Home > Articles > Network Access and Layer 2 Multicast

Network Access and Layer 2 Multicast

  • Sample Chapter is provided courtesy of Cisco Press.
  • Date: Nov 19, 2016.

Chapter Description

In this chapter from IP Multicast, Volume I: Cisco IP Multicast Networking, authors Josh Loveless, Ray Blair, and Arvind Durai take an in-depth look at IP multicast messages at Layer 2 and how they are transported in a Layer 2 domain. This chapter covers the basic elements of multicast functionality in Layer 2 domains as well as design considerations for multicast deployments.

IGMP Versions

The selection of which IGMP version(s) to run on your network is dependent on the operating systems and behavior of the multicast application(s) in use. Generally speaking, the capability of the operating system determines the IGMP version(s) you are running on your network. There are three versions of IGMP, version 1, 2, and 3. Each of these has unique characteristics. As of this writing, the default IGMP version enabled on most Cisco devices is version 2.


The original specification for IGMP was documented in RFC 988 back in 1986. That RFC, along with RFC 1054, was made obsolete by RFC 1112, which is known as IGMPv1 today. IGMPv1 offers a basic query-and-response mechanism to determine which multicast streams should be sent to a particular network segment.

IGMPv1 works largely like the explanation given in Figure 2-7, with two major exceptions, a primary issue with using version one. IGMPv1 has no mechanism for a host to signal that it wants to leave a group. When a host using IGMPv1 leaves a group, the router will continue to send the multicast stream until the group times out. As you can imagine, this can create a large amount of multicast traffic on a subnet if a host joins groups very quickly. This will occur if the host is “channel-surfing” using IPTV, for example.

In order to determine the membership of a group, the querier (router) sends a message to every host on the subnet. The functionality of the querier is to maintain a list of hosts in the subnet interested in multicast flows. Yes, even those that were never interested in receiving any multicast streams. This is accomplished by sending the query to the “all-hosts” multicast address of When a single host responds to the query, all others suppress sending a report message.

IGMPv1 also does not have the capability of electing a querier. If there are multiple queriers (routers) on the subnet, a designated router (DR) is elected using PIM to avoid sending duplicate multicast packets. The elected querier is the router with the highest IP address. IGMPv1 is rarely used in modern networks and the default for Cisco devices has been set to v2 because of these limitations.


As with every invention, we make improvements as we find shortcomings. IGMPv2, as defined in RFC 2236, made improvements over IGMPv1. One of the most significant changes was the addition of the leave process. A host using IGMPv2 can send a leave-group message to the querier indicating that it is no longer interested in receiving a particular multicast stream. This eliminates a significant amount of unneeded multicast traffic by not having to wait for the group to timeout; the trade-off is that routers need to track membership to efficiently prune when required.

IGMPv2 added the capability of group-queries. This feature allows the querier to send a message to the host(s) belonging to a specific multicast group. Every host on the subnet is no longer subjected to receiving a multicast message.

The querier election process offers the capability to determine the querier without having to use PIM. In addition, the querier and the DR function are decoupled. This process requires that each device send a general query message to all hosts If there are multiple routers on a subnet, the DR is the device with the highest IP address and the querier is the device with the lowest IP address.

IGMPv2 also added the Maximum Response Time field, which is used to tune the query-response process to optimize leave latency.

Food for thought: Is a multicast message sent to all-host a broadcast?

Figure 2-8 shows the format for IGMPv1 and IGMPv2 messages.


Figure 2-8 IGMPv1 and IGMPv2 Message Format

IGMP message types for IGMPv1 and IGMPv2 are as follows:

  • 0x11—Membership query

  • General query message used to determine group membership of any group

  • Group-specific query used to verify if any hosts are part of a specific group

  • 0x12—IGMPv1 membership report

  • 0x16—IGMPv2 membership report

  • 0x17—Leave-group message

The maximum response time (MRT) is calculated in one-tenth of a second increments and is used only with membership query messages. This parameter allows routers to manage the time between the moment the last host leaves a group and the moment the routing protocol is notified. When a host receives an IGMP query packet, it kicks off a timer that begins with a random value that is less than the MRT. If no other host responds with a membership report before this random timer expires, the host will then reply with a report. This decreases the number of total IGMP reports needed to maintain the group state as well as preserves local bandwidth, because the host suppresses its own reports unless absolutely necessary. IGMPv1 does not use MRT; instead, it has a timer that is always set to 10 seconds. Of course, this means the MRT cannot be less than the query-interval, making the maximum configurable MRT 25 seconds (1 byte MRT field; 1/10s*255 = 25 seconds).

