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Foreword

ervice Fabric can be traced back to 2001, when | was trying to solve large-scale

distributed system challenges such as leader election, quorum-based replication,
and perfect failure detection. As | worked on projects in 2007, such as CloudDB (which
morphed into Azure DB and is powered by Service Fabric), it became clear that a generic
platform would be a valuable asset for empowering developers and enterprises to
implement scalable and highly available distributed systems. In 2009, | began creat-
ing such a system to support large first-party and third-party workloads. This effort
led to Service Fabric, which has proven itself in production for more than a decade.
Service Fabric powers critical Microsoft services such as Azure DB, Cosmos DB, Skype
for Business, Microsoft Intune, Azure Resource Providers (Compute RP, Storage RP, and
Network RP), Azure Software Load Balancer, Azure Network Manager, Event Hubs, Event
Grid, loT Hubs, Azure Incident Manager, Azure Monitor, Bing Cortana, and more. As of
March 2018, Service Fabric runs on about 4 million cores and individually monitors and
fully lifecycle-manages about 10 million microservices. Technologies like Service Fabric
are treated as trade secrets by many companies and are not made available to external
customers. In March 2015, Service Fabric was released to the public. By making Service
Fabric publicly available (and open-sourced in March 2018), Microsoft is living by the
“first party == third party” principle.

Service Fabric is a comprehensive platform for building Internet-scale, high-through-
put, low-latency services. Besides container orchestration, it solves many fundamental
distributed systems problems, such as failure detection, replicated state machines,
reliable message delivery, and so on. It allows developers to naturally decompose the
business application into a logical set of microservices that are individually responsible
for a single business function and interact with one another over well-defined pro-
tocols for implementing business workflows. Service Fabric lets developers focus on
business logic and its associated state by abstracting away machine and distributed
systems details with many built-in transactionally consistent reliable data structures like
dictionaries and queues that survive process crashes and machine failures. It enables
programmers to think and program exactly like they do today by replacing locks with
transactions. Programmers assume that the process hosting their code never crashes,
and the data structures storing their state never lose or corrupt their data. With its abil-
ity to run on any OS and on any cloud, including on-premises and Edge, developers
preserve their code investments across a wide variety of deployment targets. Put differ-
ently, Service Fabric allows programming large-scale applications to be just like writing
simple applications.

xxi



xxii

I have known Haishi for about three years now. He has keenly followed the evolution
of Service Fabric as a public service and has a deep understanding of its developer and
operational aspects. He also understands intuitively how various Service Fabric layers
and subsystems combine to provide the solutions to many distributed-systems prob-
lems. His first edition of this book focused on Service Fabric programming models and
design patterns. This second edition is a more comprehensive follow-up companion
book on Service Fabric that focuses more on the developer and operational aspects
of Service Fabric and newer parts of the Service Fabric-like containers, Linux sup-
port, and more.

If you are interested in microservices and stateless and stateful variants and are
using or intend to use Service Fabric for developing microservices, this a must-read
book for you.

—Gopal Kakivaya
CVP, Microsoft Azure Development
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Introduction

zure Service Fabric is Microsoft’s platform as a service (PaaS) offering for devel-

opers to build and host available and scalable distributed systems. Microsoft has
used Service Fabric for years to support some of Microsoft's cloud-scale applications
and Azure services such as Skype for Business, Cortana, Microsoft Intune, Azure SQL
Database, and Azure Cosmos DB. The same platform is now available as an open-source
project for you to write your own highly available and highly scalable services.

Programming Microsoft Azure Service Fabric is designed to get you started and
quickly productive with Azure Service Fabric. This book covers fundamentals, practical
architectures, and design patterns for various scenarios, such as intelligent cloud, intel-
ligent edge, big data, and distributed computing. For the fundamentals, this book pro-
vides detailed step-by-step walkthroughs that guide you through typical DevOps tasks.
For design patterns, this book focuses on explaining the design philosophy and best
practices with companion samples to get you started and moving in the right direction.

Instead of teaching you how to use Azure Service Fabric in isolation, the book encour-
ages developers to make smart architecture choices by incorporating existing Azure
services. When appropriate, this book briefly covers other Azure services relevant to
particular scenarios.

Who should read this book

This book is intended to help new or experienced Azure developers get started with
Azure Service Fabric. This book is also useful for architects and technical leads using Azure
Service Fabric and related Azure services in their application architecture.

Service Fabric is under continuous development, and its momentum will only
accelerate by community contributions. The second edition of this book offers the
latest development of Service Fabric at the time of this writing. For the latest updates,
consult the book’s companion resource repository (https.//github.com/Haishi2016/
ProgrammingServiceFabric) and Service Fabric’s online documentation (https.//docs.
microsoft.com/azure/service-fabric). Although the precise operational steps and
programming APIs might change, the design patterns presented in this book should
remain relevant into the foreseeable future.
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Assumptions

This book expects that you are proficient in .NET, especially C# development. This
book covers a broad range of topics and scenarios, especially in later chapters. Prior
understanding of DevOps, application life cycle management (ALM), IoT, big data, and
machine learning will help you get the most out of this book.

