of components to define the visuals of a Pawn. If you are
adding several components (or even if you are sticking with the single one), you might want
to disable the physics simulation of your Static Mesh components. You can change the
collision presets by clicking on the individual component and finding the Collision Presets
property in the Details panel. Setting Collision Presets to No Collision ensures that it incurs
the lowest physics cost possible. Make sure CollisionComponent has Pawn Preset and
Generate Overlap Events enabled; if you don’t do this, in the next hour nothing will work.
Also, if you disable collision of any individual Static Mesh or visual components, make sure
the CollisionComponent’s sphere encapsulates your visuals.

Workshop
Now that you have finished the hour, see if you can answer the following questions.

Quiz
 1. True or false: Pawns are Actors that players or AI control directly.

 2. True or false: UE4 automatically knows which Game Mode to use by detecting it in the
Content Browser.

 3. True or false: Action bindings and axis bindings only work with fixed names such as
MoveRight.

 4. True or false: Axis bindings are for continuously pressed inputs like holding down a key or
moving a joystick.

Exercise 375

Answers
 1. True. Any Actors in the scene that AI or players directly control are called Pawns.

 2. False. The Game Mode must be set either in the Project Settings panel or the level’s World
Settings panel.

 3. False. Any string can be put into the input binding’s Name field and work. For example, you
could replace MoveRight with Strafe.

 4. True. Any time you need more input information than a simple on or off switch, an axis
 binding is what you should map your actions to.

Exercise
In this hour’s exercise, practice setting up new input bindings to control your Pawn, modifying your
Pawn, and customizing your level. Hook the left and right movement of your Pawn to your mouse
input, and add walls or other affectations to your level. Then make the floors and walls invisible.
The following steps should be done in the same Project and Level made for this hour.

 1. Select Project Settings > Input and in the Move Right binding found, add a new axis.

 2. Set the new axis to Mouse X and the Scale property to 1.0.

 3. Preview your game to see the mouse affect your Pawn’s location.

 4. Select the MovementComponent of your Pawn in the Pawn’s Blueprint Class Editor.

 5. Modify the Max Speed and Acceleration settings of MovementComponent to change how
fast the Pawn moves.

 6. Select the floor of your level and duplicate it several times by pressing Ctrl+W.

 7. Position the duplicated floors to box out the left and right sides of your level and stop your
Pawn from being able to leave the camera’s view.

 8. Select all the duplicate floors and enable the Actor Hidden in Game property in the
Rendering category to make all the floors invisible while the game is running.

This page intentionally left blank

ActivateStomper_BP, 350

activating. See also triggering

Actors

events, 283

properties, 273–281

particles, 176–177

Actors

Ambient Sound Actor, 110,

112–113

attaching, 49–50

BSP (binary space

 partitioning), 144

Camera group, 216–218

classes, spawning, 332–335

collisions, configuring,

271–272

combining, 148–150

components, 275

events

activating, 283

assigning, 272–274

fog, 155

grouping, 47, 208

layers, applying, 48–49

Light Actors, 76

materials

modifying, 277

resetting properties, 278

Symbols

3D

coordinate systems, 37–38

transformation tools, 39

A

abilities, characters, 342–344

action encounters, 341

Actor/Component tags,

350–351

Blueprint classes, 344–345,

346

BP_Common folders, 345–346

BP_Levers folder, 349–350

BP_Pickup folder, 349

BP_Respawn folder, 348

BP_Turrets folder, 341–348

character abilities, 342–344

HUDs (heads-up displays), 342

project Game modes, 341

respawn systems, 342

timers, 342

actions, configuring input,

367–369

Index

466 Actors

Matinee, 203–204

moving, 46–47

physics

attaching, 235

constraints, 235–239

radial force, 240

thrusters, 239

post processing volume,

155–156

properties, 273–281,

275–276

reference variables, assigning

to, 274

reflection capture, 155

selecting, 48

Skeletal Mesh Actors, 181.

See also Skeletal Mesh

Actors

applying, 199–201

defining, 181–186

importing, 186–191

Persona Editor, 191–199

sound, applying, 112–113

spawners, creating, 397–403

Static Mesh, 8, 66–70

Static Mesh Actors

animation, 211

properties, 228

tags, 350–351

transformation tools, 41.