The checksum is a value calculated using information within the message used to detect errors.

Example 2-1 shows a packet capture of an IGMPv2 membership query. Items of interest include the source and destination MAC address. The source of this request is the router ( and the destination is the multicast MAC address for, which includes all devices on the subnet. Referring to the packet capture in Example 2-1, you see the IGMP type is 0x11, the maximum response time is 0x64 (hex for 10 seconds, the default for IGMPv2), the checksum, and the group address of, which indicates that it is a general query message. Also, pay particular attention to the time to live (TTL) field. This message has the TTL set to 1, which means that it will not be sent to multiple subnets. If you are troubleshooting multicast problems, you should always make sure the multicast sender has a TTL value greater than or equal to the diameter of your network.

Example 2-1 IGMPv2 Membership Query Packet Capture

Ethernet Packet:  60 bytes
      Dest Addr: 0100.5E00.0001,   Source Addr: 0022.5561.2501
      Protocol: 0x0800

IP    Version: 0x4,  HdrLen: 0x6,  TOS: 0xC0 (Prec=Internet Contrl)
      Length: 32,   ID: 0x03E6,   Flags-Offset: 0x0000
      TTL: 1,   Protocol: 2 (IGMP),   Checksum: 0x7387 (OK)
      Source:,     Dest:

      Options: Length = 4
      Router Alert Option: 94 0000

IGMP  VersionType: 0x11,  Max Resp: 0x64,  Checksum: 0xEE9B (OK)

Version 2 Membership Query
      Group Address:

Remember that IGMP is a LAN-based protocol, used to manage hosts. Managing hosts is often considered a chatty process. Several configurable timers, including the MRT, within the IGMP implementation can be adjusted to modify protocol message timing and processing. Look at the IGMP interface configuration timers that are listed in the show ip igmp interface x/x command output in Example 2-2.

Example 2-2 show ip igmp interface Command Output

Router#show ip igmp interface e1/0
Loopback0 is up, line protocol is up
  Internet address is
  IGMP is enabled on interface
  Current IGMP host version is 2
  Current IGMP router version is 2
  IGMP query interval is 60 seconds
  IGMP configured query interval is 60 seconds
  IGMP querier timeout is 120 seconds
  IGMP configured querier timeout is 120 seconds
  IGMP max query response time is 10 seconds
  Last member query count is 2
  Last member query response interval is 1000 ms
  Inbound IGMP access group is not set
  IGMP activity: 3 joins, 0 leaves
  Multicast routing is enabled on interface
  Multicast TTL threshold is 0
  Multicast designated router (DR) is (this system)
  IGMP querying router is (this system)
  Multicast groups joined by this system (number of users):

The respective timers in this output are all using implementation default values. In generic multicast deployments, these timers are not tweaked and are kept “default.” Administrators may tweak them based on specific application requirements (not commonly seen). It is beneficial to understand the functionality of these timers:

  • ip igmp query-interval [interval in secs]: Hosts on a segment will send a report of their group membership in response to queries received from the IGMP querier. The query interval defines the amount of time the router will store the IGMP state if it does not receive a report for the particular group. This hold period is three times the query interval time.

  • ip igmp query-max-response-time [time-in-seconds]: When a host receives a query from the IGMP querier, it starts the countdown of the maximum response time before sending a report to the router. This feature helps reduce the chatter between hosts and the first hop router. The max-response time cannot be less than the query interval value.

  • ip igmp query-timeout [timeout]: This timer is used for the querier election process described earlier, especially when multiple routers are in the LAN segment. A router that loses the election will assume quierier malfunction based on the expiry of this timer. When the timer is expired, the router restarts the querier election process.