Although no prior Azure knowledge is required, experience with the Azure software
development kit (SDK), Azure management portal, Azure PowerShell, Azure command
line interface (CLI), and other Azure services definitely will be helpful.

This book might not be for you if...

This book might not be for you if you are a beginner in programming. This book assumes
you have previous experience in C# development and ASP.NET development. Although
this book covers topics in service operations, its primary audience is developers and
architects, not IT professionals.

Organization of this book

This book is divided into five parts, each of which focuses on a different aspect of Azure
Service Fabric. Part |, "Fundamentals,” provides complete coverage of designing and
developing Service Fabric applications using stateless services, stateful services, and
reliable actors. Part I, “Service Life Cycle Management,” focuses on the operations

side and introduces how to manage Service Fabric clusters and how to manage, test,
and diagnose Service Fabric applications. Part lll, “Linux and Containers,” introduces
Service Fabric Linux programming with Java and support for Docker containers. Part IV,
“"Workloads and Design Patterns,” introduces patterns and scenarios including practical
design patterns and best practices in implementing typical application scenarios includ-
ing scalable web applications, 10T, big data, and multi-tenant applications. Finally, Part V,
"Advanced Topics,” covers three advanced topics: serverless computing, machine learn-
ing, and the intelligent cloud and the intelligent edge.

Finding your best starting point in this book

This book is an introduction to Service Fabric. It is recommended that you read the
chapters in the first two parts sequentially. Then, you can pick the topics that interest you
in Parts I, IV, and V.

Introduction



If you are
New to Service Fabric

Interested in applying Service Fabric in loT sce-
narios

Interested in building scalable web applications

Interested in machine learning

Interested in operating a Service Fabric cluster

Interested in the actor programming model

Interested in Service Fabric container integration

Interested in Service Fabric Linux development

Follow these steps
Read through Part | and Part Il in order.

Focus on Chapter 20.

Focus on Chapters 7, 15, and 16. You may
also want to read Chapter 17 for integrations
with other Azure services, and Chapter 18 for
serverless options.

Focus on Chapter 19.

Chapters 8, 9, 10, and 11 introduce related tools
and services. You may also want to browse
through Chapters 5, 6, and 7 to understand
Service Fabric application characteristics.

Focus on Chapter 4. Also browse through chapters
in Part Il because these chapters cover several
actor-based design patterns.

Focus on Chapters 13 and 14.

Focus on Chapter 12.

Some of this book's chapters include hands-on samples that let you try out the
concepts just learned. Regardless of which sections you choose to focus on, be sure
to download and install the sample applications on your system (see the "Downloads”

section on the next page).

System requirements

You will need the following hardware and software to run the sample code in this book:

® Windows 8/Windows 8.1, Windows Server 2012 R2, or Windows 10.

®  Visual Studio 2015 or Visual Studio 2017.

m  The latest Service Fabric SDK for Visual Studio 2015 or Visual Studio 2017

(install via Web PI).

® The latest version of Azure SDK (2.8 or above, install via Web PI).

m  The latest version of Azure PowerShell (1.0 or above, install via Web PI).

m  The latest version of Azure CLI.

= 4GB (64-bit) RAM.

Introduction
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m 50 GB of available hard disk space.

®m  Anactive Microsoft Azure subscription. You can get a free trial from www.azure.com.
®m  An Internet connection to use Azure and to download software or chapter examples.
®m  An Ubuntu 14.0 or above machine or virtual machine for Linux-based exercises.

Depending on your Windows configuration, you might require Local Administrator
rights to install or configure Visual Studio 2015, Visual Studio 2017, and related SDKs
and tools.

Downloads: Code samples

Most of the chapters in this book include exercises that let you interactively try out
new material learned in the main text. All sample projects can be downloaded from
the following page:

https://aka.ms/AzureServFabric2e/downloads

You can also find the latest sample projects from the book’s companion
source repository:

https.//github.com/Haishi2016/ProgrammingServiceFabric

Using the code samples

This book’s webpage contains all samples in this book, organized in corresponding
chapter folders. It also contains a V1-Samples folder that contains samples from the
original version of the book, thanks to Alessandro Avila's contributions.

m  Chapter1 This folder contains samples from Chapter 1.
HelloWorldApplication: The "Hello, World!" application.
m  Chapter2 Thisfolder contains samples from Chapter 2.

CalculatorApplication: The calculator application used in the communication
stack samples.

gRPCApplication: The calculator application using gRPC.

StatelessApplication: The ASP.NET Core Web API stateless application.
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Chapter 3 This folder contains samples from Chapter 3.
SimpleStoreApplication: The simple store application.

Chapter 4 This folder contains samples from Chapter 4.
ActorTicTacToeApplication: The tic-tac-toe game using actors.
CarApplication: The simple car simulation program using actors.
Chapter 5 This folder contains samples from Chapter 5.

ConsoleRedirectTestApplication: The sample application used in package
format samples.

HelloWorldWithData: The sample application with a data package.

NodeJsHelloWorldApplication: The sample application hosts a Node.js
application.

ResourceGovernance: The sample application with resource governance policy.
UpgradeProcess: The rolling update sample application.