See also transformations

visibility, rendering, 270

adding

Actors, 203–204

arrows, 279–281

Blueprint class, 288–289

components (Blueprint class),

291–292

curves, 297

default maps, 425

Directional Lights, 80–81

events, 256

GameMode class, 32–33

health pickups, 391

lighting, 153

multiple cameras, 217

multiple collision hulls, 61

Point Lights, 76–77

Sky Lights, 79–80

Spot Lights, 78

Static Mesh components,

279–283

tracks, 297

Widget Blueprint, 424

AIController class, 31

albedo. See base colors

Ambient Sound Actor, 110,

112–113

anchor points, 412–413

Android, packaging, 435

angular, 224

animation

Blueprints, 185

editing, 206. See also Matinee

interpolation, 214–215

sequences, 185

Static Mesh Actors, 211

Animation mode (Persona Editor),

194–199

applying

assets (Matinee), 220

audio volumes, 119–120

Blueprint class, 287

Cast To Node, 386–388

collision hulls, 62

constraints, 234

Construction Script, 277–278,

326–328

Curve Editor, 166–168

foliage, 133–134

landscapes, 123, 130–133

layers, 48–49

materials, 89

Matinee Editor, 207

modular assets, 148

modulation properties, 115

motion data, 459–462

particle emitters, 164

physics, 223

Skeletal Mesh Actors,

199–201

Sound Actors, 112–113

Sound Track, 215–216

Static Mesh Editor, 54

SubUV textures, 174–176

Timeline, 296–300

World Outliner, 45

arcade shooter games, 355

Actor spawners, creating,

397–403

axis mappings, 367–369

Cast To Node, applying,

386–388

controllers, customizing,

361–362

creating, 356–358

default Pawns, inheriting

from, 362

fixed cameras, configuring,

371–373

Game modes, customizing,

359–361

health pickups, creating,

391–397

input

actions, 367–369

events, 369–371

Obstacle classes, 378–381

obstacles, 377

cleaning up old, 403

moving, 381–384

bounced lighting 467

Pawns

damaging, 384–386

disabling movement,

366–367

moving, 365–366

pickups, 377

requirements

design, 356

identifying, 356

arrows, adding, 279–281

aspect ratios, 412

Asset dialog box, 27

assets

icons, 27

importing, 413–415

Matinee, applying, 220

modular, applying, 148

Physical Materials, 230–234

Physics, 185

placing, 147

references, 29

Sound Attenuation, 110

Sound Cue, 110, 115–119

Sound Wave, 110, 111

Static Mesh, 8, 53. See also

Static Mesh assets

types of, 29–32

assigning

Actors

to events, 272–274

to existing groups, 208

to reference variables, 274

materials to Static Mesh

assets, 59

physics to levels, 224–225

attaching Actors, 49–50, 235

attenuation, configuring, 113–114

Attenuation Radius property, 82

Audacity, 110

audio

attenuation, configuring,

113–114

components, 109–110

importing, 110–112

modulation properties,

 applying, 115

overview, 109–110

Sound Actors, applying,

112–113

Sound Cue assets, formatting,

115–119

Sound Track, 215–216

volumes, applying, 119–120

world building, 154–155

Auto Activate setting, 176

auto-generating collision hulls, 64

axis mappings, configuring,

367–369

B

base colors, 91

beam data, 162

binary space partitioning. See

BSP (binary space partitioning)

bind poses, missing bones, 190

blank projects, formatting, 24

blocking world building, 145–147

Blueprint, 5

animation, 185

Level Blueprints, 269–270.

See also Level Blueprints

particles, activating, 176–177

projects, formatting, 23

scripts

Blueprint Context menu,

251

comment boxes, 262

compiling, 246

components, 253

concepts, 252–254

conditionals, 260–261

Event Graph, 250

events, 252

functions, 254–256

managing, 262

My Blueprint panel, 250

node comments, 262

operators, 260–261

overview of, 245–246

reroute nodes, 263

structs, 258

types of, 247

variables, 257–258

Widget Blueprint, creating,

407–408

Blueprint class, 247, 287

action encounters, 344–345,

346

Actors, combining, 148–150

adding, 288–289

applying, 287

components, 291–292

existing classes, deriving

from, 301

pulsing lights, creating, 300

scripting, 294–296

spawning, 326, 329

Timeline, applying, 296–300

Blueprint Context Menu, 251

Blueprint Editor, 247–249,

289–291

Blueprint Interfaces. See BPIs

Blueprint Macros, 247

bones, missing, 190

bounced lighting, 76

468 boxes, comments

boxes, comments, 262

BP_Common folders, 345–346

BPIs (Blueprint Interfaces), 247

BP_Levers folder, 349–350

BP_Pickup folder, 349

BP_Respawn folder, 348

BP_Turrets folder, 348

Brush menu, 129

BSP (binary space partitioning),

144

building

lighting, 83–85

world building, 139–140.

See also world building

buttons

Create, 123

events, scripting, 419

Fill World, 123

Play Cue, 115

Play Node, 115

Selection, 127

widgets, 417

bytecode, 246

C

C++, 245–246

Camera group, 216–218

cameras, configuring fixed,

371–373

Cartesian coordinates, 37

Cascade interfaces, 162–164

Cast Shadows property, 82

Cast To Node, applying, 386–388

channels

green, 92

visualizers, 167

Character classes, 32

characters. See also Actors

abilities, 342–344

movement, 345

Skeletal Mesh Actors, 186.

