°rogramming
Microsoft Azure
Service Fabric

Second Edition

Haishi Bai

FREE SAMPLE CHAPTER

HHHHHHHHHHHHHHH

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9781509307104
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9781509307104
https://plusone.google.com/share?url=http://www.informit.com/title/9781509307104
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9781509307104
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9781509307104

o= Microsoft

Programming Microsoft
Azure Service Fabric
Second Edition

Haishi Bai

PROGRAMMING MICROSOFT AZURE SERVICE FABRIC (Second edition)
Published with the authorization of Microsoft Corporation by:

Pearson Education, Inc.

Copyright © 2018 by Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, request forms, and the appropriate contacts within
the Pearson Education Global Rights & Permissions Department, please visit
www.pearsoned.com/permissions/.

No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the prepara-
tion of this book, the publisher and author assume no responsibility for errors
or omissions. Nor is any liability assumed for damages resulting from the use
of the information contained herein.

ISBN-13: 978-1-5093-0709-8
ISBN-10: 1-5093-0709-5

Library of Congress Control Number: 2018939252
118

TRADEMARKS

Microsoft and the trademarks listed at http://www.microsoft.com on the
"Trademarks” webpage are trademarks of the Microsoft group of companies.
All other marks are property of their respective owners.

WARNING AND DISCLAIMER

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an "as is” basis. The author(s), the publisher, and Microsoft Corporation shall
have neither liability nor responsibility to any person or entity with respect to
any loss or damages arising from the information contained in this book or
from the use of the CD or programs accompanying it.

SPECIAL SALES

For information about buying this title in bulk quantities, or for special

sales opportunities (which may include electronic versions; custom cover
designs; and content particular to your business, training goals, marketing
focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearson.com.

Editor-in-Chief: Greg Wiegand
Executive Editor: Laura Norman

Development Editor: Kate Shoup/
Polymath Publishing

Managing Editor: Sandra Schroeder

Senior Project Editor: Tracey Croom/
Danielle Foster

Copy Editor: Dan Foster

Indexer: Valerie Haynes Perry
Proofreader: Scout Festa

Editorial Assistant: Cindy Teeters
Cover Designer: Twist Creative, Seattle
Compositor: Danielle Foster

Graphics: Vived Graphics

http://www.pearsoned.com/permissions/
http://www.microsoft.com

To the entire Microsoft Service Fabric team, who made such
a great product.

—HaAisHi Bal

Contents at a Glance

Introduction XXili
CHAPTER1 Hello, Service Fabric! 3
CHAPTER 2 Stateless Services 27
CHAPTER 3 Stateful Services 49
CHAPTER 4 Actor Pattern 67
CHAPTER 5 Service Deployments and Upgrades 91
CHAPTER 6 Availability and Reliability 17
CHAPTER 7 Scalability and Performance 145
CHAPTER 8 Service Fabric Scripting 173
CHAPTER 9 Cluster Management 199
CHAPTER 10 Diagnostics and Monitoring 213
CHAPTER 11 Continuous Delivery 239
CHAPTER 12 Service Fabric on Linux 265
CHAPTER 13 Containers 279
CHAPTER 14 Container Orchestration 299
CHAPTER 15 Scalable Web 325
CHAPTER 16 Scalable Interactive Systems 343
CHAPTER 17 System Integration 367
CHAPTER 18 Serverless Computing 393
CHAPTER 19 Artificial Intelligence 409
CHAPTER20 Orchestrating an Organic Compute Plane 437

vi

PART VI

APPENDICES

Contents at a Glance

Appendix A: Using Microsoft Azure
PowerShell Commands

Appendix B: Pattern Index

Index

473
479

483

Contents

Aboutthe AULNOr XiX
FOreword. o e XXi
INtroduction XXIii
Chapter1 Hello, Service Fabric! 3
MICIOSEIVICES ..\ttt e 3
Containerization.o.oi i 3
Scheduling 4

State Reconciliation.o 4

Data Replication....... ... 5
Service Partitioning........... ... 5
Service Fabric CoNCepts.t 6
Architecture.o 6
Nodesand ClUSters.t 7
Applicationsand Services 8
Partitionsand Replicas...............cooiiiiii i 8
Programming Modes 9
Statelessvs. Stateful 9
Guest Applicationsand Containers ..o .. 10
Getting Started. 10
Setting Up a Development Environment in Windows 10
Provisioning a Service Fabric Clusteron Azure..................... "

Hello, World! 15
Managing Your Local Cluster.............ooiiiii i 19
Visual Studio Cloud Exploreroo it 19
Service Fabric Explorer........ ..o 21
Windows PowerShell i 24
Service Fabric CLI. ... o 25
Additional Information 26

vii

Chapter 2 Stateless Services 27

Implementing ASP.NET Core Applications 27
Scalability and Availability of a Stateless Service........................ 31
Availability 31
Scalability 32
Implementing Communication Stacksl 32
Default CommunicationStack............ ... i 32

WCF CommunicationStack i 41
Custom CommunicationStack oo, 45
Additional Information 48
Chapter 3 Stateful Services 49
Architecture of Service Fabric Stateful Services......................... 49
Reliable Collections. 50
Reliable State Manager ... 50
Transactional Replicator ...t 51
[T [1= PP 51
CONSIStENCY ettt 52

The Simple Store Application. ... 52
The Shopping-Cart Service.t 52

The Simple Store Website 56
Service Partition. ... 61
Partitionsand Replicas. ... 63
ReplicaRoles ... 63
Resource Load Balancing. ..o 64
Additional Information 66
Chapter 4 Actor Pattern 67
Service Fabric Reliable Actors ... 68
ACHOTS. o 68
Actor Lifetime 68
Actor States 68
Actor Communications ...t 69
CONCUITENCY ..ottt et 69

viii Contents

Chapter 5

An Actor-Based Tic-Tac-Toe Game.ooviiniii i 70

ActorModels. 70
Creating the Application.............ooii i 71
Defining the Actor Interface......... ... i 71
Implementing the Game Actor ..., 72
Implementing the Player Actor ...t 74
Implementing the Test Client. ...t 75
Testingthe Game. 77
Additional Thoughts........... ... i 77
Timers, Reminders, and EVeNntsoiiiiiiiii e 78
ACTOr TIMEIS « e 78
Actor Reminders.o 79
ACtOr EVents.o 80
Service Diagnostics and Performance-Monitoring Basics 81
Event Tracing For Windows.coiiiiiiiii i 81
Performance Counters.ot 83
Actors and Reliable Services......... ... 87
Actor State Providers ... 88
Additional Information 90
Service Deployments and Upgrades 91
The Service Fabric Application-Deployment Process. 91
Package.o 91
Upload. ... 96
Register/Provision i 97
Create/Replace/Upgradecoooiiiiiiiiiiiiiian.. 97
The Service FabricHealthModel o it 97
Health States........ ..o 99
Health Policyco 99
Health Reporting and Aggregation.......................... ... 101
RollingUpgrades..........ooiii i 101
Upgrade Processoooiii 102
Upgrade Modes and Upgrade Parameters 104

Contents

ix

Contents

Chapter 6

Chapter 7

Multiple Environments. ... 107

Application Parameters and Parameter Files 107
Application Publish Profiles oo, 108
Using Implicit HOStSot 108
Defining Implicit Hosts. 108
RUNAS POLICIES . . oot 109
Hosting a Node.js Application. ...t 11
Resource GOVEINANCe.vut it 15
Availability and Reliability 117
"Broken” SErvICeS. 17
Improving Availability 18
Improving Reliability. 18
Service Fabric Services Availability.............. 19
Replicas. ..o 19
Service Placements 120
Service Failovers. 126
Routing and Load-Balancing ...t 127
Advanced Rolling Upgrades. ..., 131
Service Fabric Services Reliability............. ... i 133
Event Tracing forWindowst 134
Azure Diagnostics ... 134
Chaos TeStING ..ot 136
Service State Backupand Restore. ...l 141
Scalability and Performance 145
Scalability Conceptst 145
Vertical Scaling vs. Horizontal Scaling......................o. .. 145
Stateless Services vs. Stateful Services................... ... 146
Homogeneous Instances vs. Heterogeneous Instances 146
Single Tenancy vs. Multi-Tenancy.............coooiiiiniiaia.. 147
Manual Scaling vs. Autoscalingt 148

Scaling a Service Fabric Cluster. ... 151

Azure Resource Manager and Azure Virtual Machine

Scale Sets ... 151
Manually Scaling a Service FabricCluster 152
Autoscaling a Service Fabric Cluster, 154
Scaling with Content Delivery Network 157
Resolving Bottlenecksouiii i 159
State Bottlenecks. 159
Communication Bottlenecks 164
Orchestration Bottlenecks 165
Chapter 8 Service Fabric Scripting 173
Azure Cloud Shell ... 173
Creating a Secured Service Fabric Cluster Using PowerShell............ 174
Using a Certificate to Protect Your Cluster. 174
Using a Certificate for Client Authentication..................... 178
Using Azure Active Directory for Client Authentication 178
Publishing Applications to a Secured Cluster from
Visual Studioo 180
Cluster Management Commands.ouieiiiiiiiiaann. 181
Query Commandso.oni i 181
Node Operations.uuieiei e 190
Application-Management Commands. ..o, 192
Deploying an Application......... i 192
Upgrading an Application..............ooiiiiii i 193
Rolling Back an Application it 194
Decommissioning an Application................ ... oo 195
Azure CLL ..o 195
SECtl . 197

Contents

xi

Chapter 9 Cluster Management 199

Anatomy of a Service FabricClusterccoiiiiiiii... 199
Virtual Machine ScaleSets ...t 200
Virtual Machines and Virtual Network Cards 201
Virtual Networks 202
Load Balancersouiiiiiii 203
Storage ACCOUNTS.o ut e 206

Advanced Service Fabric Cluster Configuration........................ 206
Role-Based Access Control..........coveiiiiiiiii 206
Network Security Groupsouiiiiiiiii i 207
Internal Load Balancer..............ooiiiiiii i 21

Updating Cluster Settings. ...t 212

Chapter 10 Diagnostics and Monitoring 213

DIagnoStiCs ..ttt 213
Diagnostics Data Pipeline ... 213
Configure Azure Diagnosticsovviviiie i 215
Microsoft Diagnostics EventFlowt 218
Using Elasticsearch, Kibana, and EventFlow...................... 221
Azure Operations Management Suite........................... 225
Troubleshooting on Service FabricNodes....................... 229

MONItOFING. . .ot e 229
Service Fabric Explorer....... ... 230
Application Insights. o 232

Chapter 11 Continuous Delivery 239

ClCD, and DeVOPS ettt et e 239
Continuous Integration ... 239
Continuous Delivery ... 240
DEVOPS . ..o 241

Setting Up Continuous Integration 242
Preparing the Visual Studio Team Services Project............... 242
Creating a Build Definition ...t 246

xii Contents

Setting Up Continuous Deliveryccooviiiinnn.
Creating a Release Definition...........................

