Home > Articles > Ethernet Switching

# Ethernet Switching

### Chapter Description

In this sample chapter from Introduction to Networks Companion Guide (CCNAv7) for Cisco Networking Academy students, you will review available switching forwarding methods and port settings on Layer 2 switch ports.

### From the Book

\$76.50 (Save 15%)

Ethernet technology relies on MAC addresses to function. MAC addresses are used to identify the frame source and destination.

As discussed in detail in Chapter 5, “Number Systems,” in networking, IPv4 addresses are represented using the decimal (base 10) number system and the binary (base 2) number system. IPv6 addresses and Ethernet addresses are represented using the hexadecimal (base 16) number system. To understand hexadecimal, you must first be very familiar with binary and decimal.

The hexadecimal numbering system uses the numbers 0 to 9 and the letters A to F.

An Ethernet MAC address consists of a 48-bit binary value. Hexadecimal is used to identify an Ethernet address because a single hexadecimal digit represents 4 binary bits. Therefore, a 48-bit Ethernet MAC address can be expressed using only 12 hexadecimal values.

Figure 7-5 compares the equivalent decimal and hexadecimal values for binary 0000 to 1111.

Given that 8 bits (1 byte) is a common binary grouping, binary 00000000 to 11111111 can be represented in hexadecimal as the range 00 to FF, as shown in the Figure 7-6.

When using hexadecimal, leading zeros are always displayed to complete the 8-bit representation. For example, in Figure 7-6, the binary value 0000 1010 is shown to be 0A in hexadecimal.

Hexadecimal numbers are often represented by a value preceded by 0x (for example, 0x73) to distinguish between decimal and hexadecimal values in documentation.

Hexadecimal may also be represented using a subscript 16 or by using the hex number followed by an H (for example, 73H).

You might have to convert between decimal and hexadecimal values. If such conversions are required, convert the decimal or hexadecimal value to binary and then to convert the binary value to either decimal or hexadecimal as appropriate. See Chapter 5 for more information.

In an Ethernet LAN, every network device is connected to the same shared medium. The MAC address is used to identify the physical source and destination devices (NICs) on the local network segment. MAC addressing provides a method for device identification at the data link layer of the OSI model.

An Ethernet MAC address is a 48-bit address expressed using 12 hexadecimal digits, as shown in Figure 7-7. Because 1 byte equals 8 bits, we can also say that a MAC address is 6 bytes in length.

All MAC addresses must be unique to the Ethernet device or Ethernet interface. To ensure uniqueness, every vendor that sells Ethernet devices must register with the IEEE to obtain a unique 6-digit hexadecimal (that is, 24-bit or 3-byte) code called an organizationally unique identifier (OUI).

When a vendor assigns a MAC address to a device or to an Ethernet interface, the vendor must do as follows:

• Use its assigned OUI as the first 6 hexadecimal digits.

• Assign a unique value in the last 6 hexadecimal digits.

Therefore, an Ethernet MAC address consists of a 6-digit hexadecimal vendor OUI code followed by a 6-digit hexadecimal vendor-assigned value, as shown in Figure 7-8.

For example, say that Cisco needs to assign a unique MAC address to a new device, and the IEEE has assigned Cisco the OUI 00-60-2F. Cisco would configure the device with a unique vendor code such as 3A-07-BC. Therefore, the Ethernet MAC address of that device would be 00-60-2F-3A-07-BC.

It is the responsibility of a vendor to ensure that no two of its devices are assigned the same MAC address. However, it is possible for duplicate MAC addresses to exist because of mistakes made during manufacturing, mistakes made in some virtual machine implementation methods, or modifications made using one of several software tools. In such a case, it is necessary to modify the MAC address with a new NIC or make modifications by using software.

### Frame Processing (7.2.3)

Sometimes a MAC address is referred to as a burned-in address (BIA) because the address is hard coded into read-only memory (ROM) on the NIC. This means that the address is permanently encoded into the ROM chip.

When the computer boots up, the NIC copies its MAC address from ROM into RAM. When a device is forwarding a message to an Ethernet network, as shown in Figure 7-9, the Ethernet header includes the following:

• Source MAC address: This is the MAC address of the source device NIC.

• Destination MAC address: This is the MAC address of the destination device NIC.

When a NIC receives an Ethernet frame, it examines the destination MAC address to see if it matches the physical MAC address that is stored in RAM. If there is no match, the device discards the frame. In Figure 7-10, H2 and H4 discard the frame. The MAC address matches for H4, so H4 passes the frame up the OSI layers, where the de-encapsulation process takes place.

Any device that is the source or destination of an Ethernet frame will have an Ethernet NIC and, therefore, a MAC address. This includes workstations, servers, printers, mobile devices, and routers.