See also Skeletal Mesh

Actors

Checkpoint_BP, 348

classes

Actors, spawning, 332–335

AIController, 31

Blueprint, 247. See also

Blueprint class

Character, 32

controller, 31

DefaultPawn, 365

defaults, 281

GameMode, 31, 32–33

HUD, 32

inheriting, 362

Obstacle, 378–381

Pawn, 32

PlayerController, 31, 365

Vehicle, 32

cleaning up old obstacles, 403

cloth, 224

CollectionPickup_BP, 349

Collision Enabled setting, 72

collisions

Actors, configuring, 271–272

hulls, 53, 59–63

auto-generating, 64

Convex Decomposition

panel, 64

per-poly, 64–65

presets, 71

responses, flags, 72

Static Mesh Actors, editing,

70

Color Over Life module, 170

colors

base, 91

particles, formatting, 173

shadows, 153

combining Actors, 148–150

comments

boxes, 262

nodes, 262

scripts, 262

common modules, particles,

168–172

communities, 21

compilers, 246

compiling scripts (Blueprint), 246

components

Actors, 275

audio, 109–110

Blueprint class, 291–292

scripting, 253, 294–296

Static Mesh, adding, 279–283

tags, 350–351

conditionals, Blueprint scripts,

260–261

Config folders, 23

configuring

Actor collisions, 271–272

attenuation, 113–114

axis mappings, 367–369

Collision Enabled setting, 72

Default Game Mode, 34

editor targets, 451–454

fixed cameras, 371–373

input

actions, 367–369

events, 369–371

keyframes, 210

Lightmass Importance Volume

setting, 153

mobility, Static Mesh Actors, 67

editable variables 469

Object Type setting, 72

packaging, 436–437

particles, materials, 172

projects, modifying, 6

resolution, 410–412, 424

sequence length, 207

shipping configurations, 432

spawning (Blueprint class), 329

start levels, 357

Timeline, 296–300

touch input, 454

variables, 302

connecting textures to layers, 131

Const Acceleration module, 171

constraints

Actors, physics, 235–239

applying, 234

Construction Script, applying,

277–278, 314, 326–328

content. See also projects

cooking, 429–430

importing, 25–26

migrating, 27–29

Content Browser panel, 11

filters, 29

Content Example Project,

 downloading, 22

Content folders, 23, 25–26

content packs, 140

context, units and

measurements, 42

continuity, units and

 measurements, 42

controllers

classes, 31

customizing, 361–362

controlling mass, 239

controls

Curve Editor, 168

landscapes, 125

Convert Scene property, 189

Convex Decomposition panel, 64

cooking content, 429–430

coordinates, Cartesian, 37

copying, 11

Static Mesh Actors, 67

Copy tool, 129

C++ projects, 5

Create button, 123

creating. See formatting

Curve Editor, 166–168, 212–213

curves, adding, 297

customizing

collision presets, 71

controllers, 361–362

functions, 256

Game Mode, 359–361

snap tools, 45

D

damaging Pawns, 384–386

damping, 224

Data-Only Blueprint, 247

data types, overview of, 161–162

death states, creating, 389

declaring variables, 259

default classes, 281

Default Game Mode,

configuring, 34

default Game Modes, 361

default levels

creating, 357

formatting, 141

default maps, adding, 425

DefaultPawn class, 365

default Pawns, inheriting from, 362

default root widgets, 409

defining Skeletal Mesh Actors,

181–186

density, 224

deriving classes, 301

Designer mode (UMG UI Designer),

408–409

design requirements, arcade

shooter games, 356

destructible, 224

Details panel, 9–10, 97, 164, 291

developing for mobile devices,

441, 442

dialog boxes

Asset, 27

FBX Import, 187

FBX Import Options, 189

diffuse. See base colors

Directional Lights, 80–81, 141

direct lighting, 75

distribution modules, 165

Door_BP, 350

downloading. See also installing

Content Example Project, 22

Launcher, 2–3

Unreal Engine, 3–4

DPI scaling, 412–413

dragging and dropping textures,

95–96

Drag Grids, 44

duplicating. See also copying

Static Mesh Actors, 67

dynamic lighting, 76

E

edges, 53

editable variables

Construction Script, applying,

277–278

formatting, 312–314

limiting, 283

470 editable variables

Show 3D Widget, 320

Static Mesh components,

 adding, 279–283

editing

animation, 206. See also

Matinee

collisions

hulls, 60

Static Mesh Actors, 70

landscapes, 123–124

Editors

Audacity, 110

Blueprint Editor, 248–249,

289–291

Curve Editor, 164, 166–168,

212–213

Level Editor. See Level Editor

Material Editor, 91, 130

Matinee, 203. See also

Matinee

modes, 9

particles, Cascade interfaces,

162–164

Persona Editor, 191–199

PIE (Play in Editor), 22

Sound Cue Editor, 110

Static Mesh Editor, 54.

See also Static Mesh assets

targets, configuring, 451–454

unit scales, 187

effects

Reverb Effects, 119

SubUV textures, 174–176

emitters, particles, 162, 164.