Chapter 6 This folder contains samples from Chapter 6.

BadApplication: The sample unreliable application using in-memory states.
ChaosTest: The sample application that drives a chaos test.

ConfigurationUpdate: The sample application that responds to configura-
tion updates.

Diagnostics: The sample application used in the Azure Diagnostics sample.
FailoverTest: The sample application used in the failover sample.

Chapter 7 This folder contains samples from Chapter 7.
CustomSerializerTest: The sample application that uses a custom serializer.
Chapter 8 This folder contains samples from Chapter 8.

DeploymentTest: The application used in the deployment sample.
Chapter 10 This folder contains samples from Chapter 10.

ApplicationinsightsTestApplication: The sample application that uses
Application Insights.
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CustomHealthReportApplication: The sample application that sends custom
health reports.

EventFlowTestApplication: The sample application that uses Event Flow for
diagnostics.

OMSTestApplication: The application used in the OMS sample.
m  Chapter 11 This folder contains samples from Chapter 11.
SudokuApplication: The sample Sudoku application.
m  Chapter 12 This folder contains samples from Chapter 12.
ActorApplication: The sample actor application in Java.
CalculatorApplication: The sample calculator application in Java.

GuestPythonApplication: The sample Python application hosted as a
guest executable.

HelloWorldLinux: The "Hello, World!" application in Java.
StatefulApplication: The sample stateful application in Java.
m  Chapter 13 This folder contains samples from Chapter 13.

Docker-HelloWorld-Windows: The sample ASP.NET Core web application in
Windows container.

DockerCompose-HelloWorld: The sample container application described by
a Docker Compose file.

Minecraft: The HA Minecraft server deployment using persistent volume.
m  Chapter 14 This folder contains samples from Chapter 14.

IrisApp: The sample two-tiered application that uses the Python Sklearn library
in containers.

ServiceMesh: The service mesh sample that uses Envoy.

Watchdog: The sample service that uses a C# watchdog to monitor a container-
ized sample Java application.
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m  Chapter 15 This folder contains samples from Chapter 15.
PortSharing: The port sharing sample application.
TenantManager: The sample implementation of the tenant manager pattern.
m  Chapter 16 This folder contains samples from Chapter 16.
ECommerceApp: The sample e-commerce application.
NumberConverterApp: The number converter service.
= Chapter 17 This folder contains samples from Chapter 17.

AudioTranscriptionApp: The audio transcription application that uses Bing
Speech API.

= Chapter 18 This folder contains samples from Chapter 18.
aci: The Azure Container Instance example.
ReactiveActors: The sample reactive application using actors.
= Chapter 19 This folder contains samples from Chapter 19.
ArchiBot: The architecture bot sample that uses Bot Framework and Cosmos DB.

To complete an exercise, access the appropriate chapter folder in the root folder and
open the project file. If your system is configured to display file extensions, C# project
files use the .csproj file extension.

Errata, updates, & book support

We've made every effort to ensure the accuracy of this book and its companion content.
You can access updates to this book—in the form of a list of submitted errata and their
related corrections—at:

https.//aka.ms/AzureServFabric2e/errata
If you discover an error that is not already listed, please submit it to us at the same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
https://support.microsoft.com.
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Stay in touch

Let's keep the conversation going! We're on Twitter: http.//twitter.com/MicrosoftPress.
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Service Fabric provides a microservices programming model

that you can use to build native cloud microservices applica-
tions. However, as discussed in Part |, implementing microservices
doesn’'t mandate a specific programming model. If an application
can be packaged in a self-contained format and be consistently
deployed on different environments, it can enjoy many cloud
benefits, such as failover, scaling, and load balancing. While pack-
aging application artifacts isn’t hard, making sure the application
has all its dependencies is not easy. A legacy application may have
dependencies on external libraries and services; it may assume
specific folder structures; it may require specific environment vari-
ables; and for Windows, it may depend on certain registry values.
It's impossible to isolate and package such system-level depen-
dencies by a simple file-based package mechanism.

One way to package these system-level dependencies is to
use desired state configuration (DSC). With DSC, such depen-
dencies are captured as solution-specific metadata. When an
application is deployed, the metadata is checked against the
actual host environment. If any discrepancies are found, pre-
defined scripts are executed to bring the host environment
into the desired state. For example, if an application requires
a specific DirectX version, the requirement can be captured as
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DSC metadata. And when the application is deployed on a new host, the DSC
system will check whether DirectX is installed. If not, it will run predefined
scripts (most DSC systems have “ingredients” that perform common configu-
ration tasks such as installing software packages) to make sure the specific
version of DirectX is installed. Still, bringing an arbitrary machine state to a
desired state is a hard job. In some cases, two applications are simply incom-
patible and cannot be installed on the same host. For example, if application
A and application B use a c:\data folder, they can't co-exist on the same host
without interfering with each other.

Virtualization is an effective way of addressing these challenges. With vir-
tualization, an application resides on a virtualized operating system that vir-
tualizes process spaces, file systems, and registries (for Windows). In such an
environment, because the application has exclusive access to the entire vir-
tualized environment, it doesn't need to worry about any potential conflicts
with any other applications. The use of virtual machines (VMs) is a mature
virtualization technique that has been broadly used in both on-premises and
cloud datacenters. However, VMs are quite heavy. They require significant re-
sources, and it takes a long time to provision, update, and deprovision a VM.
Hence, VMs don't provide the application mobility microservices requires.