  • ip igmp last-member-query-count [number]: This timer tracks the time the router must wait after the receipt of the leave message before removing the group state from local state tables. The timer is overwritten if a router is configured with the command ip igmp immediate-leave group-list [list]. With the ip igmp immediate-leave group command, the router treats these groups as having a single host member. After the reception of a leave message, the router immediately removes the multicast group.


The addition of IGMPv3 (RFCs 3376 and 4604) brought with it signification changes over IGMPv1 and v2. Although there are vast improvements, backward compatibility between all three versions still exists. To understand why, examine Figure 2-9, which shows the IGMPv3 header format. New header elements of importance include a Number of Sources field, a Source Address(es) field, and a change from a Max Response Time field to a Max Response Code field.


Figure 2-9 IGMPv3 Message Format

As the header shows, the most signification addition to IGMPv3 is the capability to support specific source filtering. Why is this a big deal? With IGMPv1 and v2, you could not specify the host from which you wanted to receive a multicast stream; consequently, multiple sources could be sending to the same multicast IP address and port number, and the host would now have a conflict with which stream to receive. Source filtering allows the host to signal membership with either an include or an exclude group list. This way, the host can specify which device(s) it is interested in receiving a stream from, or it can indicate which devices that it is not interested in receiving a stream from. This adds an additional security component that can be tapped at the application level. IGMPv3 is used at Layer 2 for source-specific multicast (SSM). SSM is covered in Chapter 3.

In addition to this change, the MRT was updated once again in IGMPv3; in fact, it was changed in RFC 3376 to a maximum response code (MRC). Similar to the MRT field in IGMPv2, the max response code field indicates the maximum time allowed before a report for a group must be received. The maximum response code (MRC) can still incorporate the MRT, which is represented in units of one-tenth of a second. There are 8 bits in the MRC field, and the value of those bits indicates how the MRC is to be read. If the MRC is less than 128, the Max Response Time is equal to the Max Response Code value. If the MRC is greater than or equal to 128, the MRC has a floating point value to reflect much longer periods of time. This makes the total maximum timer configurable up to 55 minutes.

The response time was modified in IGMPv3 to better accommodate different types of network connectivity. Using a smaller timer allows the network administrator to more accurately tune the leave latency of hosts. Using a larger timer can accommodate network types where the burstiness of group management traffic is less desirable, e.g. low bandwidth wireless networks.

Example 2-3 shows a packet capture of a membership report from an IGMPv3 host with the IP address of with a group membership request to receive a multicast stream from from the source of

Example 2-3 IGMPv3 Membership Report Packet Capture

Ethernet II, Src: (80:ee:73:07:7b:61), Dst: (01:00:5e:00:00:16)
    Type: IP (0x0800)
Internet Protocol Version 4, Src:, Dst:
    Version: 4
    Header length: 24 bytes
    Differentiated Services Field: 0xc0 (DSCP 0x30: Class Selector 6; ECN: 0x00:
  Not-ECT (Not ECN-Capable Transport))
    Total Length: 52
    Identification: 0x0000 (0)
    Flags: 0x02 (Don't Fragment)
    Fragment offset: 0
    Time to live: 1
    Protocol: IGMP (2)
    Header checksum: 0x3c37 [validation disabled]
    Options: (4 bytes), Router Alert
Internet Group Management Protocol
    [IGMP Version: 3]
    Type: Membership Report (0x22)
    Header checksum: 0x4a06 [correct]
    Num Group Records: 2
    Group Record :  Mode Is Include
        Record Type: Mode Is Include (1)
        Aux Data Len: 0
        Num Src: 1
        Multicast Address: 
        Source Address: 
    Group Record :  Mode Is Exclude
        Record Type: Mode Is Exclude (2)
        Aux Data Len: 0
        Num Src: 0
        Multicast Address:

Notice the destination IP address of the IPv4 packet; it is being sent to This is the IP address to which all hosts send their membership report.

7. Configuring IGMP on a Router | Next Section Previous Section

Cisco Press Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from Cisco Press and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about Cisco Press products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites; develop new products and services; conduct educational research; and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@ciscopress.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by Cisco Press. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.ciscopress.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020