Requesting Deployment Approvals.....................

Software Testability.............ooo i
Controllability ...
Observability. ...
Isolability
Clarity .o

Setting Up Automated Testscoovvviviiiienannn
Implementing UnitTestsoooiiiiiiian.
Setting Up Gated Check-Ins...............oooiiiiat.
Running Load Tests with VSTS.............. ..ot

Chapter 12 Service Fabric on Linux

Service Fabric Hello, World!on Linux

Setting Up Your Linux Development Environment

Hello, World! Again. ...
Using Communication Listeners..................oooviiiin

Other Service Types and Frameworks.
Stateful Services. ...
ACTOr SEIVICES . .o vttt

Guest Binary Services

USINg YEOMaANo

Chapter 13 Containers

Docker Primer.o
Containerizationon Linux...............coooiiiian.

Windows Containers. ...

Getting Started. ...
Running Dockeron Linuxooiiiiinn
Running Docker on Windows.cooooiu....

Running Dockeron Azure...........cooviiiiiinan.

Contents xiii

Service Fabricand Docker.o 286

Hosting an ASP.NET Core Container on Windows. 287
Hosting a Minecraft Server Containeron Linux.................. 290
Continuous Deployment with Jenkins.t 297
Chapter 14 Container Orchestration 299
Microservices Application and Orchestration Engines 299
A Generic Microservice Application Model...................... 299
Orchestration Engines 300
Container Orchestration with Service Fabric........................... 301
DINS SeIVICE . ettt 301
Watchdogs. . ..o 306
Docker Compose with Service Fabricl 309
Defining the MasterIimage.cooviiiiiiiiiiiiaann, 310
Defining the Slave Image. ... 3N
Composing the Services with Docker Compose. 312
Deploying and Testing the Application 312
Service Meshes. 314
Envoy and Service Meshes ... 314
Deploying Envoy on Service Fabric 316
Chapter 15 Scalable Web 325
The Azure PaaS Ecosystemt 325
APP SEIVICES . .ottt 325
Azure Container Service (AKS). ... i 326
Virtual Machine ScaleSets ... 326
Service Fabric 326
ChoosingaPaaSPlatform...............oiiiiiiii 327
Scaling with Reduction....... ... 328
CDN 329
Home Views. 329
CaChing . ..o 330

Xiv Contents

Precomputed VIEWSooiii 331

Data Manipulation........... ... i 331
Scaling with Partition 332
Tenant Manager.ouiu i 332
Service Meshes (Part2) ... 335
Scalingwith Bursting ... 338
Designing an Extensible Control Plane.............. 339
A Generic Control Plane Architecture 340
Workload Scheduling.........o.oooii i 342
Chapter 16 Scalable Interactive Systems 343
Interactive System Techniques. ... 343
Latency 343
Throughputo 347
CQRS and Event SOUICINGot 348
Basic Ideas Behind CQRS.......... ...t 348
Commandsand Events. 349
Event Sourcingo.oiui 349
Real-Time Data-Streaming Pipelines...............t 350
Composable Processing Pipelines ...t 350
Implementing a Processing Sequencecoovunn 351
Processing Topologies with Actors. ...t 357
Parallel Batching.o 358
Streaming Top N ... o 358
Joinby Field. 359
Cached Lookup Grid ... 359
Exercise: Using WebSocket for Live Data Processing 360
Product ACtor ... 361
Country/Region ACtor ...t 362
Global Actor. ... 363
Gateway ... 364
WebSocket Listener.o 364
TestClient.o 365

Contents XV

XVi

Contents

Chapter 17 System Integration 367

Data Storageo 367
Relational Databases.o i 368
NoSQL Databasest i 371

S Uy .« ettt e 373
Azure Active Directory.oovu i 373
AzureKey Vault 377
Enable SSL with CustomDomainccviiiiiinn. 378

Integration with Service Brokers............ ... il 379
Open Service Broker APlo i 380
Open Service BrokerforAzure ...t 381
Service Fabric Service Catalog Service 381

Integration Patterns with Messagingcoiiiiii... 383
Dead-Letter Channel i 383
Messaging Gatewayouiuiiriii i 384
Transaction Coordinator ...t 385
Message Translators 386

Composing Service Fabric Services ... 387

Chapter 18 Serverless Computing 393

What Is Serverless Computing?. ... 393
Serverless Deployment ... 393
Serverless Platformo i 394
Serverless Architecture. i 395

Benefits of Serverless 396

Serverless ON AZUIE. i e 397
Azure Container Instancesooiiiiiiii i 397
Azure Event Grid 398
AZUre FUNCHIONSo 399
AZUIE LOGIC APPS. vttt e e 401

Reactive Messaging Patterns with Actorst 403

Message-Driven Systems ... 403
Responsive Systems.t 403
Resilient Systems ... 406
Elastic Systems oo 406

Sea Breeze Design Principlescoouiiiiiii 407
Fully Managed Environmento 407
Container-Based Environmento i 408
Community Engagemento 408
Chapter 19 Artificial Intelligence 409
A Brief Introduction to Artificial Intelligence 409
What s Al? 409
MachineLearningo 410
Neural Networkso 1M
Challengesand Pitfalls..............cooiiiiiiiii 411
Recommendations i 413
Using Azure Machine Learning Studio 413
Calling the Service from Service Fabric.......................... 47

Using the Cognitive Services Recommendation API.............. 418
Computer Vision ... e 418
Building an OCR Application ...t 419
Exploring Image-Analysis Applications 421
Natural Language Processingc.ooiuiiniiiiiiiinniianninns 422
Audio Transcription.o 423
Understanding the User's Intention............................. 425
Conversational Ul 428
Using the Bot Framework and Bot Service....................... 428
Embedding a Web-Based Bot Ul in Your Application............. 430
ArchiBot . ..o 431
TensorFlow and Service Fabric........... ... 432
Deploying a TensorFlow Cluster Using Service Fabric 433

Running a Clustered Jupyter Notebook with
TensorFlow Containers.t 434

Contents

Xvii

xviii

Chapter 20 Orchestrating an Organic Compute Plane 437

Contents

Moving Data Through Static Compute............. ..., 437
Data Generation and Feedback.l 438
Commandand Controlcooiiiiiiii 438
Data INgress.t 439
Data Transformation and Analysisc.cooviiin.. 439
R0 - o 440
Presentationand Actions i 441
Sample Patterns with Static Compute........................... 441
An End-to-End Scenario ... 448

Moving ComputetoData...........c.coiiiiiii i 462
Service FabriconEdge. ... 463
Workload Distributiono o 466

Closing ThoUughts e 469

Appendix A: Using Microsoft Azure PowerShell Commands 473

Appendix B: PatternIndexco i, 479

INGEX. .« e 483

About the Author

HAISHI BAI, principal software engineer at Microsoft, focuses on the
Microsoft Azure compute platform, including laaS, PaaS, networking,
and scalable computing services.

Ever since he wrote his first program on an Apple Il when he was 12,
Haishi has been a passionate programmer. He later became a professional
software engineer and architect. During his 21 years of professional life, he's
faced various technical challenges and a broad range of project types that
have given him rich experiences in designing innovative solutions to solve
difficult problems.

Haishi is the author of a few cloud computing books, and he’s an active
contributor to a few open-source projects. He also runs a technical blog
(http://blog.haishibai.com) with millions of viewers. His twitter handle is
@HaishiBai2010.

Xix

http://blog.haishibai.com

Foreword

ervice Fabric can be traced back to 2001, when | was trying to solve large-scale

distributed system challenges such as leader election, quorum-based replication,
and perfect failure detection. As | worked on projects in 2007, such as CloudDB (which
morphed into Azure DB and is powered by Service Fabric), it became clear that a generic
platform would be a valuable asset for empowering developers and enterprises to
implement scalable and highly available distributed systems. In 2009, | began creat-
ing such a system to support large first-party and third-party workloads. This effort
led to Service Fabric, which has proven itself in production for more than a decade.
Service Fabric powers critical Microsoft services such as Azure DB, Cosmos DB, Skype
for Business, Microsoft Intune, Azure Resource Providers (Compute RP, Storage RP, and
Network RP), Azure Software Load Balancer, Azure Network Manager, Event Hubs, Event
Grid, loT Hubs, Azure Incident Manager, Azure Monitor, Bing Cortana, and more. As of
March 2018, Service Fabric runs on about 4 million cores and individually monitors and
fully lifecycle-manages about 10 million microservices. Technologies like Service Fabric
are treated as trade secrets by many companies and are not made available to external
customers. In March 2015, Service Fabric was released to the public. By making Service
Fabric publicly available (and open-sourced in March 2018), Microsoft is living by the
“first party == third party” principle.

Service Fabric is a comprehensive platform for building Internet-scale, high-through-
put, low-latency services. Besides container orchestration, it solves many fundamental
distributed systems problems, such as failure detection, replicated state machines,
reliable message delivery, and so on. It allows developers to naturally decompose the
business application into a logical set of microservices that are individually responsible
for a single business function and interact with one another over well-defined pro-
tocols for implementing business workflows. Service Fabric lets developers focus on
business logic and its associated state by abstracting away machine and distributed
systems details with many built-in transactionally consistent reliable data structures like
dictionaries and queues that survive process crashes and machine failures. It enables
programmers to think and program exactly like they do today by replacing locks with
transactions. Programmers assume that the process hosting their code never crashes,
and the data structures storing their state never lose or corrupt their data. With its abil-
ity to run on any OS and on any cloud, including on-premises and Edge, developers
preserve their code investments across a wide variety of deployment targets. Put differ-
ently, Service Fabric allows programming large-scale applications to be just like writing
simple applications.

xxi

xxii

I have known Haishi for about three years now. He has keenly followed the evolution
of Service Fabric as a public service and has a deep understanding of its developer and
operational aspects. He also understands intuitively how various Service Fabric layers
and subsystems combine to provide the solutions to many distributed-systems prob-
lems. His first edition of this book focused on Service Fabric programming models and
design patterns. This second edition is a more comprehensive follow-up companion
book on Service Fabric that focuses more on the developer and operational aspects
of Service Fabric and newer parts of the Service Fabric-like containers, Linux sup-
port, and more.

If you are interested in microservices and stateless and stateful variants and are
using or intend to use Service Fabric for developing microservices, this a must-read
book for you.

