Home > Articles > Cisco Network Technology > General Networking > Fiber-Optic Technologies

Fiber-Optic Technologies

Chapter Description

Vivek Alwayn discusses in this chapter the increasing demand of optical-fiber and its wide spread applications ranging from global networks to desktop computers.

Optical-Cable Construction

The core is the highly refractive central region of an optical fiber through which light is transmitted. The standard telecommunications core diameter in use with SMF is between 8 m and 10 m, whereas the standard core diameter in use with MMF is between 50 m and 62.5 m. Figure 3-4 shows the core diameter for SMF and MMF cable. The diameter of the cladding surrounding each of these cores is 125 m. Core sizes of 85 m and 100 m were used in early applications, but are not typically used today. The core and cladding are manufactured together as a single solid component of glass with slightly different compositions and refractive indices. The third section of an optical fiber is the outer protective coating known as the coating. The coating is typically an ultraviolet (UV) light-cured acrylate applied during the manufacturing process to provide physical and environmental protection for the fiber. The buffer coating could also be constructed out of one or more layers of polymer, nonporous hard elastomers or high-performance PVC materials. The coating does not have any optical properties that might affect the propagation of light within the fiber-optic cable. During the installation process, this coating is stripped away from the cladding to allow proper termination to an optical transmission system. The coating size can vary, but the standard sizes are 250 m and 900 m. The 250-m coating takes less space in larger outdoor cables. The 900-m coating is larger and more suitable for smaller indoor cables.

Figure 4Figure 3-4 Optical-Cable Construction

Fiber-optic cable sizes are usually expressed by first giving the core size followed by the cladding size. Consequently, 50/125 indicates a core diameter of 50 microns and a cladding diameter of 125 microns, and 8/125 indicates a core diameter of 8 microns and a cladding diameter of 125 microns. The larger the core, the more light can be coupled into it from the external acceptance angle cone. However, larger-diameter cores can actually allow in too much light, which can cause receiver saturation problems. The 8/125 cable is often used when a fiber-optic data link operates with single-mode propagation, whereas the 62.5/125 cable is often used in a fiber-optic data link that operates with multimode propagation.

Three types of material make up fiber-optic cables:

  • Glass

  • Plastic

  • Plastic-clad silica (PCS)

These three cable types differ with respect to attenuation. Attenuation is principally caused by two physical effects: absorption and scattering. Absorption removes signal energy in the interaction between the propagating light (photons) and molecules in the core. Scattering redirects light out of the core to the cladding. When attenuation for a fiber-optic cable is dealt with quantitatively, it is referenced for operation at a particular optical wavelength, a window, where it is minimized. The most common peak wavelengths are 780 nm, 850 nm, 1310 nm, 1550 nm, and 1625 nm. The 850-nm region is referred to as the first window (as it was used initially because it supported the original LED and detector technology). The 1310-nm region is referred to as the second window, and the 1550-nm region is referred to as the third window.

Glass Fiber-Optic Cable

Glass fiber-optic cable has the lowest attenuation. A pure-glass, fiber-optic cable has a glass core and a glass cladding. This cable type has, by far, the most widespread use. It has been the most popular with link installers, and it is the type of cable with which installers have the most experience. The glass used in a fiber-optic cable is ultra-pure, ultra-transparent, silicon dioxide, or fused quartz. During the glass fiber-optic cable fabrication process, impurities are purposely added to the pure glass to obtain the desired indices of refraction needed to guide light. Germanium, titanium, or phosphorous is added to increase the index of refraction. Boron or fluorine is added to decrease the index of refraction. Other impurities might somehow remain in the glass cable after fabrication. These residual impurities can increase the attenuation by either scattering or absorbing light.