Containers provide fine-grained isolation by isolating processes, files, and
registries. Containers running on the same host share the same system kernel
and can be launched and destroyed in the same way as regular processes.
For Linux systems, this means sub-second launch times (Windows contain-
ers take longer to launch, but it’s still much faster than booting up a VM.)

You can also pack many containers on the same host to gain high compute

density. Containers are perfect for microservices because they package ap-

plications into lightweight, isolated, and consistently deployable units. This

is the exact application mobility microservices requires to perform failovers,
replications, scaling, and load balancing.

Given how powerful containers are, it makes sense for Service Fabric to
provide native support for them. Furthermore, as a microservices platform,
Service Fabric needs to embrace microservices that are not written using the
Service Fabric programming model. In the past two years, Service Fabric has
built up first-class support for Linux and containers. This will be the focus of
this part of the book.



Service Fabric on Linux

ervice Fabric running on Linux may come as a surprise. Why would Microsoft invest in non-Windows

platforms? The reality, however, is that Service Fabric on Linux resonates with the openness of
Azure strategy. Azure has never been just for Microsoft technologies. It's an inclusive platform that
welcomes all types of workloads on all technical stacks. In fact, a huge portion of Azure compute

power resides on Linux. The percentage of Linux VMs on Azure was 33% in 2016 and 40% in 2017,
and it continues to increase.

As a microservices platform, Service Fabric must embrace not only Windows-based workloads, but
also Linux-based workloads. In the past two years, the Service Fabric team has built up native Linux
support with Java tooling. This chapter introduces the Linux development experiences using the Service
Fabric programming model. Chapter 13 and Chapter 14 focus on containers and container orchestrations.

Note At the time of this writing, Service Fabric on Linux has just recently become generally
available. Tooling experiences and product behaviors are subject to change. Please visit this
book’s companion GitHub repository for updated samples.

Service Fabric Hello, World! on Linux

The Service Fabric team has chosen Java as its primary programming language on Linux. In this section,
you'll learn how to set up a development environment on Linux and use Java to write a simple Service
Fabric application.

Setting Up Your Linux Development Environment

Follow these steps to set up your Linux development environment. (These instructions are based on
Ubuntu 16.04.)

1. Toinstall the Service Fabric runtime, Service Fabric common SDK, and a sfctl CLI, use the
following script:

sudo curl -s https://raw.githubusercontent.com/Azure/service-fabric-scripts-and-
templates/master/scripts/SetupServiceFabric/SetupServiceFabric.sh | sudo bash
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7.

Use this script to set up a local cluster:
sudo /opt/microsoft/sdk/servicefabric/common/clustersetup/devclustersetup.sh

After the cluster has been configured, open a web browser and navigate to http://localhost:
19080/Explorer. The Service Fabric Explorer should open. Or, if you want to try out sfctl, you
can use the following command to obtain a list of node names:

sfctl cluster select -endpoint http://localhost:19080
sfct node 1list | grep name

Service Fabric uses Yeoman to scaffold Service Fabric applications. Yeoman is an open-source
tool originally designed for this task. Use the following commands to install and configure
Yeoman with Service Fabric application generators:

sudo apt-get install npm

sudo apt install nodejs-Tegacy

sudo npm 1install -g yo

sudo npm install -g generator-azuresfcontainer
sudo npm install -g generator-azuresfguest

If you plan to build Service Fabric services using Java, use the following commands to install
JDK 1.8 and Gradle:

sudo apt-get install openjdk-8-jdk-headless
sudo apt-get install gradle

For the IDE, Service Fabric chose Eclipse for Java development. To install Eclipse, download
the package from www.eclipse.org/downloads/eclipse-packages (this book uses the Oxygen.1
version), extract all files from the package, and launch eclipse-inst.

Service Fabric provides an Eclipse plug-in to facilitate application creation. After you install
Eclipse, launch it, open the Help menu, and choose Install New Software.

In the Work With box, type http://dl.microsoft.com/eclipse. Then click the Add button.

Select the ServiceFabric plug-in. Then follow the wizard to install the plug-in.

Note If you want to enable the desktop Ul on your Azure Ubuntu VM, use the following
commands (tested on Ubuntu 16.04):

sudo
sudo
sudo
echo
sudo

apt-get install xrdp
apt-get update

apt-get install xfce4
xfced-session >~/.xsession
service xrdp restart

Then configure networking on the VM to allow inbound RDP connections through port
3389. After that, you should be able to connect to your Ubuntu desktop using RDP.
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Hello, World! Again

Now it's time to send greetings to a brand-new world. In the following exercise, you'll create a new
Service Fabric stateless service using Eclipse. Follow these steps:

1.

2.

In Eclipse, open the File menu, choose New, and select Other.

Expand the Service Fabric folder, select Service Fabric Project, and click Next.