See also particles

Emitters panel, 163

Enable Gravity property, 227

environmental narratives, 140–141

Erosion tool, 128

Event Graph (Blueprint), 250

events

Actors, assigning, 272–274

adding, 256

Blueprint scripts, 252

buttons, scripting, 419

ForLoop, 281

input, configuring, 369–371

OnActorBeginOverlap,

272, 273

OnActorHit, 272

touch input, 456–458

Event Tick, 260, 304

execs, 251

executables

Android, packaging, 435

content, cooking, 429–430

formatting, 429

IOS, packaging, 435

packaging, configuring,

436–437

projects, packaging for

Windows, 430–435

existing projects, migrating

 content, 27–29

F

Falloff menu, 129

.fbx files, 186

FBX Import dialog box, 187

FBX Import Options dialog box,

189

files

audio, importing, 110–112

.fbx, 186

textures, 95

types, 26

Fill World button, 123

filters, Content Browser panel, 29

first-person shooter games.

See FPS games

fixed cameras, configuring,

371–373

flags

collision responses, 72

show. See show flags

Flatten tool, 128

float distributions, 165

Fog Actors, 155

folders

BP_Common, 345–346

BP_Levers, 349–350

BP_Pickup, 349

BP_Respawn, 348

BP_Turrets, 341–348

Config, 23

Content, 23, 25–26

creating, 26, 46–47

formatting, 23

InterfaceAssets, 413

Intermediate, 23

Maps, 358

raw asset, creating, 29

Saved, 23, 30

World Outliner, 46

foliage

applying, 133–134

placing, 135

force, 224

ForLoop events, 281

formatting

Actors, spawners, 397–403

arcade shooter games,

356–358

Blueprint class, spawning,

326

characters, 187

Content folders, 25–26

Initial Rotation module 471

death states, 389

default levels, 141, 357

editable variables, 312–314

executables, 429. See also

executables

folders, 46–47

creating, 26

raw asset, 29

health pickups, 391–397

instances, materials, 101–104

landscapes, 125–126,

130–133

levels, world building,

141–142

materials, 91–93, 96–98

particle colors, 173

projects, 4–7, 357

blank, 24

Blueprint, 23

folders, 23

pulsing lights, 300

Sound Cue assets, 115–119

textures, 94–95

Widget Blueprint, 407–408

world beyond, 150–152

FPS (frames per second), 204

FPS (first-person shooter) games,

341

frames per second. See FPS

frameworks (Gameplay

Framework), 30

framing, 147

friction, 224

functions

Blueprint scripts, 254–256

Heal Damage, 395

Play Sound at Location,

281–283

Print String, 257

Spawn Actor from Class, 328

targets, 277

G

Game Mode

customizing, 359–361

defaults, 361

GameMode class, 31, 32–33

Game modes, assigning, 224

Gameplay Framework, 30

games

arcade shooter, 355. See also

arcade shooter games

default maps, adding, 425

project modes, 341

timers, 342

game-style navigation, 16

gloss. See roughness

GPU sprites, 162

Graph mode

Persona Editor, 198–199

UMG UI Designer, 409

Graph panel, 98, 115

gravity, applying, 459–462

green channels, 92

grids, 345

snapping to, 43–45

units, 42

groups, 47

Camera, 216–218

Director, 218–219

Matinee, 208

H

hard drives, space requirements, 3

hardware requirements, 2

heads, shaking, 196

heads-up displays. See HUDs

Heal Damage function, 395

HealthPickup_BP, 349

health pickups, creating,

391–397

height

maps, 124

obstacles, placing, 388

help, 21

HUD class, 32

HUDs (heads-up displays), 342

hulls, collision, 53, 59–63

Hydro Erosion tool, 128

I

icons, assets, 27

IDES (Integrated Development

Environments), 245–246

images, placing widgets, 416, 417

Import Animations property, 189

Import as Skeletal property, 189

importing

assets, 413–415

audio, 110–112

content, 25–26

Skeletal Mesh Actors,

186–191

Static Mesh assets, 56–57

textures, 95–96

Import Materials property, 189

Import Mesh property, 189

impulse, 224

indirect lighting, 76

Inherent Parent Velocity module,

171

inheriting from default Pawns,

362

Initial Color module, 170

Initial distributions, 166

Initial Location module, 172

Initial Rotation module, 172

472 Initial Size module

Initial Size module, 170

Initial Velocity module, 171

input

actions, configuring, 367–369

materials, 98

touch

configuring, 454

events, 456–458

types, 91

Inside Cone Angle property, 82

installing

Launcher, 2–3

Unreal Engine, 2–4

instances, 11. See also copying

materials, 101–104

Integrated Development

Environments. See IDEs

Intensity property, 82

interactive transformations, 41

InterfaceAssets folders, 413

interfaces. See also Blueprint

Editor

Blueprint Editor, 248–249

BPIs (Blueprint Interfaces),

247

Cascade, 162–164

Content Browser panel, 11

Details panel, 9–10

menu bars, 8

Modes panel, 8–9

modifying, 7

navigating, 7–12

Project Browser, navigating, 5

UMG (Unreal Motion Graphics)