—Gopal Kakivaya
CVP, Microsoft Azure Development

Foreword

Introduction

zure Service Fabric is Microsoft’s platform as a service (PaaS) offering for devel-

opers to build and host available and scalable distributed systems. Microsoft has
used Service Fabric for years to support some of Microsoft's cloud-scale applications
and Azure services such as Skype for Business, Cortana, Microsoft Intune, Azure SQL
Database, and Azure Cosmos DB. The same platform is now available as an open-source
project for you to write your own highly available and highly scalable services.

Programming Microsoft Azure Service Fabric is designed to get you started and
quickly productive with Azure Service Fabric. This book covers fundamentals, practical
architectures, and design patterns for various scenarios, such as intelligent cloud, intel-
ligent edge, big data, and distributed computing. For the fundamentals, this book pro-
vides detailed step-by-step walkthroughs that guide you through typical DevOps tasks.
For design patterns, this book focuses on explaining the design philosophy and best
practices with companion samples to get you started and moving in the right direction.

Instead of teaching you how to use Azure Service Fabric in isolation, the book encour-
ages developers to make smart architecture choices by incorporating existing Azure
services. When appropriate, this book briefly covers other Azure services relevant to
particular scenarios.

Who should read this book

This book is intended to help new or experienced Azure developers get started with
Azure Service Fabric. This book is also useful for architects and technical leads using Azure
Service Fabric and related Azure services in their application architecture.

Service Fabric is under continuous development, and its momentum will only
accelerate by community contributions. The second edition of this book offers the
latest development of Service Fabric at the time of this writing. For the latest updates,
consult the book’s companion resource repository (https.//github.com/Haishi2016/
ProgrammingServiceFabric) and Service Fabric’s online documentation (https.//docs.
microsoft.com/azure/service-fabric). Although the precise operational steps and
programming APIs might change, the design patterns presented in this book should
remain relevant into the foreseeable future.

xxiii

https://github.com/Haishi2016/ProgrammingServiceFabric
https://github.com/Haishi2016/ProgrammingServiceFabric
https://docs.microsoft.com/azure/service-fabric
https://docs.microsoft.com/azure/service-fabric

XXiv

Assumptions

This book expects that you are proficient in .NET, especially C# development. This
book covers a broad range of topics and scenarios, especially in later chapters. Prior
understanding of DevOps, application life cycle management (ALM), IoT, big data, and
machine learning will help you get the most out of this book.

Although no prior Azure knowledge is required, experience with the Azure software
development kit (SDK), Azure management portal, Azure PowerShell, Azure command
line interface (CLI), and other Azure services definitely will be helpful.

This book might not be for you if...

This book might not be for you if you are a beginner in programming. This book assumes
you have previous experience in C# development and ASP.NET development. Although
this book covers topics in service operations, its primary audience is developers and
architects, not IT professionals.

Organization of this book

This book is divided into five parts, each of which focuses on a different aspect of Azure
Service Fabric. Part |, "Fundamentals,” provides complete coverage of designing and
developing Service Fabric applications using stateless services, stateful services, and
reliable actors. Part I, “Service Life Cycle Management,” focuses on the operations

side and introduces how to manage Service Fabric clusters and how to manage, test,
and diagnose Service Fabric applications. Part lll, “Linux and Containers,” introduces
Service Fabric Linux programming with Java and support for Docker containers. Part IV,
“"Workloads and Design Patterns,” introduces patterns and scenarios including practical
design patterns and best practices in implementing typical application scenarios includ-
ing scalable web applications, 10T, big data, and multi-tenant applications. Finally, Part V,
"Advanced Topics,” covers three advanced topics: serverless computing, machine learn-
ing, and the intelligent cloud and the intelligent edge.

Finding your best starting point in this book

This book is an introduction to Service Fabric. It is recommended that you read the
chapters in the first two parts sequentially. Then, you can pick the topics that interest you
in Parts I, IV, and V.

Introduction

If you are
New to Service Fabric

Interested in applying Service Fabric in loT sce-
narios

Interested in building scalable web applications

Interested in machine learning

Interested in operating a Service Fabric cluster

Interested in the actor programming model

Interested in Service Fabric container integration

Interested in Service Fabric Linux development

Follow these steps
Read through Part | and Part Il in order.

Focus on Chapter 20.

Focus on Chapters 7, 15, and 16. You may
also want to read Chapter 17 for integrations
with other Azure services, and Chapter 18 for
serverless options.

Focus on Chapter 19.

Chapters 8, 9, 10, and 11 introduce related tools
and services. You may also want to browse
through Chapters 5, 6, and 7 to understand
Service Fabric application characteristics.

Focus on Chapter 4. Also browse through chapters
in Part Il because these chapters cover several
actor-based design patterns.

Focus on Chapters 13 and 14.

Focus on Chapter 12.

Some of this book's chapters include hands-on samples that let you try out the
concepts just learned. Regardless of which sections you choose to focus on, be sure
to download and install the sample applications on your system (see the "Downloads”

section on the next page).

System requirements

You will need the following hardware and software to run the sample code in this book:

® Windows 8/Windows 8.1, Windows Server 2012 R2, or Windows 10.

® Visual Studio 2015 or Visual Studio 2017.

m The latest Service Fabric SDK for Visual Studio 2015 or Visual Studio 2017

(install via Web PI).

® The latest version of Azure SDK (2.8 or above, install via Web PI).

m The latest version of Azure PowerShell (1.0 or above, install via Web PI).

m The latest version of Azure CLI.

= 4GB (64-bit) RAM.

Introduction

XXV

XXVi

m 50 GB of available hard disk space.

®m Anactive Microsoft Azure subscription. You can get a free trial from www.azure.com.
®m An Internet connection to use Azure and to download software or chapter examples.
®m An Ubuntu 14.0 or above machine or virtual machine for Linux-based exercises.

Depending on your Windows configuration, you might require Local Administrator
rights to install or configure Visual Studio 2015, Visual Studio 2017, and related SDKs
and tools.

Downloads: Code samples

Most of the chapters in this book include exercises that let you interactively try out
new material learned in the main text. All sample projects can be downloaded from
the following page:

https://aka.ms/AzureServFabric2e/downloads

You can also find the latest sample projects from the book’s companion
source repository:

https.//github.com/Haishi2016/ProgrammingServiceFabric

Using the code samples

This book’s webpage contains all samples in this book, organized in corresponding
chapter folders. It also contains a V1-Samples folder that contains samples from the
original version of the book, thanks to Alessandro Avila's contributions.

m Chapter1 This folder contains samples from Chapter 1.
HelloWorldApplication: The "Hello, World!" application.
m Chapter2 Thisfolder contains samples from Chapter 2.

CalculatorApplication: The calculator application used in the communication
stack samples.

gRPCApplication: The calculator application using gRPC.

StatelessApplication: The ASP.NET Core Web API stateless application.

Introduction

http://www.azure.com
https://aka.ms/AzureServFabric2e/downloads
https://github.com/Haishi2016/ProgrammingServiceFabric

Chapter 3 This folder contains samples from Chapter 3.
SimpleStoreApplication: The simple store application.

Chapter 4 This folder contains samples from Chapter 4.
ActorTicTacToeApplication: The tic-tac-toe game using actors.
CarApplication: The simple car simulation program using actors.
Chapter 5 This folder contains samples from Chapter 5.

ConsoleRedirectTestApplication: The sample application used in package
format samples.

HelloWorldWithData: The sample application with a data package.

NodeJsHelloWorldApplication: The sample application hosts a Node.js
application.

ResourceGovernance: The sample application with resource governance policy.
UpgradeProcess: The rolling update sample application.

Chapter 6 This folder contains samples from Chapter 6.

BadApplication: The sample unreliable application using in-memory states.
ChaosTest: The sample application that drives a chaos test.

ConfigurationUpdate: The sample application that responds to configura-
tion updates.

Diagnostics: The sample application used in the Azure Diagnostics sample.
FailoverTest: The sample application used in the failover sample.

Chapter 7 This folder contains samples from Chapter 7.
CustomSerializerTest: The sample application that uses a custom serializer.
Chapter 8 This folder contains samples from Chapter 8.

DeploymentTest: The application used in the deployment sample.
Chapter 10 This folder contains samples from Chapter 10.

ApplicationinsightsTestApplication: The sample application that uses
Application Insights.

Introduction

XXVii

CustomHealthReportApplication: The sample application that sends custom
health reports.

EventFlowTestApplication: The sample application that uses Event Flow for
diagnostics.

OMSTestApplication: The application used in the OMS sample.
m Chapter 11 This folder contains samples from Chapter 11.
SudokuApplication: The sample Sudoku application.
m Chapter 12 This folder contains samples from Chapter 12.
ActorApplication: The sample actor application in Java.
CalculatorApplication: The sample calculator application in Java.

GuestPythonApplication: The sample Python application hosted as a
guest executable.

HelloWorldLinux: The "Hello, World!" application in Java.
StatefulApplication: The sample stateful application in Java.
m Chapter 13 This folder contains samples from Chapter 13.

Docker-HelloWorld-Windows: The sample ASP.NET Core web application in
Windows container.

DockerCompose-HelloWorld: The sample container application described by
a Docker Compose file.

Minecraft: The HA Minecraft server deployment using persistent volume.
m Chapter 14 This folder contains samples from Chapter 14.

IrisApp: The sample two-tiered application that uses the Python Sklearn library
in containers.

ServiceMesh: The service mesh sample that uses Envoy.

Watchdog: The sample service that uses a C# watchdog to monitor a container-
ized sample Java application.

xxviii Introduction

m Chapter 15 This folder contains samples from Chapter 15.
PortSharing: The port sharing sample application.
TenantManager: The sample implementation of the tenant manager pattern.
m Chapter 16 This folder contains samples from Chapter 16.
ECommerceApp: The sample e-commerce application.
NumberConverterApp: The number converter service.
= Chapter 17 This folder contains samples from Chapter 17.

AudioTranscriptionApp: The audio transcription application that uses Bing
Speech API.

= Chapter 18 This folder contains samples from Chapter 18.
aci: The Azure Container Instance example.
ReactiveActors: The sample reactive application using actors.
= Chapter 19 This folder contains samples from Chapter 19.
ArchiBot: The architecture bot sample that uses Bot Framework and Cosmos DB.

To complete an exercise, access the appropriate chapter folder in the root folder and
open the project file. If your system is configured to display file extensions, C# project
files use the .csproj file extension.

Errata, updates, & book support

We've made every effort to ensure the accuracy of this book and its companion content.
You can access updates to this book—in the form of a list of submitted errata and their
related corrections—at:

https.//aka.ms/AzureServFabric2e/errata
If you discover an error that is not already listed, please submit it to us at the same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
https://support.microsoft.com.

Introduction

XXix

https://aka.ms/AzureServFabric2e/errata
https://support.microsoft.com

Stay in touch

Let's keep the conversation going! We're on Twitter: http.//twitter.com/MicrosoftPress.