(See Figure 12-1)

Select a wizard

Wizards:

| type filter text

» (= General

b (= Git

P (= Gradle

b =Java

P = Maven

b (= Oomph

(= Service Fabric
b = Tasks

P = XML

b (= Other

P (= Examples

(?) < Back |  cancel | Finish

% New gg E g

FIGURE 12-1 The Eclipse New Project wizard.

In the next screen, type HelloWorldLinux in the Project Name box and click Next.

In the Add Service screen, select the Stateless Service template, type HelloWorldService in

the Service Name box, and click Finish to add the service. (See Figure 12-2.)
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Add Service:
Select a Template:

Service Templates:

Actor Service A template for creating Stateless service. Use a stateless service if your service has no persistent state or

if you intend to manage state in an external store, such as Azure DocumentDB or a SQL database.

= Stateless Service
Stateful Service

Container Service

Guest Binary Service

Enter Service Name: HelloWorldService|

?) | <Back | Next= || Cancel |

FIGURE 12-2 Add a service.

5. When the wizard prompts you to open the Service Fabric perspective, click Open Perspective.

6. After the application is created, poke around the package tree to familiarize yourself with the
package structure.

Fortunately, the Java project is similar to a C# project. You can see how instance listeners are
created, how the runAsync method is implemented in HelloWorldServiceService. java, and how
the service is registered in HelloWorldServiceServiceHost java. (See Figure 12-3.)

e eclipse-workspace - i { d { viceSer -java - Eclipse
Fle Edit Source Refactor Navigate Search Project Run  Window Help
Sz P Bl e il S B0 S r OO f bl G

I-H’ackage Explorer 2% | [F: = & = | [l HelloWorldServiceService.java & | [d] HelloWoridServiceServiceHost java = 0
& HelloWorldLinux B 1 package statelessservice;
bm]RESyslemLmrary ava-8
V|,_-.HelIDWDHULIHUKAgﬂIIfatIOn
* (=HelloWorldServicePkg 11 public class HelloWorldServiceService extends StatelessService {
x| ApplicationManifest.xmi he
w2 HelloWorldService "
b =11
v = statelessservice

[ HelloWorldServiceServiceHost java

._'+ import java.util.concurrent.CompletableFuture;[|
10

a0verride

prnte:teﬂ List<ServiceInstanceListener> createServicelnstancelistene
Jf TODD: If your service needs to handle wser reguests, return t
return supar createSerncelnstanceustenerst:.

@0verride
& build.gradie protect:ﬁ CompletableFuture<?> runﬁsync(Cancellatlun!’oken cancellati
P = PublishProfiles 21 /f TODD: Replace the following with your own logic
b = Scripts return super.runAsync(cancellationToken);

& build.gradle 24 }

o settings.gradie

FIGURE 12-3 Java package structure.
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7.

10.

1.

In Package Explorer, right-click HelloWorldLinux, select Service Fabric, and choose Deploy
Application to build and deploy the application. After the application is deployed, you should

see your service instance running through the Service Fabric Explorer.

Note Provisioning a Service Fabric cluster consumes about 22 GB of your system
drive. If you are running low on disk space, you may want to move the cluster to a
different volume. Here’s how:

cd /opt/microsoft/sdk/servicefabric/common/clustersetup

sudo ./devclustercleanup.sh

sudo rm -rf /home/sfuser/sfdevcluster

sudo ./devclustersetup.sh --clusterdataroot=/some/other/volume

Open HelloWorldService\src\statelessservice\HelloWorldServiceService.java and
examine the stateless service implementation. The scaffolded implementation isn't exciting;
indeed, it doesn't do anything:

protected CompletableFuture<?> runAsync(CancellationToken cancellationToken) {
return super.runAsync(cancellationToken);

}

In a moment, you'll modify the runAsync method to make it behave in the same way as
the default C# stateless service and maintain an incrementing local counter. You'll also add
a FileHandTer to record log entries into files under the services’ log folder. First, though,
you'll need to import the following namespaces:

import java.util.logging.FileHandler;
import java.util.logging.SimpleFormatter;

Issue the following command to add a logger as a static member of the
HelloWorldServiceService class:

private static final Logger logger =
Logger.getlLogger(HelloWorldServiceService.class.getName());

Modify the runAsync method as shown in the following code:

@Override
protected CompletableFuture<?> runAsync(CancellationToken cancellationToken) {
try
{
String TogPath = super.getServiceContext()
.getCodePackageActivationContext() .getlLogDirectory();
FileHandler handler = new FileHandler(logPath
+ "/mysrv-log.%u.%g.txt", 1024000, 10, true);
handler.setFormatter(new SimpleFormatter());
handler.setLevel(Level.ALL);
logger.addHandTler(handler);
} catch (Exception exp) {
logger.log(Level.SEVERE, null, exp);
}

Service Fabric on Linux
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return CompletableFuture.runAsync(() -> {
try
{
int iteration = 0;
while (!cancellationToken.isCancelled()) {
logger.log(Level.INFO, "Working-"
Thread.sleep(1000);

+ iteration++);

}
} catch (Exception exp) {
Togger.Tlog(Level.SEVERE, null, exp);
}
s
}

Note a couple of things in the preceding code:

e You can use the getServiceContext () method to obtain the service context, through
which you can navigate an object tree that is very similar to the .NET object tree to obtain
contextual information—for example to obtain the service’s log directory using the
object model.

e The runAsync method is supposed to return a java.util.concurrent.Completable
Future<T> instance.