UI Designer, navigating, 408

Viewport panel, 12

World Outliner panel, 9

Intermediate folders, 23

interpolation, 214–215

IOS, packaging, 435

IsVariable property, 410

J

joysticks, virtual, 454–456

K

keyframes, 210

keys, 167

KillVolume_BP, 349

L

Landscape button, 123

Landscape panel, 124

landscapes

applying, 123

creating, 125–126

height maps, 124

Manage tab, 124

managing, 127

materials, 130–133

painting, 130

shapes, 127

tools, 123–124, 128–129

volumes, 127

Launcher, installing, 2–3

Launcher_BP, 345

layers

applying, 48–49

textures, connecting, 131

layouts

interfaces, navigating, 7–12

UV, 53, 57–58

Viewport panel, 12

Learn section, 21

length, configuring sequences,

207

Level Blueprints, 247, 269–270

Actors

activating events, 283

activating properties,

273–281

assigning events,

272–274

assigning to reference

 variables, 274

collision settings,

271–272

components, 275

properties, 275–276

function targets, 277

Play Sound at Location

 function, 281–283

Level Editor. See also interfaces

navigating, 7–12

toolbars, 16

levels

Blueprints, activating particles,

176–177

default

creating, 357

formatting, 141

Level Editor, 7. See also Level

Editor

overriding, 361

physics, assigning to,

224–225

playing, 16–17

previewing, 22

start, configuring, 357

Static Mesh Actors, placing

into, 66

world building, formatting,

141–142

levels of detail. See LODs

Lifetime module, 170

Light Actors, 76

Light Color property, 82

mobile devices 473

lighting

adding, 153

building, 83–85

Directional Lights, 80–81, 141

Mobility, 85–86

Point Lights, adding, 76–77

properties, 82

pulsing lights, formatting, 300

Sky Lights, adding, 79–80

Spot Lights, adding, 78

Swarm Agent, 83

terminology, 75

types of, 76

world building, 152–153

lightmaps, 53

UV channels, 58

Lightmass Importance Volume

setting, 153

Lightmass tool, 83

limiting editable variables, 283

linear, 224

lists, variables, 259

loading options (Matinee), 204

local axis, 53

local transformations, 41

local variables, 281

locations, particles. See particles

LODs (levels of detail), 53, 125

looping, 117

M

Mac requirements, 2

macros (Blueprint Macros), 247

Manage tab, 124

managing

Blueprint scripts, 262

landscapes, 127

manual transformations, 41

maps

axis mappings, configuring,

367–369

default, adding, 425

height, 124

mipmapping, 414

Maps folder, 358

markers, time, 208

mass, 224

controlling, 239

Material Editor, 91, 130

materials, 53, 89

Actors

modifying, 277

resetting properties, 278

base colors, 91

creating, 91–93, 96–98

green channels, 92

inputs, 91, 98

instances, 101–104

landscapes, 130–133

metalness, 91

normal input, 92

outputs, 98

particles, configuring, 172

PBR, 90–91

Physical Materials, 230–234

pickups, creating, 392

roughness, 92

Static Mesh Actors,

replacing, 69

Static Mesh assets,

 assigning, 59

value nodes, 99–101

Matinee, 203

Actors, 203–204

assets, applying, 220

Camera group, 216–218

Curve Editor, 212–213

Director group, 218–219

groups, 208

interpolation, 214–215

Matinee Editor, 206–207

Sound Track, 215–216

tracks, 209–210

measurements, units and, 42

menus

bars, 8

Blueprint Context, 251

Brush, 129

Falloff, 129

Start (UMG UI Designer), 413

systems, 425

Tool, 128–129

meshes

data, 162

references, modifying, 68

Skeletal Mesh, 181–186.

