Home > Articles > WAN Availability and QoS

WAN Availability and QoS

Chapter Description

This sample chapter from CCNP Enterprise Design ENSLD 300-420 Official Cert Guide, 2nd Edition covers the selection and use of WAN designs in enterprise networks in addition to QoS strategies and designing end-to-end QoS policies. This chapter covers topics from the ENSLD 300-420 exam.

Designing End-to-End QoS Policies

Cisco has developed many different QoS mechanisms, such as queuing, policing, and traffic shaping, to enable network operators to manage and prioritize the traffic flowing on a network. Applications that are delay sensitive, such as VoIP, require special treatment to ensure proper application functionality.

Classification and Marking

For a flow to have priority, it must be classified and marked. Classification is the process of identifying the type of traffic. Marking is the process of setting a value in the IP header based on the classification. The following are examples of technologies that support classification:

  • Network-based application recognition (NBAR): This technology uses deep packet content inspection to identify network applications. An advantage of NBAR is that it can recognize applications even when they do not use standard network ports. Furthermore, it matches fields at the application layer. Before NBAR, classification was limited to Layer 4 TCP and User Datagram Protocol (UDP) port numbers.

  • Committed access rate (CAR): CAR uses a rate limit to set precedence and allows customization of the precedence assignment by user, source or destination IP address, and application type.


Traffic shaping and policing are mechanisms that inspect traffic and take action based on the traffic’s characteristics, such as DSCP or IP precedence bits set in the IP header.


Traffic shaping involves slowing down the rate at which packets are sent out an interface (egress) by matching certain criteria. Traffic shaping uses a token bucket technique to release the packets into the output queue at a preconfigured rate. Traffic shaping helps eliminate potential bottlenecks by throttling back the traffic rate at the source. In enterprise environments, traffic shaping is used to smooth the flow of traffic going out to the provider. Smoothing the flow is desirable for several reasons. For example, in provider networks, it prevents the provider from dropping traffic that exceeds the contracted rate.


Policing involves tagging or dropping traffic, depending on the match criteria. Generally, policing is used to set the limit of traffic coming into an interface (ingress) and uses a “leaky bucket mechanism.” Policing can be used to forward traffic based on conforming traffic and to drop traffic that violates the policy. Policing is also referred to as committed access rate (CAR). One example of using policing is giving preferential treatment to critical application traffic by elevating to a higher class and reducing best-effort traffic to a lower-priority class.


When you contrast traffic shaping with policing, remember that traffic shaping buffers packets, while policing can be configured to drop packets. In addition, policing propagates bursts, but traffic shaping does not.



Queuing refers to the buffering process used by routers and switches when they receive traffic faster than it can be transmitted. Different queuing mechanisms can be implemented to influence the order in which the different queues are serviced (that is, how different types of traffic are emptied from the queues).

QoS is an effective tool for managing a WAN’s available bandwidth. Keep in mind that QoS does not add bandwidth; it only helps you make better use of the existing bandwidth. For chronic congestion problems, QoS is not the answer; in such situations, you need to add more bandwidth. However, by prioritizing traffic, you can make sure that your most critical traffic gets the best treatment and available bandwidth in times of congestion. One popular QoS technique is to classify your traffic based on a protocol type or a matching access control list (ACL) and then give policy treatment to the class. You can define many classes to match or identify your most important traffic classes. The remaining unmatched traffic then uses a default class in which the traffic can be treated as best-effort.

Table 9-7 describes QoS options for optimizing bandwidth.


Table 9-7 QoS Options

QoS Category



Identifies and marks flows

Congestion management

Handles traffic overflow using a queuing algorithm

Link-efficiency mechanisms

Reduce latency and jitter for network traffic on low-speed links

Traffic shaping and policing

Prevent congestion by policing ingress and egress flows

Congestion Management

Two types of output queues are available on routers: the hardware queue and the software queue. The hardware queue uses the first-in, first-out (FIFO) strategy. The software queue schedules packets first and then places them in the hardware queue. Keep in mind that the software queue is used only during periods of congestion. The software queue uses QoS techniques such as priority queuing, custom queuing, weighted fair queuing, class-based weighted fair queuing, low-latency queuing, and traffic shaping and policing.

