Home > Articles > Branch Connections

Branch Connections

  • Sample Chapter is provided courtesy of Cisco Press.
  • Date: Nov 30, 2017.

Chapter Description

Broadband solutions provide teleworkers with high-speed connection options to business locations and to the Internet. In this sample chapter from Connecting Networks v6 Companion Guide, identify branch connection options for small to medium-sized businesses, basic configuration for a PPPoE connection on a client router, and more.

From the Book

Connecting Networks v6 Companion Guide

Connecting Networks v6 Companion Guide

$66.00 (Save 10%)

VPNs (3.3)

In this section, you learn how VPNs secure site-to-site and remote-access connectivity.

Fundamentals of VPNs (3.3.1)

In this topic, you learn about the benefits of VPN technology.

Introducing VPNs (3.3.1.1)

Organizations need secure, reliable, and cost-effective ways to interconnect multiple networks, such as allowing branch offices and suppliers to connect to a corporation’s headquarter network. Additionally, with the growing number of teleworkers, enterprises have an increasing need for secure, reliable, and cost-effective ways to connect employees working in small office/home office (SOHO) and other remote locations, with resources on corporate sites.

As shown in Figure 3-16, organizations use VPNs to create an end-to-end private network connection over third-party networks, such as the Internet. The tunnel eliminates the distance barrier and enables remote users to access central site network resources.

A VPN is a private network created via tunneling over a public network, usually the Internet. A VPN is a communications environment in which access is strictly controlled to permit peer connections within a defined community of interest.

The first VPNs were strictly IP tunnels that did not include authentication or encryption of the data. For example, Generic Routing Encapsulation (GRE) is a tunneling protocol developed by Cisco that can encapsulate a wide variety of network layer protocol packet types inside IP tunnels. This creates a virtual point-to-point link to Cisco routers at remote points over an IP internetwork. However, GRE does not support encryption.

Today, a secure implementation of VPN with encryption, such as IPsec VPNs, is what is usually meant by virtual private networking.

To implement VPNs, a VPN gateway is necessary. The VPN gateway could be a router, a firewall, or a Cisco Adaptive Security Appliance (ASA). An ASA is a standalone firewall device that combines firewall, VPN concentrator, and intrusion prevention functionality into one software image.

Benefits of VPNs (3.3.1.2)

As shown in Figure 3-17, a VPN uses virtual connections that are routed through the Internet from the private network of an organization to the remote site or employee host. The information from a private network is securely transported over the public network to form a virtual network.

Figure 3-17

Figure 3-17 VPN Internet Connections

The benefits of a VPN include the following:

  • Cost savings: VPNs enable organizations to use cost-effective, third-party Internet transport to connect remote offices and remote users to the main site, thus eliminating expensive, dedicated WAN links and modem banks. Furthermore, with the advent of cost-effective, high-bandwidth technologies, such as DSL, organizations can use VPNs to reduce their connectivity costs while simultaneously increasing remote connection bandwidth.

  • Scalability: VPNs enable organizations to use the Internet infrastructure within ISPs and devices, which makes it easy to add new users. Therefore, organizations are able to add large amounts of capacity without adding significant infrastructure.

  • Compatibility with broadband technology: VPNs allow mobile workers and teleworkers to take advantage of high-speed, broadband connectivity, such as DSL and cable, to access to their organizations’ networks. Broadband connectivity provides flexibility and efficiency. High-speed, broadband connections also provide a cost-effective solution for connecting remote offices.

  • Security: VPNs can include security mechanisms that provide the highest level of security by using advanced encryption and authentication protocols that protect data from unauthorized access.

Types of VPNs (3.3.2)

In this topic, you learn about site-to-site and remote-access VPNs.

Site-to-Site VPNs (3.3.2.1)

A site-to-site VPN is created when devices on both sides of the VPN connection are aware of the VPN configuration in advance, as shown in Figure 3-18.