XXX Introduction

http://twitter.com/MicrosoftPress

Linux and Containers

Chapter 12 Service FabriconLinux......................... 265
Chapter13 Containers.............cooiiiiiiiiiiiinan... 279
Chapter 14 Container Orchestration........................ 299

Service Fabric provides a microservices programming model

that you can use to build native cloud microservices applica-
tions. However, as discussed in Part |, implementing microservices
doesn’'t mandate a specific programming model. If an application
can be packaged in a self-contained format and be consistently
deployed on different environments, it can enjoy many cloud
benefits, such as failover, scaling, and load balancing. While pack-
aging application artifacts isn’t hard, making sure the application
has all its dependencies is not easy. A legacy application may have
dependencies on external libraries and services; it may assume
specific folder structures; it may require specific environment vari-
ables; and for Windows, it may depend on certain registry values.
It's impossible to isolate and package such system-level depen-
dencies by a simple file-based package mechanism.

One way to package these system-level dependencies is to
use desired state configuration (DSC). With DSC, such depen-
dencies are captured as solution-specific metadata. When an
application is deployed, the metadata is checked against the
actual host environment. If any discrepancies are found, pre-
defined scripts are executed to bring the host environment
into the desired state. For example, if an application requires
a specific DirectX version, the requirement can be captured as

263

DSC metadata. And when the application is deployed on a new host, the DSC
system will check whether DirectX is installed. If not, it will run predefined
scripts (most DSC systems have “ingredients” that perform common configu-
ration tasks such as installing software packages) to make sure the specific
version of DirectX is installed. Still, bringing an arbitrary machine state to a
desired state is a hard job. In some cases, two applications are simply incom-
patible and cannot be installed on the same host. For example, if application
A and application B use a c:\data folder, they can't co-exist on the same host
without interfering with each other.

Virtualization is an effective way of addressing these challenges. With vir-
tualization, an application resides on a virtualized operating system that vir-
tualizes process spaces, file systems, and registries (for Windows). In such an
environment, because the application has exclusive access to the entire vir-
tualized environment, it doesn't need to worry about any potential conflicts
with any other applications. The use of virtual machines (VMs) is a mature
virtualization technique that has been broadly used in both on-premises and
cloud datacenters. However, VMs are quite heavy. They require significant re-
sources, and it takes a long time to provision, update, and deprovision a VM.
Hence, VMs don't provide the application mobility microservices requires.

Containers provide fine-grained isolation by isolating processes, files, and
registries. Containers running on the same host share the same system kernel
and can be launched and destroyed in the same way as regular processes.
For Linux systems, this means sub-second launch times (Windows contain-
ers take longer to launch, but it’s still much faster than booting up a VM.)

You can also pack many containers on the same host to gain high compute

density. Containers are perfect for microservices because they package ap-

plications into lightweight, isolated, and consistently deployable units. This

is the exact application mobility microservices requires to perform failovers,
replications, scaling, and load balancing.

Given how powerful containers are, it makes sense for Service Fabric to
provide native support for them. Furthermore, as a microservices platform,
Service Fabric needs to embrace microservices that are not written using the
Service Fabric programming model. In the past two years, Service Fabric has
built up first-class support for Linux and containers. This will be the focus of
this part of the book.

Service Fabric on Linux

ervice Fabric running on Linux may come as a surprise. Why would Microsoft invest in non-Windows

platforms? The reality, however, is that Service Fabric on Linux resonates with the openness of
Azure strategy. Azure has never been just for Microsoft technologies. It's an inclusive platform that
welcomes all types of workloads on all technical stacks. In fact, a huge portion of Azure compute

power resides on Linux. The percentage of Linux VMs on Azure was 33% in 2016 and 40% in 2017,
and it continues to increase.

As a microservices platform, Service Fabric must embrace not only Windows-based workloads, but
also Linux-based workloads. In the past two years, the Service Fabric team has built up native Linux
support with Java tooling. This chapter introduces the Linux development experiences using the Service
Fabric programming model. Chapter 13 and Chapter 14 focus on containers and container orchestrations.

Note At the time of this writing, Service Fabric on Linux has just recently become generally
available. Tooling experiences and product behaviors are subject to change. Please visit this
book’s companion GitHub repository for updated samples.

Service Fabric Hello, World! on Linux

The Service Fabric team has chosen Java as its primary programming language on Linux. In this section,
you'll learn how to set up a development environment on Linux and use Java to write a simple Service
Fabric application.

Setting Up Your Linux Development Environment

Follow these steps to set up your Linux development environment. (These instructions are based on
Ubuntu 16.04.)

1. Toinstall the Service Fabric runtime, Service Fabric common SDK, and a sfctl CLI, use the
following script:

sudo curl -s https://raw.githubusercontent.com/Azure/service-fabric-scripts-and-
templates/master/scripts/SetupServiceFabric/SetupServiceFabric.sh | sudo bash

265

7.

Use this script to set up a local cluster:
sudo /opt/microsoft/sdk/servicefabric/common/clustersetup/devclustersetup.sh

After the cluster has been configured, open a web browser and navigate to http://localhost:
19080/Explorer. The Service Fabric Explorer should open. Or, if you want to try out sfctl, you
can use the following command to obtain a list of node names:

sfctl cluster select -endpoint http://localhost:19080
sfct node 1list | grep name

Service Fabric uses Yeoman to scaffold Service Fabric applications. Yeoman is an open-source
tool originally designed for this task. Use the following commands to install and configure
Yeoman with Service Fabric application generators:

sudo apt-get install npm

sudo apt install nodejs-Tegacy

sudo npm 1install -g yo

sudo npm install -g generator-azuresfcontainer
sudo npm install -g generator-azuresfguest

If you plan to build Service Fabric services using Java, use the following commands to install
JDK 1.8 and Gradle:

sudo apt-get install openjdk-8-jdk-headless
sudo apt-get install gradle

For the IDE, Service Fabric chose Eclipse for Java development. To install Eclipse, download
the package from www.eclipse.org/downloads/eclipse-packages (this book uses the Oxygen.1
version), extract all files from the package, and launch eclipse-inst.

Service Fabric provides an Eclipse plug-in to facilitate application creation. After you install
Eclipse, launch it, open the Help menu, and choose Install New Software.

In the Work With box, type http://dl.microsoft.com/eclipse. Then click the Add button.

Select the ServiceFabric plug-in. Then follow the wizard to install the plug-in.

Note If you want to enable the desktop Ul on your Azure Ubuntu VM, use the following
commands (tested on Ubuntu 16.04):

sudo
sudo
sudo
echo
sudo

apt-get install xrdp
apt-get update

apt-get install xfce4
xfced-session >~/.xsession
service xrdp restart

Then configure networking on the VM to allow inbound RDP connections through port
3389. After that, you should be able to connect to your Ubuntu desktop using RDP.

266

Linux and Containers

http://www.eclipse.org/downloads/eclipse-packages
http://dl.microsoft.com/eclipse

Hello, World! Again

Now it's time to send greetings to a brand-new world. In the following exercise, you'll create a new
Service Fabric stateless service using Eclipse. Follow these steps:

1.

2.

In Eclipse, open the File menu, choose New, and select Other.

Expand the Service Fabric folder, select Service Fabric Project, and click Next.

(See Figure 12-1)

Select a wizard

Wizards:

| type filter text

» (= General

b (= Git

P (= Gradle

b =Java

P = Maven

b (= Oomph

(= Service Fabric
b = Tasks

P = XML

b (= Other

P (= Examples

(?) < Back | cancel | Finish

% New gg E g

FIGURE 12-1 The Eclipse New Project wizard.

In the next screen, type HelloWorldLinux in the Project Name box and click Next.

In the Add Service screen, select the Stateless Service template, type HelloWorldService in

the Service Name box, and click Finish to add the service. (See Figure 12-2.)

Service Fabric on Linux

267

268

Add Service:
Select a Template:

Service Templates:

Actor Service A template for creating Stateless service. Use a stateless service if your service has no persistent state or

if you intend to manage state in an external store, such as Azure DocumentDB or a SQL database.

= Stateless Service
Stateful Service

Container Service

Guest Binary Service

Enter Service Name: HelloWorldService|

?) | <Back | Next= || Cancel |

FIGURE 12-2 Add a service.

5. When the wizard prompts you to open the Service Fabric perspective, click Open Perspective.

6. After the application is created, poke around the package tree to familiarize yourself with the
package structure.

Fortunately, the Java project is similar to a C# project. You can see how instance listeners are
created, how the runAsync method is implemented in HelloWorldServiceService. java, and how
the service is registered in HelloWorldServiceServiceHost java. (See Figure 12-3.)

e eclipse-workspace - i { d { viceSer -java - Eclipse
Fle Edit Source Refactor Navigate Search Project Run Window Help
Sz P Bl e il S B0 S r OO f bl G

I-H’ackage Explorer 2% | [F: = & = | [l HelloWorldServiceService.java & | [d] HelloWoridServiceServiceHost java = 0
& HelloWorldLinux B 1 package statelessservice;
bm]RESyslemLmrary ava-8
V|,_-.HelIDWDHULIHUKAgﬂIIfatIOn
* (=HelloWorldServicePkg 11 public class HelloWorldServiceService extends StatelessService {
x| ApplicationManifest.xmi he
w2 HelloWorldService "
b =11
v = statelessservice

[HelloWorldServiceServiceHost java

._'+ import java.util.concurrent.CompletableFuture;[|
10

a0verride

prnte:teﬂ List<ServiceInstanceListener> createServicelnstancelistene
Jf TODD: If your service needs to handle wser reguests, return t
return supar createSerncelnstanceustenerst:.

@0verride
& build.gradie protect:ﬁ CompletableFuture<?> runﬁsync(Cancellatlun!’oken cancellati
P = PublishProfiles 21 /f TODD: Replace the following with your own logic
b = Scripts return super.runAsync(cancellationToken);

& build.gradle 24 }

o settings.gradie

FIGURE 12-3 Java package structure.

PART Il Linux and Containers

7.

10.

1.

In Package Explorer, right-click HelloWorldLinux, select Service Fabric, and choose Deploy
Application to build and deploy the application. After the application is deployed, you should

see your service instance running through the Service Fabric Explorer.