Priority Queuing

Priority queuing (PQ) is a queuing method that establishes four interface output queues that serve different priority levels: high, medium, default, and low. Unfortunately, PQ can starve other queues if too much data is in one queue because higher-priority queues must be emptied before lower-priority queues.

Custom Queuing

Custom queuing (CQ) uses up to 16 individual output queues. Byte size limits are assigned to each queue so that when the limit is reached, CQ proceeds to the next queue. The network operator can customize these byte size limits. CQ is fairer than PQ because it allows some level of service to all traffic. This queuing method is considered legacy due to improvements in the other queuing methods.

Weighted Fair Queuing

Weighted fair queuing (WFQ) ensures that traffic is separated into individual flows or sessions without requiring that you define ACLs. WFQ uses two categories to group sessions: high bandwidth and low bandwidth. Low-bandwidth traffic has priority over high-bandwidth traffic. High-bandwidth traffic shares the service according to assigned weight values. WFQ is the default QoS mechanism on interfaces below 2.0 Mbps.

Class-Based Weighted Fair Queuing

Class-based weighted fair queuing (CBWFQ) extends WFQ capabilities by providing support for modular user-defined traffic classes. CBWFQ lets you define traffic classes that correspond to match criteria, including ACLs, protocols, and input interfaces. Traffic that matches the class criteria belongs to that specific class. Each class has a defined queue that corresponds to an output interface.

After traffic has been matched and belongs to a specific class, you can modify its characteristics, such as by assigning bandwidth and specifying the maximum queue limit and weight. During periods of congestion, the bandwidth assigned to the class is the guaranteed bandwidth that is delivered to the class.

One of the key advantages of CBWFQ is its modular nature, which makes it extremely flexible for most situations. It is often referred to as Modular QoS CLI (MQC), which is the framework for building QoS policies. Many classes can be defined to separate network traffic as needed in the MQC.

Low-Latency Queuing

Low-latency queuing (LLQ) adds a strict priority queue to CBWFQ. The strict priority queue allows delay-sensitive traffic such as voice to be sent first, before other queues are serviced. That gives voice preferential treatment over the other traffic types. Unlike PQ, LLQ provides for a maximum threshold on the priority queue to prevent lower-priority traffic from being starved by the priority queue.

Without LLQ, CBWFQ would not have a priority queue for real-time traffic. The additional classification of other traffic classes is done using the same CBWFQ techniques. LLQ is the standard QoS method for many VoIP networks.

Link Efficiency

With Cisco IOS, several link-efficiency mechanisms are available. Link fragmentation and interleaving (LFI), Multilink PPP (MLP), and Real-Time Transport Protocol (RTP) header compression can provide for more efficient use of bandwidth.

Table 9-8 describes Cisco IOS link-efficiency mechanisms.


Table 9-8 Link-Efficiency Mechanisms



Link fragmentation and interleaving (LFI)

Reduces delay and jitter on slower-speed links by breaking up large packet flows and inserting smaller data packets (Telnet, VoIP) between them.

Multilink PPP (MLP)

Bonds multiple links between two nodes, which increases the available bandwidth. MLP can be used on analog or digital links and is based on RFC 1990.

Real-Time Transport Protocol (RTP) header compression

Provides increased efficiency for applications that take advantage of RTP on slow links. Compresses RTP/UDP/IP headers from 40 bytes down to 2–5 bytes.

Window Size

The window size defines the upper limit of frames that can be transmitted without getting a return acknowledgment. Transport protocols such as TCP rely on acknowledgments to provide connection-oriented reliable transport of data segments. For example, if the TCP window size is set to 8192, the source stops sending data after 8192 bytes if no acknowledgment has been received from the destination host. In some cases, the window size might need to be modified because of unacceptable delay for larger WAN links. If the window size is not adjusted to coincide with the delay factor, retransmissions can occur, which affects throughput significantly. It is recommended that you adjust the window size to achieve better connectivity conditions.

9. References and Recommended Readings | Next Section Previous Section

Cisco Press Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from Cisco Press and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about Cisco Press products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites; develop new products and services; conduct educational research; and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@ciscopress.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by Cisco Press. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.ciscopress.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020