See also Skeletal Mesh

Actors

skinning, 183

Static Mesh components,

 adding, 279–283

Mesh mode (Persona Editor),

193–199

metalness, 91

mipmapping, 94, 414

missing bones, 190

mixing sound cues, 117

mobile devices

developing for, 441, 442

editor targets, configuring,

451–454

motion data, applying,

459–462

optimizing, 447–451

previewing, 442–446

testing, 441

touch input, 454, 456–458

virtual joysticks, 454–456

474 Mobility

Mobility, 85–86

mobility, configuring Static Mesh

Actors, 67

models, viewing UV layouts, 57–58

modes

Default Game Mode,

 configuring, 34

Designer, 408–409

editors, 9

game, assigning, 224

Game Mode, customizing,

359–361

GameMode class, adding,

32–33

Graph, 409

interpolation, 214–215

projects, 341

views, 14–15

Modes panel, 8–9

modifying

Actors, materials, 277

interfaces, 7

landscapes, 125

mesh references, 68

projects, configuring, 6

Static Mesh assets, 54

modular assets, applying, 148

modulation properties, applying,

115

modules

Color Over Life, 170

Const Acceleration, 171

distributions, 165

Inherent Parent Velocity, 171

Initial Color, 170

Initial Location, 172

Initial Rotation, 172

Initial Size, 170

Initial Velocity, 171

Lifetime, 170

particles, 164

common, 168–172

Curve Editor, 166–168

properties, 165–166

requirements, 164–165

Required, 168–169

Rotation Rate, 172

Scale Color/Life, 170

Size by Life, 170

Spawn, 169–170

Sphere, 172

Modules panel, 164

motion data, applying, 459–462

movable lighting, 86

movement, characters, 345

Mover_BP, 345

Move transformations, 40

moving

Actors, 46–47

obstacles, 380, 381–384

Pawns, 365–366

disabling, 366–367

input events, 369–371

Static Mesh assets, 56–57

textures, 95–96

multiple cameras, adding, 217

My Blueprint panel, 250

N

narratives, environmental,

140–141

navigating

game-style navigation, 16

interfaces, 7–12

Landscape panel, 124

Level Editor toolbars, 16

Matinee Editor, 206–207

Project Browser, 5

scenes, 15–16

Static Mesh Editor, 54

UMG (Unreal Motion Graphics)