12. Build and deploy the application to your local cluster.

13. Locate the log path of your service instance on the hosting node. You'll find generated log
files under the services log folder.

Using Communication Listeners

To create a service that listens to client requests, you need to create and register a
CommunicationListener implementation. This process is very similar to what you did in Chapter 2.
Perform the following steps to create a Java-based calculator service that provides a REST API for add
and subtract calculations:

1. In Eclipse, create a new Service Fabric application named CalculatorApplication with a stateless
service named Calculator.

2. Addanew CalculatorServer class to the project. This class contains nothing specific to
Service Fabric. It uses com. sun.net.httpserver.HttpServer to handle add and subtract
requests from clients.

package statelessservice;

import com.sun.net.httpserver.*;

import java.net.InetSocketAddress;

import java.io.IOException;

import java.io.OutputStream;

import java.io.UnsupportedEncodingException;
import java.util.HashMap;
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import java.util.Map;

pubTlic class CalculatorServer {
private HttpServer server;
private int port;
public CalculatorServer(int port) {
this.port = port;
}
pubTlic void start() throws IOException {
server = HttpServer.create(new InetSocketAddress(port),0);
HttpHandler add = new HttpHandler() {
@Override
public void handle(HttpExchange h) throws IOException {
byte[] buffer = CalculatorServer.handleCalculation
(h.getRequestURI() .getQuery(), "add");
h.sendResponseHeaders (200, buffer.length);
OutputStream os = h.getResponseBody();
os.write(buffer);

os.close(Q);
}
1
HttpHandler subtract = new HttpHandler() {
@Override
public void handle(HttpExchange h) throws IOException {
byte[] buffer = CalculatorServer.handleCalculation
(h.getRequestURI().getQuery(), "subtract");
h.sendResponseHeaders (200, buffer.length);
OQutputStream os = h.getResponseBody();
os.write(buffer);
os.close();
}
b

server.createContext("/api/add", add);
server.createContext("/api/subtract"”, subtract);
server.setExecutor(null);
server.start();
}
public void stop() {
server.stop(10);
}
public static Map<String, String> queryToMap(String query) {
Map<String, String> map = new HashMap<String, String>Q);
for (String param: query.split("&")) {
String pair[] = param.split("=");
if (pair.length > 1) {
map.put(pair[0], pair[1]);
} else {
map.put(pair[0], "0");

}
return map;

}

pubTlic static byte[] handleCalculation(String query, String type)

throws UnsupportedEncodingException {

byte[] buffer = null;
Map<String, String> parameters = CalculatorServer.queryToMap(query);
int ¢ = 0;
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try

int a = Integer.parseInt(parameters.get("a"));
int b = Integer.parseInt(parameters.get("b"));
if (type.equals("add")) {

c=a+b;
} else {

c=a-b;

}
buffer = Integer.toString(c).getBytes("UTF-8");
} catch (NumberFormatException e) {
buffer = ("Invalid parameters").getBytes("UTF-8");
}

return buffer;

3. AddaWebCommunicationListener class to the project. This class implements microsoft.
servicefabric.services.communication.runtime.CommunicationListener and
overrides the openAsync, closeAsync, and abort methods.

package statelessservice;

import java.util.concurrent.CompletableFuture;

import java.io.IOException;

import microsoft.servicefabric.services.communication.runtime.CommunicationListener;
import microsoft.servicefabric.services.runtime.StatelessServiceContext;

import system.fabric.description.EndpointResourceDescription;

import system.fabric.CancellationToken;

pubTlic class WebCommunicationListener implements CommunicationListener {
private StatelessServiceContext context;
private CalculatorServer server;
private String webEndpointName = "ServiceEndpoint";
private int port;
pubTic WebCommunicationListener(StatelessServiceContext context) {
this.context = context;
EndpointResourceDescription endpoint =
this.context.getCodePackageActivationContext().getEndpoint
(webEndpointName) ;
this.port = endpoint.getPort(Q);

@Override
public CompletableFuture<String> openAsync(CancellationToken cancellationToken) {
CompletableFuture<String> str = new CompletableFuture<>(Q);
String address = String.format("http://%s:%d/api",
this.context.getNodeContext () .getIpAddressOrFQDN(), this.port);
str.complete(address);
try
{
server = new CalculatorServer(port);
server.start();
} catch (IOException e) {
throw new RuntimeException(e);
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return str;

}

@Override
pubTlic CompletableFuture<?> closeAsync(CancellationToken cancellationToken) {
CompTletableFuture<Boolean> task = new CompletableFuture<>();
task.complete(Boolean.TRUE);
if (server != null) {
server.stop(Q);

}
return task;
}
@Override
pubTlic void abort() {
if (server != null) {
server.stop(Q);
}
}

