Home > Articles > Cisco Certification > CCNA Routing and Switching > CCNA: Network Media Types

CCNA: Network Media Types

Chapter Description

Familiarize yourself with some friendly network cables and take a closer look at common types of network media, including twisted-pair cable, coaxial cable, fiber-optic cable, and wireless.

Network Media Types

Upon completing this chapter, you will be able to:

  • Describe the primary types and uses of twisted-pair cables

  • Describe the primary types and uses of coaxial cables

  • Describe the primary types and uses of fiber-optic cables

  • Describe the primary types and uses of wireless media

  • Compare and contrast the primary types and uses of different media

Network media is the actual path over which an electrical signal travels as it moves from one component to another. This chapter describes the common types of network media, including twisted-pair cable, coaxial cable, fiber-optic cable, and wireless.

Twisted-Pair Cable

Twisted-pair cable is a type of cabling that is used for telephone communications and most modern Ethernet networks. A pair of wires forms a circuit that can transmit data. The pairs are twisted to provide protection against crosstalk, the noise generated by adjacent pairs. When electrical current flows through a wire, it creates a small, circular magnetic field around the wire. When two wires in an electrical circuit are placed close together, their magnetic fields are the exact opposite of each other. Thus, the two magnetic fields cancel each other out. They also cancel out any outside magnetic fields. Twisting the wires can enhance this cancellation effect. Using cancellation together with twisting the wires, cable designers can effectively provide self-shielding for wire pairs within the network media.

Two basic types of twisted-pair cable exist: unshielded twisted pair (UTP) and shielded twisted pair (STP). The following sections discuss UTP and STP cable in more detail.

UTP Cable

UTP cable is a medium that is composed of pairs of wires (see Figure 8-1). UTP cable is used in a variety of networks. Each of the eight individual copper wires in UTP cable \is covered by an insulating material. In addition, the wires in each pair are twisted around each other.

Figure 8-1 Figure 8-1 Unshielded Twisted-Pair Cable


UTP cable relies solely on the cancellation effect produced by the twisted wire pairs to limit signal degradation caused by electromagnetic interference (EMI) and radio frequency interference (RFI). To further reduce crosstalk between the pairs in UTP cable, the number of twists in the wire pairs varies. UTP cable must follow precise specifications governing how many twists or braids are permitted per meter (3.28 feet) of cable.

UTP cable often is installed using a Registered Jack 45 (RJ-45) connector (see Figure 8-2). The RJ-45 is an eight-wire connector used commonly to connect computers onto a local-area network (LAN), especially Ethernets.

Figure 8-2 Figure 8-2 RJ-45 Connectors


When used as a networking medium, UTP cable has four pairs of either 22- or 24-gauge copper wire. UTP used as a networking medium has an impedance of 100 ohms; this differentiates it from other types of twisted-pair wiring such as that used for telephone wiring, which has impedance of 600 ohms.

UTP cable offers many advantages. Because UTP has an external diameter of approximately 0.43 cm (0.17 inches), its small size can be advantageous during installation. Because it has such a small external diameter, UTP does not fill up wiring ducts as rapidly as other types of cable. This can be an extremely important factor to consider, particularly when installing a network in an older building. UTP cable is easy to install and is less expensive than other types of networking media. In fact, UTP costs less per meter than any other type of LAN cabling. And because UTP can be used with most of the major networking architectures, it continues to grow in popularity.

Disadvantages also are involved in using twisted-pair cabling, however. UTP cable is more prone to electrical noise and interference than other types of networking media, and the distance between signal boosts is shorter for UTP than it is for coaxial and fiber-optic cables.

Although UTP was once considered to be slower at transmitting data than other types of cable, this is no longer true. In fact, UTP is considered the fastest copper-based medium today. The following summarizes the features of UTP cable:

  • Speed and throughput—10 to 1000 Mbps

  • Average cost per node—Least expensive

  • Media and connector size—Small

  • Maximum cable length—100 m (short)

Commonly used types of UTP cabling are as follows:

  • Category 1—Used for telephone communications. Not suitable for transmitting data.

  • Category 2—Capable of transmitting data at speeds up to 4 megabits per second (Mbps).

  • Category 3—Used in 10BASE-T networks. Can transmit data at speeds up to 10 Mbps.

  • Category 4—Used in Token Ring networks. Can transmit data at speeds up to 16 Mbps.

  • Category 5—Can transmit data at speeds up to 100 Mbps.

  • Category 5e —Used in networks running at speeds up to 1000 Mbps (1 gigabit per second [Gbps]).

  • Category 6—Typically, Category 6 cable consists of four pairs of 24 American Wire Gauge (AWG) copper wires. Category 6 cable is currently the fastest standard for UTP.

Shielded Twisted-Pair Cable

Shielded twisted-pair (STP) cable combines the techniques of shielding, cancellation, and wire twisting. Each pair of wires is wrapped in a metallic foil (see Figure 8-3). The four pairs of wires then are wrapped in an overall metallic braid or foil, usually 150-ohm cable. As specified for use in Ethernet network installations, STP reduces electrical noise both within the cable (pair-to-pair coupling, or crosstalk) and from outside the cable (EMI and RFI). STP usually is installed with STP data connector, which is created especially for the STP cable. However, STP cabling also can use the same RJ connectors that UTP uses.

Figure 8-3 Figure 8-3 Shielded Twisted-Pair Cable


Although STP prevents interference better than UTP, it is more expensive and difficult to install. In addition, the metallic shielding must be grounded at both ends. If it is improperly grounded, the shield acts like an antenna and picks up unwanted signals. Because of its cost and difficulty with termination, STP is rarely used in Ethernet networks. STP is primarily used in Europe.

The following summarizes the features of STP cable:

  • Speed and throughput—10 to 100 Mbps

  • Average cost per node—Moderately expensive

  • Media and connector size—Medium to large

  • Maximum cable length—100 m (short)

When comparing UTP and STP, keep the following points in mind:

  • The speed of both types of cable is usually satisfactory for local-area distances.

  • These are the least-expensive media for data communication. UTP is less expensive than STP.

  • Because most buildings are already wired with UTP, many transmission standards are adapted to use it, to avoid costly rewiring with an alternative cable type.

2. Coaxial Cable | Next Section