Figure 3-18

Figure 3-18 Site-to-Site VPNs

The VPN remains static, and internal hosts have no knowledge that a VPN exists. In a site-to-site VPN, end hosts send and receive normal TCP/IP traffic through a VPN “gateway.” The VPN gateway is responsible for encapsulating and encrypting outbound traffic for all traffic from a particular site. The VPN gateway then sends it through a VPN tunnel over the Internet to a peer VPN gateway at the target site. Upon receipt, the peer VPN gateway strips the headers, decrypts the content, and relays the packet toward the target host inside its private network.

A site-to-site VPN is an extension of a classic WAN network. Site-to-site VPNs connect entire networks to each other; for example, they can connect a branch office network to a company headquarters network. In the past, a leased-line or Frame Relay connection was required to connect sites, but because most corporations now have Internet access, these connections are commonly replaced with site-to-site VPNs.

Remote-Access VPNs (3.3.2.2)

Where a site-to-site VPN is used to connect entire networks, a remote-access VPN supports the needs of telecommuters, mobile users, and extranet, consumer-to-business traffic. A remote-access VPN is created when VPN information is not statically set up, but instead allows for dynamically changing information, and can be enabled and disabled. Remote-access VPNs support a client/server architecture, where the VPN client (remote host) gains secure access to the enterprise network via a VPN server device at the network edge, as shown Figure 3-19.

Figure 3-19

Figure 3-19 Remote-Access VPNs

Remote-access VPNs are used to connect individual hosts that must access their company network securely over the Internet. Internet connectivity used by telecommuters is typically a broadband connection.

VPN client software, such as the Cisco AnyConnect Secure Mobility Client software, is installed on the teleworker host. When the host sends traffic, the Cisco AnyConnect VPN Client software encapsulates, encrypts, and sends the traffic over the Internet to the destination VPN gateway. Upon receipt, the VPN gateway behaves as it does for site-to-site VPNs.

DMVPN (3.3.2.3)

Dynamic Multipoint VPN (DMVPN) is a Cisco software solution for building multiple VPNs in an easy, dynamic, and scalable manner. The goal is to simplify the configuration while easily and flexibly connecting central office sites with branch sites in a hub-and-spoke (or hub-to-spoke) topology, as shown in Figure 3-20.

Figure 3-20

Figure 3-20 DMVPN Hub-to-Spoke Tunnels

With DMVPNs, branch sites can also communicate directly with other branch sites, as shown in Figure 3-21.

DMVPN is built using the following technologies:

  • Next Hop Resolution Protocol (NHRP)

  • Multipoint Generic Routing Encapsulation (mGRE) tunnels

  • IP Security (IPsec) encryption

NHRP is a Layer 2 resolution and caching protocol similar to Address Resolution Protocol (ARP). NHRP creates a distributed mapping database of public IP addresses for all tunnel spokes. NHRP is a client/server protocol consisting of the NHRP hub known as the Next Hop Server (NHS) and the NHRP spokes known as the Next Hop Clients (NHCs). NHRP supports hub-and-spoke as well as spoke-to-spoke configurations.

Figure 3-21

Figure 3-21 DMVPN Hub-to-Spoke and Spoke-to-Spoke Tunnels

Generic Routing Encapsulation (GRE) is a tunneling protocol developed by Cisco that can encapsulate a wide variety of protocol packet types inside IP tunnels. DMVPN makes use of Multipoint Generic Routing Encapsulation (mGRE) tunnel. An mGRE tunnel interface allows a single GRE interface to support multiple IPsec tunnels. With mGRE, dynamically allocated tunnels are created through a permanent tunnel source at the hub and dynamically allocated tunnel destinations, created as necessary, at the spokes. This reduces the size and simplifies the complexity of the configuration.

Like other VPN types, DMVPN relies on IPsec to provide secure transport of private information over public networks, such as the Internet.

Cisco Press Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from Cisco Press and its family of brands. I can unsubscribe at any time.

Overview

Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about Cisco Press products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites; develop new products and services; conduct educational research; and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@ciscopress.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security

Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children

This site is not directed to children under the age of 13.

Marketing

Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out

Users can always make an informed choice as to whether they should proceed with certain services offered by Cisco Press. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.ciscopress.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links

This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020