}

Modify CalcuTatorService to return WebCommunicationListener from the overridden
createServiceInstancelisteners method:

import java.util.ArraylList;

public class CalculatorService extends StatelessService {
@Override
protected List<ServiceInstancelListener> createServiceInstancelListeners() {
ArraylList<ServiceInstancelListener> listeners = new ArrayList(Q);
Tisteners.add(new ServiceInstancelListener((context) -> {
return new WebCommunicationListener(context);

)

return listeners;

3

Modify the CalculatorApplicationApplication\CalculatorPkg\ServiceManifest.xml file to define
an endpoint resource named ServiceEndpoint:

<Resources>
<Endpoints>
<Endpoint Name="ServiceEndpoint" Protocol="http" Port="8182" />
</Endpoints>
</Resources>

Build and deploy the application. Afterward, you should be able to use a browser
and send requests such as http://localhost:8182/api/add?a=100&b=200 and
http://localhost:8182/api/subtract?a=100&b=200. You should also get
corresponding outputs (300 and -100).
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Using Service Fabric Java SDK to implement other service types, including stateful services, actor
services, and guest application services, is very similar to using the .NET SDK. Of course, because of
language differences, the Java SDK is adapted to work more naturally for Java developers.

Note One productivity goal of the Service Fabric team is to enable popular and proven pro-
gramming paradigms on Service Fabric. You can expect to see increasingly more languages
and frameworks receive native support through Service Fabric tooling.

The next few sections provide a quick glimpse into how Java SDK supports different service types.
To try out different service types, simply create a Service Fabric application and add a service with the
type. The scaffolded code gives you quick examples on basic usage of the corresponding service types.
You'll see a great similarity between the Java code and the .NET code.

Stateful Services

Interacting with state managers in Java SDKis slightly different from the .NET SDK. The Java SDK uses a
CompletableFuture<T> type, which can be taken as an approximation of the .NET Task<T> type. Or,
if you are familiar with promises, you can take it as an implementation of a promise. When you create

a new stateful service, the SDK scaffolds a default runAsync method implementation, as shown in the

following snippet:

@Override
protected CompletableFuture<?> runAsync(CancellationToken cancellationToken) {
Transaction tx = stateManager.createTransaction();
return this.stateManager.<String, Long>getOrAddReliableHashMapAsync("myHashMap")
.thenCompose((map) -> {
return map.computeAsync(tx, "counter", (k, v) -> {
if (v == null)
return 1L;
else
return ++v;
}, Duration.ofSeconds(4), cancellationToken).thenApply((1) -> {
return tx.commitAsync().handle((r, x) -> {
if (x = null) {
logger.log(Level.SEVERE, x.getMessage());
}
try {
tx.close();
} catch (Exception e) {
logger.log(Level.SEVERE, e.getMessage());
}
return null;
b
b
s
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This code first creates a new transaction. Then, it tries to get or add amicrosoft.servicefabric.
data.collections.ReliableHashMap<K,V> instance, which is equivalent to IReliableDictionary
<K, V> in the .NET SDK. Finally, it tries to create or update the "counter" entry in the map and
commits the transaction.

Actor Services

Actor services with Java SDK work in the same way as .NET-based actor services. To construct and use
an actor service in Java, you need the same set of artifacts as in the .NET SDK:

m  Actorinterface An actorinterface is defined as a regular Java interface that inherits a default
Actor interface—for example:

pubTlic interface MyActor extends Actor {
@Readonly
CompletableFuture<Integer> getCountAsync();
CompletableFuture<?> setCountAsync(int count);

}

m  Actorimplementation An actor implementation inherits from a microsoft.
servicefabric.actors.FabricActor base class and implements the actor interface.
The following snippet shows that the actor implementation in Java corresponds almost
line by line with the .NET implementation:

@ActorServiceAttribute(name = "MyActorActorService")
@StatePersistenceAttribute(statePersistence = StatePersistence.Persisted)
pubTlic class MyActorImpl extends FabricActor implements MyActor {
private Logger logger = Logger.getLogger(this.getClass().getName());
public MyActorImpl(FabricActorService actorService, ActorId actorId){
super(actorService, actorld);
}
@Override
protected CompletableFuture<?> onActivateAsync() {
Togger.Tog(Level.INFO, "onActivateAsync");
return this.stateManager().tryAddStateAsync("count”, 0);
}
@Override
public CompletableFuture<Integer> getCountAsync() {
Togger.log(Level.INFO, "Getting current count value");
return this.stateManager().getStateAsync("count™);
}
@Override
public CompletableFuture<?> setCountAsync(int count) {
Togger.Tog(Level.INFO, "Setting current count value {0}", count);
return this.stateManager() .addOrUpdateStateAsync("count"”, count,
(key, value) -> count > value ? count : value);
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Actor proxy for a client to connect to an actor service The Java SDK provides a
microsoft.servicefabric.actors.ActorProxyBase class, through which you can
create actor proxies for your actor interface:

MyActor actorProxy = ActorProxyBase.create(MyActor.class, new ActorId("From Actor 1"),
new URI("fabric:/ActorApplicationApplication/MyActorActorService™));

int count = actorProxy.getCountAsync().get();

System.out.printIn("From Actor:" + ActorExtensions.getActorId(actorProxy)
+ " CurrentValue:" + count);

actorProxy.setCountAsync(count+1);

Guest Binary Services

As on the Windows platform, you can package a guest binary and host it on Service Fabric as a stateless
service. The following steps show you how to package a Python-based application as a guest binary
service. In this simple example, you'll create a web server using Flask and then host the Python applica-
tion as a stateless service on your local Service Fabric cluster.