In Ethernet, different MAC addresses are used for Layer 2 unicast, broadcast, and multicast communications.

A unicast MAC address is a unique address that is used when a frame is sent from a single transmitting device to a single destination device.

In Figure 7-11, the destination MAC address and the destination IP address are both unicast.

A host with IPv4 address 192.168.1.5 (source) requests a web page from the server at IPv4 unicast address 192.168.1.200. For a unicast packet to be sent and received, a destination IP address must be in the IP packet header. A corresponding destination MAC address must also be present in the Ethernet frame header. The IP address and MAC address combine to deliver data to one specific destination host.

The process that a source host uses to determine the destination MAC address associated with an IPv4 address is known as Address Resolution Protocol (ARP). The process that a source host uses to determine the destination MAC address associated with an IPv6 address is known as Neighbor Discovery (ND).

An Ethernet broadcast frame is received and processed by every device on an Ethernet LAN. The features of an Ethernet broadcast are as follows:

• It has the destination MAC address FF-FF-FF-FF-FF-FF in hexadecimal (or 48 1s in binary).

• It is flooded out all Ethernet switch ports except the incoming port.

• It is not forwarded by a router.

If the encapsulated data is an IPv4 broadcast packet, this means the packet contains a destination IPv4 address that has all 1s in the host portion. This numbering in the address means that all hosts on that local network (broadcast domain) receive and process the packet.

The source host sends an IPv4 broadcast packet to all devices on its network. The IPv4 destination address is a broadcast address, 192.168.1.255. When the IPv4 broadcast packet is encapsulated in the Ethernet frame, the destination MAC address is the broadcast MAC address FF-FF-FF-FF-FF-FF in hexadecimal (or 48 1s in binary).

DHCP for IPv4 is an example of a protocol that uses Ethernet and IPv4 broadcast addresses. However, not all Ethernet broadcasts carry IPv4 broadcast packets. For example, ARP requests do not use IPv4, but the ARP message is sent as an Ethernet broadcast.

An Ethernet multicast frame is received and processed by a group of devices on the Ethernet LAN that belong to the same multicast group. The features of an Ethernet multicast frame are as follows:

• It has destination MAC address 01-00-5E when the encapsulated data is an IPv4 multicast packet and destination MAC address 33-33 when the encapsulated data is an IPv6 multicast packet.

• There are other reserved multicast destination MAC addresses for when the encapsulated data is not IP, such as Spanning Tree Protocol (STP) and Link Layer Discovery Protocol (LLDP).

• It is flooded out all Ethernet switch ports except the incoming port, unless the switch is configured for multicast snooping.

• It is not forwarded by a router unless the router is configured to route multicast packets.

If the encapsulated data is an IP multicast packet, the devices that belong to a multicast group are assigned a multicast group IP address. The range of IPv4 multicast addresses is 224.0.0.0 to 239.257.257.257. The range of IPv6 multicast addresses begins with ff00::/8. Because a multicast address represents a group of addresses (sometimes called a host group), it can only be used as the destination of a packet. The source is always a unicast address.

As with the unicast and broadcast addresses, a multicast IP address requires a corresponding multicast MAC address to deliver frames on a local network. The multicast MAC address is associated with, and uses addressing information from, the IPv4 or IPv6 multicast address.

Routing protocols and other network protocols use multicast addressing. Applications such as video and imaging software may also use multicast addressing, although multicast applications are not as common.

6. The MAC Address Table (7.3) | Next Section Previous Section

### Cisco Press Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from Cisco Press and its family of brands. I can unsubscribe at any time.

## Overview

Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about Cisco Press products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

## Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

### Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

### Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

### Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites; develop new products and services; conduct educational research; and for other purposes specified in the survey.

### Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@ciscopress.com.

### Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

### Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

## Other Collection and Use of Information

### Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

### Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

### Do Not Track

This site currently does not respond to Do Not Track signals.

## Security

Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

## Children

This site is not directed to children under the age of 13.

## Marketing

Pearson may send or direct marketing communications to users, provided that

• Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
• Such marketing is consistent with applicable law and Pearson's legal obligations.
• Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
• Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

## Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

## Choice/Opt-out

Users can always make an informed choice as to whether they should proceed with certain services offered by Cisco Press. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.ciscopress.com/u.aspx.

## Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

## Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

## Sharing and Disclosure

Pearson may disclose personal information, as follows:

• As required by law.
• With the consent of the individual (or their parent, if the individual is a minor)
• In response to a subpoena, court order or legal process, to the extent permitted or required by law
• To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
• In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
• To investigate or address actual or suspected fraud or other illegal activities
• To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
• To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
• To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.