Note Provisioning a Service Fabric cluster consumes about 22 GB of your system
drive. If you are running low on disk space, you may want to move the cluster to a
different volume. Here’s how:

cd /opt/microsoft/sdk/servicefabric/common/clustersetup

sudo ./devclustercleanup.sh

sudo rm -rf /home/sfuser/sfdevcluster

sudo ./devclustersetup.sh --clusterdataroot=/some/other/volume

Open HelloWorldService\src\statelessservice\HelloWorldServiceService.java and
examine the stateless service implementation. The scaffolded implementation isn't exciting;
indeed, it doesn't do anything:

protected CompletableFuture<?> runAsync(CancellationToken cancellationToken) {
return super.runAsync(cancellationToken);

}

In a moment, you'll modify the runAsync method to make it behave in the same way as
the default C# stateless service and maintain an incrementing local counter. You'll also add
a FileHandTer to record log entries into files under the services’ log folder. First, though,
you'll need to import the following namespaces:

import java.util.logging.FileHandler;
import java.util.logging.SimpleFormatter;

Issue the following command to add a logger as a static member of the
HelloWorldServiceService class:

private static final Logger logger =
Logger.getlLogger(HelloWorldServiceService.class.getName());

Modify the runAsync method as shown in the following code:

@Override
protected CompletableFuture<?> runAsync(CancellationToken cancellationToken) {
try
{
String TogPath = super.getServiceContext()
.getCodePackageActivationContext() .getlLogDirectory();
FileHandler handler = new FileHandler(logPath
+ "/mysrv-log.%u.%g.txt", 1024000, 10, true);
handler.setFormatter(new SimpleFormatter());
handler.setLevel(Level.ALL);
logger.addHandTler(handler);
} catch (Exception exp) {
logger.log(Level.SEVERE, null, exp);
}

Service Fabric on Linux

269

return CompletableFuture.runAsync(() -> {
try
{
int iteration = 0;
while (!cancellationToken.isCancelled()) {
logger.log(Level.INFO, "Working-"
Thread.sleep(1000);

+ iteration++);

}
} catch (Exception exp) {
Togger.Tlog(Level.SEVERE, null, exp);
}
s
}

Note a couple of things in the preceding code:

e You can use the getServiceContext () method to obtain the service context, through
which you can navigate an object tree that is very similar to the .NET object tree to obtain
contextual information—for example to obtain the service’s log directory using the
object model.

e The runAsync method is supposed to return a java.util.concurrent.Completable
Future<T> instance.

12. Build and deploy the application to your local cluster.

13. Locate the log path of your service instance on the hosting node. You'll find generated log
files under the services log folder.

Using Communication Listeners

To create a service that listens to client requests, you need to create and register a
CommunicationListener implementation. This process is very similar to what you did in Chapter 2.
Perform the following steps to create a Java-based calculator service that provides a REST API for add
and subtract calculations:

1. In Eclipse, create a new Service Fabric application named CalculatorApplication with a stateless
service named Calculator.

2. Addanew CalculatorServer class to the project. This class contains nothing specific to
Service Fabric. It uses com. sun.net.httpserver.HttpServer to handle add and subtract
requests from clients.

package statelessservice;

import com.sun.net.httpserver.*;

import java.net.InetSocketAddress;

import java.io.IOException;

import java.io.OutputStream;

import java.io.UnsupportedEncodingException;
import java.util.HashMap;

270 Linux and Containers

import java.util.Map;

pubTlic class CalculatorServer {
private HttpServer server;
private int port;
public CalculatorServer(int port) {
this.port = port;
}
pubTlic void start() throws IOException {
server = HttpServer.create(new InetSocketAddress(port),0);
HttpHandler add = new HttpHandler() {
@Override
public void handle(HttpExchange h) throws IOException {
byte[] buffer = CalculatorServer.handleCalculation
(h.getRequestURI() .getQuery(), "add");
h.sendResponseHeaders (200, buffer.length);
OutputStream os = h.getResponseBody();
os.write(buffer);

os.close(Q);
}
1
HttpHandler subtract = new HttpHandler() {
@Override
public void handle(HttpExchange h) throws IOException {
byte[] buffer = CalculatorServer.handleCalculation
(h.getRequestURI().getQuery(), "subtract");
h.sendResponseHeaders (200, buffer.length);
OQutputStream os = h.getResponseBody();
os.write(buffer);
os.close();
}
b

server.createContext("/api/add", add);
server.createContext("/api/subtract"”, subtract);
server.setExecutor(null);
server.start();
}
public void stop() {
server.stop(10);
}
public static Map<String, String> queryToMap(String query) {
Map<String, String> map = new HashMap<String, String>Q);
for (String param: query.split("&")) {
String pair[] = param.split("=");
if (pair.length > 1) {
map.put(pair[0], pair[1]);
} else {
map.put(pair[0], "0");

}
return map;

}

pubTlic static byte[] handleCalculation(String query, String type)

throws UnsupportedEncodingException {

byte[] buffer = null;
Map<String, String> parameters = CalculatorServer.queryToMap(query);
int ¢ = 0;

Service Fabric on Linux

27

try

int a = Integer.parseInt(parameters.get("a"));
int b = Integer.parseInt(parameters.get("b"));
if (type.equals("add")) {

c=a+b;
} else {

c=a-b;

}
buffer = Integer.toString(c).getBytes("UTF-8");
} catch (NumberFormatException e) {
buffer = ("Invalid parameters").getBytes("UTF-8");
}

return buffer;

3. AddaWebCommunicationListener class to the project. This class implements microsoft.
servicefabric.services.communication.runtime.CommunicationListener and
overrides the openAsync, closeAsync, and abort methods.

package statelessservice;

import java.util.concurrent.CompletableFuture;

import java.io.IOException;

import microsoft.servicefabric.services.communication.runtime.CommunicationListener;
import microsoft.servicefabric.services.runtime.StatelessServiceContext;

import system.fabric.description.EndpointResourceDescription;

import system.fabric.CancellationToken;

pubTlic class WebCommunicationListener implements CommunicationListener {
private StatelessServiceContext context;
private CalculatorServer server;
private String webEndpointName = "ServiceEndpoint";
private int port;
pubTic WebCommunicationListener(StatelessServiceContext context) {
this.context = context;
EndpointResourceDescription endpoint =
this.context.getCodePackageActivationContext().getEndpoint
(webEndpointName) ;
this.port = endpoint.getPort(Q);

@Override
public CompletableFuture<String> openAsync(CancellationToken cancellationToken) {
CompletableFuture<String> str = new CompletableFuture<>(Q);
String address = String.format("http://%s:%d/api",
this.context.getNodeContext () .getIpAddressOrFQDN(), this.port);
str.complete(address);
try
{
server = new CalculatorServer(port);
server.start();
} catch (IOException e) {
throw new RuntimeException(e);

272 Linux and Containers

return str;

}

@Override
pubTlic CompletableFuture<?> closeAsync(CancellationToken cancellationToken) {
CompTletableFuture<Boolean> task = new CompletableFuture<>();
task.complete(Boolean.TRUE);
if (server != null) {
server.stop(Q);

}
return task;
}
@Override
pubTlic void abort() {
if (server != null) {
server.stop(Q);
}
}

}

Modify CalcuTatorService to return WebCommunicationListener from the overridden
createServiceInstancelisteners method:

import java.util.ArraylList;

public class CalculatorService extends StatelessService {
@Override
protected List<ServiceInstancelListener> createServiceInstancelListeners() {
ArraylList<ServiceInstancelListener> listeners = new ArrayList(Q);
Tisteners.add(new ServiceInstancelListener((context) -> {
return new WebCommunicationListener(context);

)

return listeners;

3

Modify the CalculatorApplicationApplication\CalculatorPkg\ServiceManifest.xml file to define
an endpoint resource named ServiceEndpoint:

<Resources>
<Endpoints>
<Endpoint Name="ServiceEndpoint" Protocol="http" Port="8182" />
</Endpoints>
</Resources>

Build and deploy the application. Afterward, you should be able to use a browser
and send requests such as http://localhost:8182/api/add?a=100&b=200 and
http://localhost:8182/api/subtract?a=100&b=200. You should also get
corresponding outputs (300 and -100).

Service Fabric on Linux 273

Other Service Types and Frameworks

274

Using Service Fabric Java SDK to implement other service types, including stateful services, actor
services, and guest application services, is very similar to using the .NET SDK. Of course, because of
language differences, the Java SDK is adapted to work more naturally for Java developers.

Note One productivity goal of the Service Fabric team is to enable popular and proven pro-
gramming paradigms on Service Fabric. You can expect to see increasingly more languages
and frameworks receive native support through Service Fabric tooling.

The next few sections provide a quick glimpse into how Java SDK supports different service types.
To try out different service types, simply create a Service Fabric application and add a service with the
type. The scaffolded code gives you quick examples on basic usage of the corresponding service types.
You'll see a great similarity between the Java code and the .NET code.

Stateful Services

Interacting with state managers in Java SDKis slightly different from the .NET SDK. The Java SDK uses a
CompletableFuture<T> type, which can be taken as an approximation of the .NET Task<T> type. Or,
if you are familiar with promises, you can take it as an implementation of a promise. When you create

a new stateful service, the SDK scaffolds a default runAsync method implementation, as shown in the

following snippet:

@Override
protected CompletableFuture<?> runAsync(CancellationToken cancellationToken) {
Transaction tx = stateManager.createTransaction();
return this.stateManager.<String, Long>getOrAddReliableHashMapAsync("myHashMap")
.thenCompose((map) -> {
return map.computeAsync(tx, "counter", (k, v) -> {
if (v == null)
return 1L;
else
return ++v;
}, Duration.ofSeconds(4), cancellationToken).thenApply((1) -> {
return tx.commitAsync().handle((r, x) -> {
if (x = null) {
logger.log(Level.SEVERE, x.getMessage());
}
try {
tx.close();
} catch (Exception e) {
logger.log(Level.SEVERE, e.getMessage());
}
return null;
b
b
s

Linux and Containers

This code first creates a new transaction. Then, it tries to get or add amicrosoft.servicefabric.
data.collections.ReliableHashMap<K,V> instance, which is equivalent to IReliableDictionary
<K, V> in the .NET SDK. Finally, it tries to create or update the "counter" entry in the map and
commits the transaction.