1.

Create a new Service Fabric application named GuestPythonApplication with a guest binary
service named FlaskWebServer.

When asked for guest binary details, simply click the Finish button. You'll add these files
manually later.

Use the following code, which uses Flask to implement a very simple web server, to create a new
flaskserver.py file in the GuestPythonApplicationApplication\FlaskWebServerPkg\Code folder:

from flask import Flask
app = Flask("myweb™)
@app.route("/™)
def hello():
return "Hello from Flask!"
app.runChost="'0.0.0.0"', port=8183, debug = False)

In the same folder, add a new launch.sh file to launch the web server. The following script first
installs the flask module using pip. Then, it locates the path of the current script and feeds the
correct server file path to Python. Strictly speaking, installing Flask should have been done in
a setup entry point because it's a host environment configuration step. I'll leave this exercise
to interested readers.

#!/bin/bash

sudo python -m pip install flask >> ../log/flask-install.txt 2>&1
pushd $(dirname "${0}") > /dev/null

BASEDIR=$(pwd -L)

popd > /dev/null

logger ${BASEDIR}

python ${BASEDIR}/flaskserver.py
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5. Update the ServiceManifest.xml file as follows:

<?xml1 version="1.0" encoding="utf-8" 7>
<ServiceManifest Name="FlaskWebServerPkg" Version="1.0.0" xmlns="http://schemas.
microsoft.com/2011/01/fabric" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Description>Service that implements a FlaskWebServer service</Description>
<ServiceTypes>
<StatelessServiceType ServiceTypeName="FlaskWebServerType" UseImplicitHost="true"/>
</ServiceTypes>
<CodePackage Name="Code" Version="1.0.0">
<EntryPoint>
<ExeHost>
<Program>1aunch.sh</Program>
<Arguments />
<WorkingFolder>CodePackage</WorkingFolder>
</ExeHost>
</EntryPoint>
<EnvironmentVariables></EnvironmentVariables>
</CodePackage>
<ConfigPackage Name="Config" Version="1.0.0" />
<DataPackage Name="Data" Version="1.0.0" />
<Resources>
<Endpoints>
<Endpoint Name="ServiceEndpoint" Protocol="http" Port="8183" Type="Input"/>
</Endpoints>
</Resources>
</ServiceManifest>

6. Build and deploy the application.

7. Using a web browser, navigate to http://localhost:8183/. You should see a "Hello from
Flask!” message.

Using Yeoman

In addition to the Eclipse experience, Service Fabric provides a few generators that enable you to create
Service Fabric applications using Yeoman. Yeoman (http://yeoman.io/) is an application scaffolding
tool with an extensible generator ecosystem that hosts generators for various application types, includ-
ing Service Fabric applications.

When you install the Service Fabric SDK, Yeoman is installed and configured automatically.
To launch Yeoman, issue the yo command in a terminal.

To recreate the previous guest binary application in Yeoman, follow these steps:
1. Create a new ~/pythonflask folder and copy the flaskserver.py and launch.sh files into it.

2. Usetheyo azuresfguest command to launch Yeoman with the azuresfguest generator.
You should see output like that shown in Figure 12-4.
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? Name your application [J

: /S yo azuresfguest

| | Welcome to Service
|--(o)--| Fabric guest application
Teeeeeeas ’ generator

FIGURE 12-4 Use the azuresfguest generator with Yeoman.

3. Yeoman prompts you to provide information. Respond to these prompts as shown here:

Name Your Application GuestApp
Name of the Application Service Flask

Source Folder of Guest Binary Artifacts /home/<your user name>/pythonflask (Based
on my tests, you need to provide the absolute path here.)

Relative Path to Guest Binary in Source Folder launch.sh
Parameters to Use When Calling Guest Binary Press Enter to leave this field empty.

Number of Instances of Guest Binary Press Enter to accept the default setting of 1.

After you respond to all the prompts, Yeoman creates a folder with the application name and
generates an application package. It also creates two scripts, install.sh and uninstall.sh, which
you can use for installing and uninstalling the application.

Note Yeoman does not define service endpoints. You'll need to add service endpoint con-
figurations yourself. Furthermore, at the time of this writing, the generator doesn't give you
any warnings if you've specified a wrong path for binary artifacts. You need to make sure
you've entered the correct absolute path to your binary app artifacts.
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containers, 281-282
Hyper-V containers, 282
Performance Monitor, 85, 90
PowerShell, 24-25
running Docker, 286
word statistics, saving, 370
workflows, coordination, 167, 480
workload auction pattern, 479
writes, separating from reads, 348-350
ws-Federation, AD (Active Directory), 373-374

Y

Yeoman application scaffolding, Linux, 277-278

y4

zero-downtime upgrade, 101-102
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