Using TRILL, FabricPath, and VXLAN: Designing Massively Scalable Data Centers (MSDC) with Overlays, Rough Cuts

Rough Cuts

  • Available to Safari Subscribers
  • About Rough Cuts
  • Rough Cuts are manuscripts that are developed but not yet published, available through Safari. Rough Cuts provide you access to the very latest information on a given topic and offer you the opportunity to interact with the author to influence the final publication.

Not for Sale
  • Description
  • Sample Content
  • Updates
  • Copyright 2014
  • Dimensions: 7-3/8" x 9-1/8"
  • Pages: 400
  • Edition: 1st
  • Rough Cuts
  • ISBN-10: 0-13-339305-4
  • ISBN-13: 978-0-13-339305-7

This is the Rough Cut version of the printed book.

Using TRILL, FabricPath, and VXLAN

Designing Massively Scalable Data Centers with Overlays

TRILL, FabricPath, and VXLAN overlays help you distribute data traffic far more effectively, dramatically improving utilization in even the largest data center networks. Using TRILL, FabricPath, and VXLAN is the first practical and comprehensive guide to planning and establishing these high-efficiency overlay networks. The authors begin by reviewing today’s fast-growing data center requirements, and making a strong case for overlays in the Massive Scale Data Center (MSDC). Next, they introduce each leading technology option, including FabricPath, TRILL, LISP, VXLAN, NVGRE, OTV, and Shortest Path Bridging (SPB). They also present a chapter-length introduction to IS-IS, focusing on details relevant to the control of FabricPath and TRILL networks. Building on this foundation, they offer in-depth coverage of FabricPath: its advantages, architecture, forwarding, configuration, verification, and benefits in Layer-2 networks. Through examples, they explain TRILL’s architecture, functionality, and forwarding behavior, focusing especially on data flow. They also fully address VXLAN as a solution for realizing IP-based data center fabrics, including multi-tenant cloud applications.

Using TRILL, FabricPath, and VXLAN provides detailed strategies and methodologies for FabricPath, TRILL, and VXLAN deployment and migration, as well as best practices for management and troubleshooting. It also presents three detailed implementation scenarios, each reflecting realistic data center challenges. In particular, the authors show how to integrate multiple overlay technologies into a single end-to-end solution that offers exceptional flexibility, agility, and availability.

Sanjay K. Hooda is principal engineer in Catalyst switching software engineering at Cisco. He has more than 15 years of network design and implementation experience in large enterprise environments, and has participated in IETF standards activities. His interests include wireless, multicast, TRILL, FabricPath, High Availability, ISSU, and IPv6. He is co-author of IPv6 for Enterprise Networks.

Shyam Kapadia, Technical Leader at Cisco’s Data Center Group (DCG), was an integral part of the team that delivered the next-generation Catalyst 6500 Sup 2T (2 Terabyte) platform. Since then, he has focused on developing new solutions for data center environments. He holds a Ph.D. in computer science from USC, where his research encompassed wired, wireless, ad hoc, vehicular, and sensor networks.

Padmanabhan Krishnan has more than 12 years of experience in networking and telecommunications, including 7 at Cisco. His recent experience has included providing data path solutions for TRILL in the Catalyst 6500 Sup 2T Platform using FPGA, as well as design and development of platform core infrastructure and L2 features.

n  Discover how overlays can address data center network problems ranging from scalability to rapid provisioning

n  Examine popular data center overlay examples

n  Learn about extensions to IS-IS for TRILL and FabricPath

n  Use FabricPath, TRILL, and VXLAN to simplify configuration, improve performance and availability, optimize efficiency, and limit table size

n  Learn about FabricPath control and data plane architecture deta

Table of Contents

Chapter 1 Need for Overlays in Massive Scale Data Centers 1

Evolution of the Data Center 1

    Changing Requirements of Data Centers 4

    Data Center Architectures 6

    CLOS 8

    Fat-Tree 9

    Single Fabric 9

    Need for Overlays 10

Summary 15

References 15

Chapter 2 Introduction to Overlay Technologies 19

Overlay Technologies Overview 20

Cisco FabricPath 22

    FabricPath Requirements 22

    FabricPath Benefits 23

FabricPath Architecture 24

    FabricPath Encapsulation 24

    FabricPath Data Plane Operation 25

TRILL 26

    TRILL Requirements 27

    TRILL Frame Format 28

    TRILL Data Plane Operation 28

Locator ID/Separator Protocol 30

    LISP Frame Format 30

    LISP Routing 30

VXLAN 32

    VXLAN Frame Format 33

    VXLAN Data Path Operation 34

NVGRE 35

    NVGRE Frame Format 36

    NVGRE Data Path Operation 36

Overlay Transport Virtualization 38

    OTV Frame Format 39

    OTV Operation 40

Provider Backbone Bridges (PBB) 41

Shortest Path Bridging 43

    Shortest Path Bridging MAC 43

    Shortest Path Bridging VID 45

Summary 47

References 47