UI Designer, 408

nodes, 251

comments, 262

reroute, 263

value, materials, 99–101

Noise tool, 129

normal input, materials, 92

O

Object Type setting, 72

Obstacle classes, 378–381

obstacles

arcade shooter games, 377

cleaning up old, 403

moving, 380, 381–384

placing, 388

old obstacles, cleaning up, 403

OnActorBeginOverlap event,

272, 273

OnActorHit event, 272

operating system requirements, 2

operators, Blueprint scripts,

260–261

optimizing

mobile devices, 447–451

Pawns, 364

options

Mobility, 85–86

PIE (Play in Editor), 22

Orthographics Viewports, 12

outputs, materials, 98

Outside Cone Angle property, 82

overlaps, handling, 387

475Point Lights, adding

Over Life distributions, 166

overriding

attenuation, 114

levels, 361

P

packaging

Android, 435

configuring, 436–437

IOS, 435

projects for Windows,

430–435

painting landscapes, 130

Palette panel, 98, 115

panels

Content Browser, 11, 29

Convex Decomposition, 64

Details, 9–10, 97, 164, 291

Emitters, 163

Graph, 98, 115

Landscape, 124

Modes, 8–9

Modules, 164

My Blueprint, 250

Palette, 98, 115

Tracks, 207

Viewport, 12, 97, 163, 292

World Outliner, 9, 141

World Settings, 225–227

particles

activating, 176–177

Auto Activate setting, 176

Cascade interfaces, 162–164

colors, formatting, 173

emitters, applying, 164

materials, configuring, 172

modules, 164

common, 168–172

Curve Editor, 166–168

properties, 165–166

requirements, 164–165

overview of, 161–162

SubUV textures, 174–176

triggering, 176

Paste tool, 129

Pattern_Projectile_BP, 348

PatternTurret_BP, 348

Pawn classes, 32

Pawns

controllers, customizing,

361–362

damaging, 384–386

default, inheriting from, 362

disabling movement, 366–367

input events, 369–371

moving, 365–366

optimizing, 364

PBR (physically based rendering),

90–91

Pendulum_BP, 345

per-poly collisions, 64–65

Persona Editor, 191–199

Perspective Viewports, 12

physically based rendering. See

PBR

Physical Materials, 230–234

physics, 223

Actors

attaching, 235

constraints, 235–239

radial force, 240

thrusters, 239

applying, 223

assets, 185

body, 224

constraints, applying, 234

levels, assigning to, 224–225

Physical Materials, 230–234

properties for Static Mesh

Actors, 229

simulating, 227–229

terminology, 224

World Settings panel,

225–227

PhysicSpawner_BP, 350

PhysicsPickup_BP, 349

pickups

arcade shooter games, 377

health, creating, 391–397

PIE (Play in Editor), 22

pins, 251

pivot points, 53

placing

Ambient Sound Actors, 113

assets, 147

button widgets, 417

foliage, 135

image widgets, 416, 417

obstacles, 388

props, 147

references, scale, 142–143

Skeletal Mesh Actors,

199–201

placing Static Mesh Actors into

levels, 66

Play Cue button, 115

PlayerController class, 31, 365

players, customizing controllers,

361–362

Player Start, 366

play head, 208

Play in Editor. See PIE

playing levels, 16–17

previewing, 22

Play Node button, 115

Play Sound at Location function,

281–283

playtesting, 154

Point Lights, adding, 76–77

476 polygons

polygons, 53

positioning lighting, 86

post processing volume Actors,

155–156

presets, collisions, 71

previewing

mobile devices, 442–446

PIE (Play in Editor), 22

Print String function, 257

Project Browser, navigating, 5

ProjectileTurret_BP, 348

projects

blank, formatting, 24

Blueprint, formatting, 23

C++, 5

configuring, modifying, 6

content, migrating from

 existing, 27–29

Content Example Project,

downloading, 22

creating, 4–7

Default Game Mode,

 configuring, 34

folders, 23

formatting, 357

GameMode class, adding,

32–33

modes, 341

Windows, packaging for,

430–435

properties

Actors, 275–276

activating, 273–281

Matinee, 204

character movement, 345

IsVariable, 410

lighting, 82

modulation, applying, 115

particle modules, 165–166

Required module, 168

Sound Wave, 112

Spawn module, 169–170

Static Mesh Actors, 228

visualizers, 167

proportions, measurement of, 42

props, placing, 147

pulsing lights, creating, 300

R

Radial Force Actors, physics, 240

Ramp tool, 128

raw asset folders, creating, 29

references

assets, 29

meshes, modifying, 68

scale, placing, 142–143

reference variables, assigning

Actors, 274

Reference Viewer, 29

Reflection Capture Actors, 155

rendering

Actor visibility, 270

PBR, 90–91

replacing materials, Static Mesh

Actors, 69

representation, adding without

lighting, 153

Required module, 164–165,

168–169

requirements

arcade shooter games

design, 356

identifying, 356

hardware/operating systems, 2

particle modules, 164–165

reroute nodes, 263

resolution

configuring, 410–412, 424

textures, 415

resources, 21

respawn systems, 342

responses, collisions

editing, 70

flags, 72

restitution, 224

Retopologize tool, 129

Reverb Effects, 119

ribbon data, 162

rigid body, 224

Rotate transformations, 40

Rotation Grids, 44

Rotation Rate module, 172

roughness, 92

S

Saved folders, 23, 30

scale, 42, 142–143

Scale Color/Life module, 170

Scale Grids, 44

Scale transformations, 40

scaling DPI, 412–413

scenes

foliage, placing, 135

navigating, 15–16

organizing, 45

Point Lights, adding, 77

scope, establishing, 143–144

screen resolutions, 412

scripts

Blueprint

Blueprint Context menu,

251

comment boxes, 262

compiling, 246

components, 253,

294–296

concepts, 252–254

Swarm Agent 477

conditionals, 260–261

Event Graph, 250

events, 252

functions, 254–256

managing, 262

My Blueprint panel, 250

node comments, 262

operators, 260–261

reroute nodes, 263

structs, 258

types of, 247

variables, 257–258

Blueprint Editor interface,

248–249

Construction Script, 277–278,

326–328

overview of, 245–246

UMG (Unreal Motion Graphics)