Actor Services

Actor services with Java SDK work in the same way as .NET-based actor services. To construct and use
an actor service in Java, you need the same set of artifacts as in the .NET SDK:

m Actorinterface An actorinterface is defined as a regular Java interface that inherits a default
Actor interface—for example:

pubTlic interface MyActor extends Actor {
@Readonly
CompletableFuture<Integer> getCountAsync();
CompletableFuture<?> setCountAsync(int count);

}

m Actorimplementation An actor implementation inherits from a microsoft.
servicefabric.actors.FabricActor base class and implements the actor interface.
The following snippet shows that the actor implementation in Java corresponds almost
line by line with the .NET implementation:

@ActorServiceAttribute(name = "MyActorActorService")
@StatePersistenceAttribute(statePersistence = StatePersistence.Persisted)
pubTlic class MyActorImpl extends FabricActor implements MyActor {
private Logger logger = Logger.getLogger(this.getClass().getName());
public MyActorImpl(FabricActorService actorService, ActorId actorId){
super(actorService, actorld);
}
@Override
protected CompletableFuture<?> onActivateAsync() {
Togger.Tog(Level.INFO, "onActivateAsync");
return this.stateManager().tryAddStateAsync("count”, 0);
}
@Override
public CompletableFuture<Integer> getCountAsync() {
Togger.log(Level.INFO, "Getting current count value");
return this.stateManager().getStateAsync("count™);
}
@Override
public CompletableFuture<?> setCountAsync(int count) {
Togger.Tog(Level.INFO, "Setting current count value {0}", count);
return this.stateManager() .addOrUpdateStateAsync("count"”, count,
(key, value) -> count > value ? count : value);

Service Fabric on Linux 275

276

Actor proxy for a client to connect to an actor service The Java SDK provides a
microsoft.servicefabric.actors.ActorProxyBase class, through which you can
create actor proxies for your actor interface:

MyActor actorProxy = ActorProxyBase.create(MyActor.class, new ActorId("From Actor 1"),
new URI("fabric:/ActorApplicationApplication/MyActorActorService™));

int count = actorProxy.getCountAsync().get();

System.out.printIn("From Actor:" + ActorExtensions.getActorId(actorProxy)
+ " CurrentValue:" + count);

actorProxy.setCountAsync(count+1);

Guest Binary Services

As on the Windows platform, you can package a guest binary and host it on Service Fabric as a stateless
service. The following steps show you how to package a Python-based application as a guest binary
service. In this simple example, you'll create a web server using Flask and then host the Python applica-
tion as a stateless service on your local Service Fabric cluster.

1.

Create a new Service Fabric application named GuestPythonApplication with a guest binary
service named FlaskWebServer.

When asked for guest binary details, simply click the Finish button. You'll add these files
manually later.

Use the following code, which uses Flask to implement a very simple web server, to create a new
flaskserver.py file in the GuestPythonApplicationApplication\FlaskWebServerPkg\Code folder:

from flask import Flask
app = Flask("myweb™)
@app.route("/™)
def hello():
return "Hello from Flask!"
app.runChost="'0.0.0.0"', port=8183, debug = False)

In the same folder, add a new launch.sh file to launch the web server. The following script first
installs the flask module using pip. Then, it locates the path of the current script and feeds the
correct server file path to Python. Strictly speaking, installing Flask should have been done in
a setup entry point because it's a host environment configuration step. I'll leave this exercise
to interested readers.

#!/bin/bash

sudo python -m pip install flask >> ../log/flask-install.txt 2>&1
pushd $(dirname "${0}") > /dev/null

BASEDIR=$(pwd -L)

popd > /dev/null

logger ${BASEDIR}

python ${BASEDIR}/flaskserver.py

Linux and Containers

5. Update the ServiceManifest.xml file as follows:

<?xml1 version="1.0" encoding="utf-8" 7>
<ServiceManifest Name="FlaskWebServerPkg" Version="1.0.0" xmlns="http://schemas.
microsoft.com/2011/01/fabric" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Description>Service that implements a FlaskWebServer service</Description>
<ServiceTypes>
<StatelessServiceType ServiceTypeName="FlaskWebServerType" UseImplicitHost="true"/>
</ServiceTypes>
<CodePackage Name="Code" Version="1.0.0">
<EntryPoint>
<ExeHost>
<Program>1aunch.sh</Program>
<Arguments />
<WorkingFolder>CodePackage</WorkingFolder>
</ExeHost>
</EntryPoint>
<EnvironmentVariables></EnvironmentVariables>
</CodePackage>
<ConfigPackage Name="Config" Version="1.0.0" />
<DataPackage Name="Data" Version="1.0.0" />
<Resources>
<Endpoints>
<Endpoint Name="ServiceEndpoint" Protocol="http" Port="8183" Type="Input"/>
</Endpoints>
</Resources>
</ServiceManifest>

6. Build and deploy the application.

7. Using a web browser, navigate to http://localhost:8183/. You should see a "Hello from
Flask!” message.

Using Yeoman

In addition to the Eclipse experience, Service Fabric provides a few generators that enable you to create
Service Fabric applications using Yeoman. Yeoman (http://yeoman.io/) is an application scaffolding
tool with an extensible generator ecosystem that hosts generators for various application types, includ-
ing Service Fabric applications.

When you install the Service Fabric SDK, Yeoman is installed and configured automatically.
To launch Yeoman, issue the yo command in a terminal.

To recreate the previous guest binary application in Yeoman, follow these steps:
1. Create a new ~/pythonflask folder and copy the flaskserver.py and launch.sh files into it.

2. Usetheyo azuresfguest command to launch Yeoman with the azuresfguest generator.
You should see output like that shown in Figure 12-4.

Service Fabric on Linux 277

http://yeoman.io/

278

? Name your application [J

: /S yo azuresfguest

| | Welcome to Service
|--(o)--| Fabric guest application
Teeeeeeas ’ generator

FIGURE 12-4 Use the azuresfguest generator with Yeoman.

3. Yeoman prompts you to provide information. Respond to these prompts as shown here:

Name Your Application GuestApp
Name of the Application Service Flask

Source Folder of Guest Binary Artifacts /home/<your user name>/pythonflask (Based
on my tests, you need to provide the absolute path here.)

Relative Path to Guest Binary in Source Folder launch.sh
Parameters to Use When Calling Guest Binary Press Enter to leave this field empty.

Number of Instances of Guest Binary Press Enter to accept the default setting of 1.

After you respond to all the prompts, Yeoman creates a folder with the application name and
generates an application package. It also creates two scripts, install.sh and uninstall.sh, which
you can use for installing and uninstalling the application.

Note Yeoman does not define service endpoints. You'll need to add service endpoint con-
figurations yourself. Furthermore, at the time of this writing, the generator doesn't give you
any warnings if you've specified a wrong path for binary artifacts. You need to make sure
you've entered the correct absolute path to your binary app artifacts.

Linux and Containers

Index

Numbers
404 errors, 129

A

ACI (Azure Container Instances), 338-339.
See also containers
ACLs (access control lists), 110
actor pattern, overview, 67
actor services, Linux, 275-276
actor states, state bottlenecks, 161-162
actors. See also tic-tac-toe game
APIs, 9
communications, 69
concurrency, 69-70
defined, 68
digital twins, 67
ETW (Event Tracking for Windows), 81-83
events, 80-81
instances, 87-88
lifetime, 68
performance counters, 83-87
reactive messaging patterns, 403-406
reminders, 79-80
state providers, 88-90
states, 68, 87-88
timers, 78-79
WebSocket for live data processing, 360-366
actors and processing topologies
cached lookup grid, 359-360
join-by-field, 359
overview, 357
parallel batching, 358
streaming top N, 358-359
AD (Active Directory)
client authentication, 1778-180
OAuth, 374-375

security, 373-377
ws-Federation, 373-374
aggregation coordination pattern, 165-166,
443-448, 480
Al (artificial intelligence). See also Machine
Learning Studio
ArchiBot, 431-432
Bot Service and Bot Framework, 428-431
challenges and pitfalls, 411-412
image-analysis applications, 421-422
machine learning, 410-411
natural language processing, 422-425
neural networks, 411
OCR application, 419-421
overview, 409-410
TensorFlow compute engine, 432-435
users’ intentions, 425-426

AKS (Azure Container Service), PaaS ecosystem, 326

APIs (application programming interfaces), 9

for autoscaling, 154-155

OSB (Open Service Broker) API, 380
Application Insights, 232-237
application manifest, 37
application-deployment

code package, 93-95

configuration package, 95

create/replace/upgrade, 97

data package, 95-96

folder structure, 92

implicit hosts, 108-114

package, 91-92

parameters and files, 107

publish profiles, 108

register/provision, 97

resource governance, 115

rolling upgrades, 101-107

upload, 96-97

483

application-level queries

application-level queries, 186-187
application-management commands, 192-197
applications
decommissioning, 195
deploying, 192-193
rolling back, 194
and services, 8
upgrading, 193-194
ArchiBot, 431-432
architecture, Service Fabric, 6-7
ARM (Azure Resource Manager), 151-152
ASM (Azure Service Management) API, 475
ASP.NET
core applications, 27-31
core container, 287-289
audio transcription, natural language
processing, 423-425
authentication
AD (Active Directory), 376-377
claim-based, 335, 481
autoscaling
clusters, 154-157
explained, 480
vs. scaling, 148
availability
advanced rolling upgrades, 131-133
batching load reports, 122
configuration and data changes, 131-133
DNS service, 129-130
improving, 118
Naming Service, 127-128
placement constraints, 122-123
replicas, 119
resource reserves, 126
resource-balancing metrics, 120-122
reverse proxy, 128-129
routing and load-balancing, 127-130
service affinity, 124-125
service defragmentation, 125-126
service failovers, 126-127
service placements, 120-126
upgrading with diff packages, 133
Azure
running Docker, 286
VM (Virtual Machine) scale sets, 151-152
Azure Cloud Shell, 26, 173

484

Azure Diagnostics, 134-136

Azure Insights, using for autoscaling, 155-157

Azure Quick Start templates, 151-152
Azure Service Fabric

B

applications and services, 8
architecture, 6-7

CLI (command-line interface), 25-26
Cloud Shell, 26

containerization, 3-4
containers, 10

data replication, 5

development environment, 10-11
documentation, 26

evolution, 6

guest applications, 10

Hello, World! 15-19
microservices, 3—6

nodes and clusters, 7-8
partitions and replicas, 8-9
programming modes, 9
provisioning cluster, 11-15
scheduling, 4

SDK, 10

Service Fabric Explorer, 21-24
service partitioning, 5

state reconciliation, 4

stateless vs. stateful, 9-10
subscription, 11

updates, 26

Visual Studio Cloud Explorer, 19-21
Windows PowerShell, 24-25

backup and restore, service state, 141-144
batching, 122, 165, 480

blades, 11

Blob Storage, using, 371

Bot Service and Bot Framework, 428-432
bottlenecks

communication bottlenecks, 164-165
orchestration bottlenecks, 165
resolving, 159

state bottlenecks, 159-163
throughput and response time, 159

broken services, 117. See also services
bronze durability tier, 149
bronze reliability tier, 150