Plastic Fiber-Optic Cable

Plastic fiber-optic cable has the highest attenuation among the three types of cable. Plastic fiber-optic cable has a plastic core and cladding. This fiber-optic cable is quite thick. Typical dimensions are 480/500, 735/750, and 980/1000. The core generally consists of polymethylmethacrylate (PMMA) coated with a fluropolymer. Plastic fiber-optic cable was pioneered principally for use in the automotive industry. The higher attenuation relative to glass might not be a serious obstacle with the short cable runs often required in premise data networks. The cost advantage of plastic fiber-optic cable is of interest to network architects when they are faced with budget decisions. Plastic fiber-optic cable does have a problem with flammability. Because of this, it might not be appropriate for certain environments and care has to be taken when it is run through a plenum. Otherwise, plastic fiber is considered extremely rugged with a tight bend radius and the capability to withstand abuse.

Plastic-Clad Silica (PCS) Fiber-Optic Cable

The attenuation of PCS fiber-optic cable falls between that of glass and plastic. PCS fiber-optic cable has a glass core, which is often vitreous silica, and the cladding is plastic, usually a silicone elastomer with a lower refractive index. PCS fabricated with a silicone elastomer cladding suffers from three major defects. First, it has considerable plasticity, which makes connector application difficult. Second, adhesive bonding is not possible. And third, it is practically insoluble in organic solvents. These three factors keep this type of fiber-optic cable from being particularly popular with link installers. However, some improvements have been made in recent years.

NOTE

For data center premise cables, the jacket color depends on the fiber type in the cable. For cables containing SMFs, the jacket color is typically yellow, whereas for cables containing MMFs, the jacket color is typically orange. For outside plant cables, the standard jacket color is typically black.

Multifiber Cable Systems

Multifiber systems are constructed with strength members that resist crushing during cable pulling and bends. The outer cable jackets are OFNR (riser rated), OFNP (plenum rated), or LSZH (low-smoke, zero-halogen rated). The OFNR outer jackets are composed of flame-retardant PVC or fluoropolymers. The OFNP jackets are composed of plenum PVC, whereas the LSZH jackets are halogen-free and constructed out of polyolefin compounds. Figure 3-5 shows a multiribbon, 24-fiber, ribbon-cable system. Ribbon cables are extensively used for inside plant and datacenter applications. Individual ribbon subunit cables use the MTP/MPO connector assemblies. Ribbon cables have a flat ribbon-like structure that enables installers to save conduit space as they install more cables in a particular conduit.

Figure 5Figure 3-5 Inside Plant Ribbon-Cable System

Figure 3-6 shows a typical six-fiber, inside-plant cable system. The central core is composed of a dielectric strength member with a dielectric jacket. The individual fibers are positioned around the dielectric strength member. The individual fibers have a strippable buffer coating. Typically, the strippable buffer is a 900-m tight buffer. Each individual coated fiber is surrounded with a subunit jacket. Aramid yarn strength members surround the individual subunits. Some cable systems have an outer strength member that provides protection to the entire enclosed fiber system. Kevlar is a typical material used for constructing the outer strength member for premise cable systems. The outer jacket is OFNP, OFNR, or LSZH.

Figure 6Figure 3-6 Cross Section of Inside-Plant Cables

Figure 3-7 shows a typical armored outside-plant cable system. The central core is composed of a dielectric with a dielectric jacket or steel strength member. The individual gel-filled subunit buffer tubes are positioned around the central strength member. Within the subunit buffer tube, six fibers are positioned around an optional dielectric strength member. The individual fibers have a strippable buffer coating. All six subunit buffer tubes are enclosed within a binder that contains an interstitial filling or water-blocking compound. An outer strength member, typically constructed of aramid Kevlar strength members encloses the binder. The outer strength member is surrounded by an inner medium-density polyethylene (MDPE) jacket. The corrugated steel armor layer between the outer high-density polyethylene (HDPE) jacket, and the inner MDPE jacket acts as an external strength member and provides physical protection. Conventional deep-water submarine cables use dual armor and a special hermetically sealed copper tube to protect the fibers from the effects of deep-water environments. However, shallow-water applications use cables similar to those shown in Figure 3-7 with an asphalt compound interstitial filling.

Figure 7Figure 3-7 Cross Section of an Armored Outside-Plant Cable

5. Propagation Modes | Next Section Previous Section

There are currently no related articles. Please check back later.