UI Designer, 418–426

sculpting

shapes, 127

volumes, 127

Sculpt tool, 128

Section Size, 123

selecting Actors, 48

Selection button, 127

Selection tool, 129

sequences

animation, 185

length, configuring, 207

settings. See configuring

shaders, 89

shadows, 76, 153. See also

 lighting

shaking heads, 196

shapes, 127

sharing attenuation, 114

shelling, world building, 145–147

shipping configurations, 432

Show 3D Widget, 320

show flags, 15

simulating physics, 227–229

Size by Life modules, 170

sizing textures, 94

Skeletal Mesh Actors, 181

applying, 199–201

defining, 181–186

importing, 186–191

Persona Editor, 191–199

Skeleton mode (Persona Editor),

192–199

Skeleton property, 189

skeletons, 184

skinning, 183

Sky Lights, adding, 79–80

Smasher_BP, 345

Smooth tool, 128

snapping, 146

to grids, 43–45

snaps, 345

tools, customizing, 45

sockets, 53

soft body, 224

sound, 109, 112–113. See also

audio

Sound Attenuation assets, 110

Sound Cue assets, 110

formatting, 115–119

Sound Cue Editor, 110

Sound Track, 215–216

Sound Wave assets, 110, 111

Spawn Actor from Class function,

328

spawners, creating Actors,

397–403

spawning, 325

Actors from classes, 332–335

Blueprint class, configuring,

329

Spawn module, 169–170

Sphere module, 172

SpikeTrap_BP, 346

splines, 127, 212

Spot Lights, adding, 78

sprites, 162

Start Awake property, 227

Starter Content, 5

start levels, configuring, 357

Start menus (UMG UI Designer),

413

static lighting, 76, 85

Static Mesh Actors, 8, 66–70

animation, 211

collisions, editing, 70

duplicating, 67

levels, placing into, 66

materials, replacing, 69

mesh references, modifying,

68

mobility, configuring, 67

Physical Materials, assigning,

231

properties, 228

Static Mesh assets, 8, 53

importing, 56–57

materials, assigning, 59

viewing, 55

Static Mesh components, adding,

279–283

Static Mesh Editor, 54. See also

Static Mesh assets

stationary lighting, 86

Stomper_BP, 346

streaming textures, 415

structs, Blueprint scripts, 258

style, units and measurements,

42

SubUV textures,

174–176

Swarm Agent, 83

478 tabs, Manage

T

tabs, Manage, 124

tags

Actors, 350–351

components, 350–351

targets

editors, configuring, 451–454

functions, 277

Temperature property, 82

testing, 432

mobile devices, 441

physics, 224

playtesting, 154

textures, 53. See also materials

file types, 95

formatting, 94–95

importing, 95–96

layers, connecting, 131

resolution, 415

sizing, 94

streaming, 415

SubUV, 174–176

thrusters, 239

Timeline, applying, 296–300

time markers, 208

timers, 389

toolbars

Blueprint Editor interface,

163, 249

Level Editor, 16

Tool menu, 128–129

tools

Copy, 129

Erosion, 128

Flatten, 128

Hydro Erosion, 128

landscapes, 123–124,

128–129

Lightmass, 83

Noise, 129

Paste, 129

Ramp, 128

Retopologize, 129

Sculpt, 128

Selection, 129

Skinning, 183

Smooth, 128

Snap, customizing, 45

transformations, 39

Move, 40

Rotate, 40

Scale, 40

Visibility, 129

visualization, 15

World Outliner, applying, 45

TouchActivation_BP, 350

touch input

configuring, 454

events, 456–458

TraceTurret_BP, 348

tracks

adding, 297

Director group, 218–219

Matinee, 209–210

Sound Track, 215–216

Tracks panel, 207

transformations

interactive/manual, 41

local/world, 41

Move, 40

Rotate, 40

Scale, 40

tools, 39

types of, 41

Transform property, 189

triggering

collisions, 271

particles, 176

TurretProjectile_BP, 348

types

of assets, 29–32

of data, overview of, 161–162

of files, 26

of files, textures, 95

of grids, 44

of input materials, 91

of lighting, 75–76

Object Type setting, 72

of scripts, 247

of transformations, 39, 41

of Viewports, 12–17

U

UMG (Unreal Motion Graphics) UI

Designer, 407

anchor points, 412–413

assets, importing, 413–415

Designer mode, 408–409

DPI scaling, 412–413

Graph mode, 409

navigating, 408

resolution, configuring,

410–412, 424

scripts, 418–426

Start menus, 413

Widget Blueprint, creating,

407–408

units

grid, 42

and measurements, 42

scales, editors, 187

Unreal Engine, installing, 2–4

Unreal Motion Graphics UI

Designer. See UMG UI Designer

UseKeyLever_BP, 350

Use To as Ref Pose option, 190

UV layouts, 53, 57–58

world transformations 479

V

value nodes, materials, 99–101

variables

Blueprint scripts, 257–258

configuring, 302

declaring, 259

editable. See also editable

variables

exposing, 328

formatting, 312–314

lists, 259

local, 281

vector distributions, 165

Vehicle classes, 32

vertices, 53

skinning, 183

viewing

collision hulls, 59

curves, 213

Reference Viewer, 29

Static Mesh assets, 55

UV layouts, 57–58

Viewport panel, 12, 97, 163, 292

Viewports

scenes, 15–16

types of, 12–17

views, modes, 14–15

virtual joysticks, 454–456

virtual machines, 246

visibility, rendering Actors, 270

Visibility tool, 129

visual attributes, particles. See

particles

visual complexity, 147

visual scripting, Blueprint, 245

visualization tools, 15

visualizers, 14–15

channels, 167

properties, 167

Visual Studio 2013, 5

volume, applying audio, 119–120

W

Widget Blueprint

adding, 424

creating, 407–408

widgets

buttons, 417

images, placing, 416–417

Show 3D Widget, 320

Windows

projects, packaging for,

430–435

requirements, 2

wires, 251

world building, 139–140

Actors, combining, 148–150

assets, placing, 147

audio, 154–155

blocking, 145–147

environmental narratives,

140–141

Fog Actors, 155

framing, 147

Level Editor, 7. See also Level

Editor

levels, formatting, 141–142

lighting, 152–153

Lightmass Importance Volume

setting, 153

modular assets, applying, 148

post processing volume

Actors, 155–156

props, placing, 147

Reflection Capture Actors, 155

scale, placing references for,

142–143

scope, establishing, 143–144

shadow colors, 153

shelling, 145–147

visual complexity, 147

world beyond, creating,

150–152

World Outliner, 141

applying, 45

folders, 46

panels, 9

World Settings panel, 225–227

world transformations, 41

	Cover

	Title Page

	Copyright Page

	Preface

	About the Author

	Acknowledgment

	Table of Contents

	HOUR 20: Creating an Arcade Shooter: Input Systems and Pawns
	Identifying Requirements with a Design Summary
	Creating a Game Project
	Creating a Custom Game Mode
	Creating a Custom Pawn and Player Controller
	Controlling a Pawn’s Movement
	Setting Up a Fixed Camera
	Summary
	Q&A
	Workshop
	Exercise

	Index
	A

	B

	C

	D

	E

	F

	G

	H

	I

	J

	K

	L

	M

	N

	O

	P

	R

	S

	T

	U

	V

	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