C

cached lookup grid topology, 359-360
calculator service
creating, 33-35
gRPC framework, 45-48
replica ID, 39-41
WCF clients, 42-44
Cassini case study, 347-348
CD (continuous delivery)
Cl (continuous integration), 239-240
deployment approvals, 251-252
gated check-ins, 257-259
load tests with VSTS, 259-261
overview, 240-241
release definition, 249-251
software testability, 252-256
unit testing, 256-257
CD software testability
clarity, 255
controllability, 253
isolability, 254-255
observability, 253-254
overview, 252-253
CDN (Content Delivery Network), scaling with,
157-158, 329, 480
certificates
using for client authentication, 178
using to protect clusters, 174-177
chaos testing, reliability, 136141
Cl (continuous integration)
build definition, 246-249
team preparation, 242-246
TFS (Team Foundation Server), 242
TFS (Team Foundation Service), 242
VSO (Visual Studio Online), 242
VSTS (Visual Studio Team Services), 242
VSTS nomenclature, 242
claim-based authentication, scaling with
partition, 335, 481
CLI (command-line interface), 25, 195-197
client authentication
AD (Active Directory), 178-180
certificates, 174-178
Visual Studio, 180-181
client-side latency, 345-346
Cloud Shell, 26, 173

compute to data

cluster configuration
internal load balancer, 211
NSGs (network security groups), 207-211
RBAC (role-based access control), 206-207
cluster management commands. See also scripting
application-level queries, 186-187
cross queries on cluster nodes, 189-190
node operations, 190-192
node-level queries, 184-185
partition-level queries, 188
query commands, 181-184
replica-level queries, 188
service-level queries, 187-188
cluster settings, updating, 212
cluster-level queries, 181-184
clusters. See also local cluster; nodes; PowerShell;
provisioning clusters; VMs (Virtual Machines)
autoscaling, 154-157
blades, 199
load balancers, 203-205
managing, 196-197
map in Service Fabric Explorer, 201
NAT rules, 203-204
protecting, 174-177
provisioning, 11-15
resources, 200
scaling, 151-158
Service Fabric on Edge, 463-466
storage accounts, 206
virtual networks, 202
VM scale sets, 200
code package, 36-37,93-95
Cognitive Services, 418
Command Query Responsibility Segregation
(CQRS), 348-349
communication bottlenecks, 164-165
communication stacks. See also stateless services
customizing, 45-48
default, 32-41
WCF, 41-44
communication subsystem, 7
competing consumers, 167, 479
composable processing, explained, 479
compute to data
moving, 462
Service Fabric on Edge, 463-466
workload distribution, 466-467

485

ConfigPackage

486

ConfigPackage, 37

configuration and data changes, availability, 131-133

configuration package, 95-96
container orchestration
DNS service, 301-306
Docker Compose, 309-313
service meshes, 314-322
watchdog service, 306-309
containerization, 3-4
containers. See ACI (Azure Container
Instances); Docker
and guest applications, 10
high availability, 290
patterns, 479
running as daemons, 283
Ubuntu, 282-283
Windows, 281-282
control plane, 339-342, 383, 481
Cosmos DB, 371-372
coupling, 164
CPU consumption limits, 115
CQRS and event sourcing, 348-349, 480
create/replace/upgrade, 97
cross queries on cluster nodes, 189-190

D

daemons, running containers as, 283
dashboard, defined, 11
data authenticity, 174-177
data integrity, 174-177
data privacy, 174-177
data replication, Microsoft Azure Service Fabric, 5
data storage
overview, 367
relational databases, 368-371
databases, 368-371
DataPackage, 37
data-streaming pipelines
composable processing, 350-351
processing sequence, 351-355
test client, 355-357
dead-letter channel, 383-384
DefaultServices, 37
defragmentation, service placements, 125-126
development environment
Linux, 265-266
setting up, 10-11

device actors, static compute, 441-443
diagnostic data, collecting, 134-136
diagnostics
configuring, 215-218
data pipeline, 213-214
Elasticsearch, 221-225
EventFlow, 218-225
Kibana, 221-225
diff packages, upgrading with, 133
disk encryption, 373
distributed computing, 169, 479-480
DMZs (demilitarized zones), 208, 481
DNS and container orchestration
application, 304-306
deployment and testing, 308-309
Docker images, 302-304
overview, 301
Spring Java server, 307-308
watchdog service, 306-308
DNS service, availability, 129-130
Docker. See also containers
container ecosystem, 387
containerization on Linux, 279-281
running on Azure, 286
running on Linux, 282-285
running on Windows, 286
Docker and Service Fabric
ASP.NET Core on Windows, 287-289
Minecraft container on Linux, 290-296
using, 286
Docker Compose. See also services
composing services, 312
deployment and testing, 312-313
master image, 310-311
overview, 309-310
slave image, 311
Docker images, working with, 284-285
Docker volume drivers, Minecraft server
container, 283-284
documentation, Microsoft Azure Service Fabric, 26
DSC (desired state configuration), Linux, 263-264
durability characteristics, 149

e-commerce application, 361
Edge Envoy, 320-322
elastic pools, 369-370

KVS (key-value store)

elastic systems, 406 query commands, 182
Elasticsearch, 221-225 reporting and aggregation, 101
encrypting disks, 373 states, 99
entities Hello, World!
managing with sfctl, 197 Linux, 267-270
query commands, 181-190 Microsoft Azure Service Fabric, 15-19
Envoy edge and service proxy heterogeneous instances, 146-147
application, 319-320 homogeneous instances, 146-147
deploying, 316-322 horizontal scaling, 3, 145-146
Edge Envoy, 320-322 hosting subsystem, 7
Go container, 317-319 HTTP and HTTPS
overview, 314-315 cluster protection, 177
Postgres container, 316-317 endpoints, 110-111
ETW (Event Tracking for Windows), 18 hub, defined, 11
actors, 81-83 Hyper-V containers, Windows, 282
event source providers, 135
reliability, 134
Event Grid architecture, 398-399 |

event ingress, static compute, 449-452
event sourcing, 348-350

event storage, static compute, 452-460
EventFlow, 218-225

image-analysis applications, 421-422
implicit hosts

defining, 108-109

Node.js application, 111-114

RunAs policies, 109-111

F instances, homogeneous vs. heterogeneous, 146-147
interactive system techniques

FabricCounters performance counter, 83-84 latency, 343-346

failover tests, performing, 140141 throughput, 347-348

fault domain, 101 internal load balancer, 211

federation subsystem, 6-7 |oT pipeline, 437, 449, 459, 462

field-gateway simulation, 448-461 isolation levels, 160

functions, creating, 399-401

J

G Java SDK vs. .NET SDK, 274-276

Go container, Envoy edge and service proxy, 317-319 Java Spring server, building, 307-308

gold durability tier, 149 Jenkins server, continuous deployment, 297-298
gold reliability tier, 150 join-by-field topology, 359

graceful faults, 141

gRPC framework, 45-48

guest applications, 10 K

guest binary services, Linux, 276-277 Key Vault security, 377-378

Kibana, 221-225
H Kubernetes, 326, 328
KVS (key-value store), 88
health model
overview, 97-99
policy, 99-100

487

latency

488

L

latency
client-side, 345-346
server-side, 343-345
Linux
actor services, 275-276
cgroups, 279-280
container runtimes, 281
containerization with Docker, 279-281
and containers, 263-264
copy-on-write, 279
development environment, 265-266
Docker images, 281
DSC (desired state configuration), 263-264
guest binary services, 276-277
Hello, World! 267-270
namespaces, 279
running Docker, 282-285
single-container networking, 285
stateful services, 274-275
Yeoman application scaffolding, 277-278
listeners
CommunicationListener, 270-273
support, 48
WebSocket for live data processing, 364-365
load balancers, 31, 203-205. See also resource
load balancing
local cluster, 19-26, managing. See also clusters;
provisioning clusters
local store settings, 90
log analytics, 226-228, 373
logger, stateful services, 51
Logic Apps, 401-402
loose coupling, 164165, 481

M

Machine Learning Studio. See also Al (artificial
intelligence)

calling services, 417-418
Cognitive Services, 418
natural language processing, 422-428
OCR (optical character recognition), 418—-422
overview, 413-417

management subsystem, 7

memory consumption limits, 115

message delivery, failure, 383-384

message translators, 386

message-driven systems, 403
messaging gateway, 384-385
Metaparticle library, PaaS ecosystem, 328
metric triggers, 155
microservices, 3-6, 299-300
Microsoft Azure Service Fabric
applications and services, 8
architecture, 6-7
CLI (command-line interface), 25
Cloud Shell, 26
containerization, 3-4
containers, 10
data replication, 5
development environment, 10-11
documentation, 26
evolution, 6
guest applications, 10
Hello, World! 15-19
microservices, 3—6
nodes and clusters, 7-8
partitions and replicas, 8-9
programming modes, 9
provisioning cluster, 11-15
scheduling, 4
SDK, 10
Service Fabric Explorer, 21-24
service partitioning, 5
state reconciliation, 4
stateless vs. stateful, 9-10
subscription, 11
updates, 26
Visual Studio Cloud Explorer, 19-21
Windows PowerShell, 24-25
Minecraft server container on Linux
application, 291-292
Azure storage account, 292-293
deploying, 294
Docker volume drivers, 283-284
redundancy, 290-291
scaling, 296
testing, 295
testing failovers, 296
mock components, 254-255, 481
monitoring
Application Insights, 232-237
Explorer, 230-232
Monte Carlo simulation, 169
multi-tenancy
patterns, 480
vs. single tenancy, 147-148

relational databases

N performance and scalability, 480
system architecture, 481
N elements, streaming, 358-359 Paxos algorithm, 66
NamedPartition, 62 performance
Naming Service, 37-41,127-128 counters and actors, 83-84
NAT (network address translation) rules, 203-204 patterns, 480
natural language processing, 422-428 Performance Monitor, 85, 90
NET SDK vs. Java SDK, 274-276 persistent data volumes, 479
neural networks, 411 pi, estimating, 169
Nginx server, launching as daemon, 283 placement constraints, availability, 122-123
Node.js application, hosting, 111-114 platinum reliability tier, 150
node-level queries, 184-185 player actor, implementing, 74-75
nodes. See also clusters port sharing, scaling with partition, 337-338
and clusters, 7-8 portal terms, 11
operations, 190-192 Postgres container, Envoy edge and service
troubleshooting, 229 proxy, 316-317
types, 148-150 Postman Ul, 223
noisy neighbor problem, 115 PowerShell. See also clusters
NoSQL databases, 371-372 clusters, 174181
NSGs (network security groups), 207-211 Create command, 475

Delete command, 475
installation, 473

0 Key Vault security, 377-378
OAuth, AD (Active Directory), 374375 Read command, 475

OCR (optical character recognition), 418—-422 r?soyrce.r groups, 475-478
OMS (Operations Management Suite), 225-229 signing in, 473-474

Update command, 475

OOP (object-oriented programming), 67 ' ;
probe properties, updating, 205

orchestration

bottlenecks 165-168 programming modes, Microsoft Azure
engines 295_301 Service Fabric, 9
explainéd 4 provisioning clusters, 11-15. See also clusters;

0SB (Open Service Broker) AP, 380-381 local dluster , ,
Python application, guest binary service, 276-277

P

PaaS$ ecosystem) o
AKS (Azure Container Service), 326 QoS (quality of service) improvements, 3

app services, 325 query commands, 181-184

Metaparticle library, 328

platforms, 327-328 R

Service Fabric, 326-327

VMSS (Virtual Machine Scale Sets), 326 RBAC (role-based access control), 206-207
parallel batching topology, 358 reactive systems, 403—406, 481
partition-level queries, 188 ReadOn1y method, using with actor timers, 79
partitions, 5, 8-9 reads, separating from writes, 348-350
patterns redundancy and high availability, 290

containers, 479 register/provision, 97

distributed computing, 479-480 relational databases, 368—371

multi-tenancy, 480

489

reliability

490

reliability
Azure Diagnostics, 134-135
chaos testing, 136-141
characteristics, 150
defined, 133
ensuring, 133-134
ETW (Event Tracking for Windows), 134
graceful faults, 141
improving, 118-119
restoring services, 143-144
state backup and restore, 141-144
subsystem, 67
ungraceful faults, 141
Reliable State Manager, 50-51
remote accesses, 44
replica roles, Simple Store application, 63-64
replica-level queries, 188
replicas. See also partitions; services
availability, 119
defined, 21
replicator behavior settings, 89
resilient systems, 406
resource governance, 115
resource load balancing, 64-65, 120-122. See also
load-balancers
resource reserves, availability, 126
resources, defined, 151
response time and throughput, 159
responsive systems, 403-405
reverse proxy
availability, 128-129
scaling with partition, 336
RM (Resource Manager), 475
rolling upgrades, 131-133. See also upgrades
routing and load-balancing, 127-130
RunAs policies, 109-111

S

scalability
ACI (Azure Container Instances), 338-339
and availability, 32
durability characteristics, 149
dynamic workload patterns, 407
extensible control plane, 339-342
heterogeneous instances, 146-147
homogeneous instances, 146-147
manual scaling vs. autoscaling, 148

node types, 148-149
patterns, 480
reliability characteristics, 150
single tenancy vs. multi-tenancy, 147-148
stateless vs. stateful, 146
vertical vs. horizontal, 145-146
scalable interactive systems
data-streaming pipelines, 350-357
latency, 343-346
throughput, 347-348
topologies and actors, 357-360, 479
WebSocket for live data processing, 360-366
scaling,
vs. autoscaling, 148
by partition, PaaS, 326
scaling clusters
ARM (Azure Resource Manager), 151-152
autoscaling, 154-157
AZM (Azure Management Portal), 152-154
CDN (Content Delivery Network), 157-158
on manual basis, 152-154
VM (Virtual Machine) Scale Sets, 151-152
scaling with bursting, overview, 338-339, 479
scaling with partition
claim-based authentication, 335
explained, 480
port sharing, 337-338
reverse proxy, 336
service meshes, 335-338
tenant manager, 332-335
scaling with reduction
aggregated views, 330
caching, 330-331
CDN (Content Delivery Network), 329
data manipulation, 331
explained, 480
home views, 329-330
overview, 328
precomputed views, 331
recommendation views, 330
scheduling, 4
scripting. See also cluster management commands
application-management commands, 192-197
Cloud Shell, 173
PowerShell, 174-181
Sea Breeze
design principles, 407-408
features, 395

security
AD (Active Directory), 373-377
disk encryption, 373
Key Vault, 377-378
log analytics, 373
SSL with custom domain, 378-379
sensor actors, 443, 481
serverless computing
architecture, 395-396
benefits, 396-397
container instances, 397-398
deployment, 393-394
elastic systems, 406
Event Grid, 398-399
explained, 481
Functions, 399-401
Logic Apps, 401-402
message-driven systems, 403
platform, 394-395
resilient systems, 406
responsive systems, 403-405
Sea Breeze, 395
server-side latency, 343-345
service affinity, 124-125, 480
service brokers
explained, 481
extensible control plane, 383
integration, 379-383
OSB (Open Service Broker) API, 380-381
OSB for Azure, 381
service defragmentation, availability, 125-126
Service Fabric
applications and services, 8
architecture, 6-7
CLI (command-line interface), 25-26
Cloud Shell, 26
containerization, 3-4
containers, 10
data replication, 5
development environment, 10-11
documentation, 26
evolution, 6
guest applications, 10
Hello, World! 15-19
microservices, 3—6
nodes and clusters, 7-8
partitions and replicas, 8-9
programming modes, 9
provisioning cluster, 11-15
scheduling, 4

Simple Store application

SDK, 10
Service Fabric Explorer, 21-24
service partitioning, 5
state reconciliation, 4
stateless vs. stateful, 9-10
subscription, 11
updates, 26
Visual Studio Cloud Explorer, 19-21
Windows PowerShell, 24-25
Service Fabric Explorer, Microsoft Azure Service
Fabric, 21-24
Service Fabric on Edge, 463-466
service failovers, availability, 126-127
service manifest, 36-37
service meshes
Envoy, 314-322
explained, 479
scaling with partition, 335-338
service partitioning, 5, 61-63
service placements
affinity, 124-125
availability, 120-126
batching load reports, 122
constraints, 122-123
defragmentation, 125-126
resource reserves, 126
resource-balancing metrics, 120-122
service-level queries, 187-188
services. See also broken services; Docker
Compose; replicas
APIs, 9
composing services, 387-389
discovery process, 38
parts, 35-36
service catalog, 381-383
ServiceTypes, 36
SetupAdminUser account, 110
sfctl command line, 197
SFNuGet project, 387-389
shopping-cart service, Simple Store
application, 52-56
silver durability tier, 149
silver reliability tier, 150
Simple Store application. See also stateful services
replica roles, 63-64
resource load balancing, 64-65
service partition, 61-63
shopping-cart service, 52-56
website, 56-61

491

single tenancy vs. multi-tenancy

492

single tenancy vs. multi-tenancy, 147-148
Spring Java server, building, 307-308
SQL Databases
event storage, 452—-454
provisioning, 368-369
word-statistics sample, 370-371
SQL elastic pools, 369-370
SSL, enabling with custom domain, 378-379
SSL with custom domain, 378-379
state backup and restore, reliability, 141-144
state bottlenecks
actor states, 161-162
explained, 159
isolation levels, 160
serialization, 162-163
state management performance, 85-86
state reconciliation, Microsoft Azure Service Fabric, 4
state replicators, 88
stateful services. See also Simple Store application
collections, 50
consistency, 52
Linux, 274-275
logger, 51
PaaS ecosystem, 326
Reliable State Manager, 50-51
Transactional Replicator, 51
stateless services. See also communication stacks
ASP.NET core applications, 27-31
scalability and availability, 31-32
vs. stateful, 9-10, 146
static compute
aggregators, 443-448
command and control, 438-439
data generation and feedback, 438
data ingress, 439
data transformation and analysis, 439-440
device actors, 441-443
end-to-end scenario, 448-449
event ingress, 449-452
event storage, 452-460
loT pipeline, 437
monitoring sensor data, 460
presentation and actions, 441
storage, 440
storage, static compute, 440
storage accounts, 206, 292-293
subscription, obtaining, 11
subsystems, 6-7

system architecture, patterns, 480
system integration
composing services, 387-389
data storage, 367-372
patterns with messaging, 383-386
security, 373-379
service brokers, 379-383

T

tenancy, single vs. multi, 147-148
Tenant Manager

explained, 480

scaling with partition, 332-335
TensorFlow compute engine, 432-435
testability subsystem, 7
TFS (Team Foundation Server), Cl (continuous

integration), 242

throughput and response time, 159
tic-tac-toe game. See also actors

actor interface, 71

actor models, 70

creating, 71

game actor, 72-74

improving, 77

player actor, 74-75

test client, 75-76

testing, 77
tile, defined, 11
timers. See actors
top N processing topology, 358-359
transaction coordinator, 385-386
Transactional Replicator, stateful services, 51
transport subsystem, 6-7
troubleshooting, nodes, 229

U

Ubuntu container, using, 282-283
ungraceful faults, 141
UniformInt64Partition, 61-62
updates

domain, 101

Microsoft Azure Service Fabric, 26

probe properties, 205
upgrades, 101-107. See also rolling upgrades

upgrading
applications, 193-194
with diff packages, 133

Vv

ValidationFailedEvent, raising, 137
vertical scaling, 145-146
virtual networks, 202
Visual Studio
Cloud Explorer, 19-21
development environment, 10-11
publishing applications to, 180-181
VMs (Virtual Machines). See also clusters
durability characteristics, 149
scale sets, 200
and virtual network cards, 201-202
VMSS (Virtual Machine Scale Sets), PaaS
ecosystem, 326
VSO (Visual Studio Online), Cl (continuous
integration), 242
VSTS (Visual Studio Team Services)
load tests, 259-261
nomenclature, 242
project preparation, 242-246
VSTS (Visual Studio Team Services), Cl (continuous
integration), 242

w

watchdog service
building, 306-307
explained, 480
WCF communication stack, 41-44
Web Platform Installer, 10-11
website, Simple Store application, 56—61
websites
Azure AD tenants, 179
Azure CLI (command-line interface), 195
Azure Quick Start templates, 151-152

zero-downtime upgrade

CDN (Content Delivery Network), scaling with, 158
cluster-management commands, 191
documentation, 26
Elasticsearch, 221
Hello, World! 15
Paxos algorithm, 66
Performance Monitor, 90
Service Fabric SDK, 10
sfctl command line, 197
WCF communication stack, 41
Yeoman application scaffolding, 277-278
WebSocket for live data processing
country/region actor, 362-363
gateway, 364
global actor, 363
listener, 364-365
overview, 360-361
product actor, 361-362
test client, 365-366
Windows
ASP.NET core container, 287-289
containers, 281-282
Hyper-V containers, 282
Performance Monitor, 85, 90
PowerShell, 24-25
running Docker, 286
word statistics, saving, 370
workflows, coordination, 167, 480
workload auction pattern, 479
writes, separating from reads, 348-350
ws-Federation, AD (Active Directory), 373-374

Y

Yeoman application scaffolding, Linux, 277-278

y4

zero-downtime upgrade, 101-102

493

	Cover
	Title Page
	Copyright Page
	Contents at a Glance
	Contents
	About the Author
	Foreword
	Introduction
	PART III: LINUX AND CONTAINERS
	Chapter 12 Service Fabric on Linux
	Service Fabric Hello, World! on Linux
	Setting Up Your Linux Development Environment
	Hello, World! Again

	Using Communication Listeners
	Other Service Types and Frameworks
	Stateful Services
	Actor Services
	Guest Binary Services

	Using Yeoman

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

