larger cover

Add To My Wish List

Register your product to gain access to bonus material or receive a coupon.

Using TRILL, FabricPath, and VXLAN: Designing Massively Scalable Data Centers (MSDC) with Overlays


  • Sorry, this book is no longer in print.
Not for Sale

eBook (Watermarked)

  • Your Price: $46.39
  • List Price: $57.99
  • Includes EPUB and PDF
  • About eBook Formats
  • This eBook includes the following formats, accessible from your Account page after purchase:

    ePub EPUB The open industry format known for its reflowable content and usability on supported mobile devices.

    Adobe Reader PDF The popular standard, used most often with the free Acrobat® Reader® software.

    This eBook requires no passwords or activation to read. We customize your eBook by discreetly watermarking it with your name, making it uniquely yours.

  • About
  • Description
  • Sample Content
  • Updates


• The definitive guide for TRILL and FabricPath deployment and integration.
• Offers design considerations and methodologies for implementing MSDC overlay networks using TRILL and Fabric path.
• Provides information on relevant, advanced TRILL and Fabric path functionality for key Cisco platforms including Nexus 7000, Nexus 5000, Nexus 3000, etc.
• Helps plan MSDC environments with overlay technologies by offering guidelines and references to relevant resources.
• Provides the opportunity to practice the acquired knowledge on complete case studies.
• Offers deployment examples that can be used as a reference in designing MSDC overlay networks.
• Provides information on migrating current spanning tree based L2 networks to FarbicPath/TRILL based networks.
• Shows how the overlay technologies can interoperate with each other as well as with existing technologies.

  • Copyright 2014
  • Dimensions: 7-3/8" x 9-1/8"
  • Pages: 368
  • Edition: 1st
  • Book
  • ISBN-10: 1-58714-393-3
  • ISBN-13: 978-1-58714-393-9

Using TRILL, FabricPath, and VXLAN

Designing Massively Scalable Data Centers with Overlays

TRILL, FabricPath, and VXLAN overlays help you distribute data traffic far more effectively, dramatically improving utilization in even the largest data center networks. Using TRILL, FabricPath, and VXLAN is the first practical and comprehensive guide to planning and establishing these high-efficiency overlay networks. The authors begin by reviewing today’s fast-growing data center requirements, and making a strong case for overlays in the Massive Scale Data Center (MSDC). Next, they introduce each leading technology option, including FabricPath, TRILL, LISP, VXLAN, NVGRE, OTV, and Shortest Path Bridging (SPB). They also present a chapter-length introduction to IS-IS, focusing on details relevant to the control of FabricPath and TRILL networks. Building on this foundation, they offer in-depth coverage of FabricPath: its advantages, architecture, forwarding, configuration, verification, and benefits in Layer-2 networks. Through examples, they explain TRILL’s architecture, functionality, and forwarding behavior, focusing especially on data flow. They also fully address VXLAN as a solution for realizing IP-based data center fabrics, including multi-tenant cloud applications.

Using TRILL, FabricPath, and VXLAN provides detailed strategies and methodologies for FabricPath, TRILL, and VXLAN deployment and migration, as well as best practices for management and troubleshooting. It also presents three detailed implementation scenarios, each reflecting realistic data center challenges. In particular, the authors show how to integrate multiple overlay technologies into a single end-to-end solution that offers exceptional flexibility, agility, and availability.

Sanjay K. Hooda is principal engineer in Catalyst switching software engineering at Cisco. He has more than 15 years of network design and implementation experience in large enterprise environments, and has participated in IETF standards activities. His interests include wireless, multicast, TRILL, FabricPath, High Availability, ISSU, and IPv6. He is co-author of IPv6 for Enterprise Networks.

Shyam Kapadia, Technical Leader at Cisco’s Data Center Group (DCG), was an integral part of the team that delivered the next-generation Catalyst 6500 Sup 2T (2 Terabyte) platform. Since then, he has focused on developing new solutions for data center environments. He holds a Ph.D. in computer science from USC, where his research encompassed wired, wireless, ad hoc, vehicular, and sensor networks.

Padmanabhan Krishnan has more than 12 years of experience in networking and telecommunications, including 7 at Cisco. His recent experience has included providing data path solutions for TRILL in the Catalyst 6500 Sup 2T Platform using FPGA, as well as design and development of platform core infrastructure and L2 features.

n  Discover how overlays can address data center network problems ranging from scalability to rapid provisioning

n  Examine popular data center overlay examples

n  Learn about extensions to IS-IS for TRILL and FabricPath

n  Use FabricPath, TRILL, and VXLAN to simplify configuration, improve performance and availability, optimize efficiency, and limit table size

n  Learn about FabricPath control and data plane architecture details

n  Review example FabricPath configurations on Cisco Nexus 7000/6000/5000 switches

n  Understand TRILL concepts and architecture, including overlay header, control and data plane, and MAC address learning

n  Learn about VXLAN architecture details and packet forwarding

n  Review example VXLAN configurations on a Cisco Nexus 1000V distributed virtual switch

n   Implement TRILL/FabricPath networks with VXLAN to virtualized servers in an intra-data center environment

n   Connect multiple traditional data centers using an OTV overlay as a Layer 2 extension

n   Use OTV overlays to connect sites running FabricPath, TRILL, or both

Online Sample Chapter

Using TRILL, FabricPath, and VXLAN: IS-IS Intra Domain Routing Protocol

Sample Pages

Download the sample pages (includes Chapter 2 and Index)

Table of Contents

Chapter 1 Need for Overlays in Massive Scale Data Centers 1

Evolution of the Data Center 1

    Changing Requirements of Data Centers 4

    Data Center Architectures 6

    CLOS 8

    Fat-Tree 9

    Single Fabric 9

    Need for Overlays 10

Summary 15

References 15

Chapter 2 Introduction to Overlay Technologies 19

Overlay Technologies Overview 20

Cisco FabricPath 22

    FabricPath Requirements 22

    FabricPath Benefits 23

FabricPath Architecture 24

    FabricPath Encapsulation 24

    FabricPath Data Plane Operation 25


    TRILL Requirements 27

    TRILL Frame Format 28

    TRILL Data Plane Operation 28

Locator ID/Separator Protocol 30

    LISP Frame Format 30

    LISP Routing 30


    VXLAN Frame Format 33

    VXLAN Data Path Operation 34


    NVGRE Frame Format 36

    NVGRE Data Path Operation 36

Overlay Transport Virtualization 38

    OTV Frame Format 39

    OTV Operation 40

Provider Backbone Bridges (PBB) 41

Shortest Path Bridging 43

    Shortest Path Bridging MAC 43

    Shortest Path Bridging VID 45

Summary 47

References 47

Chapter 3 IS-IS 49

Introduction to IS-IS 49

Concepts 50

    Neighbor Discovery 51

    Topology Exchange 51

    Flooding 51

    Route Computation 52

    Link State Protocol Scaling 52

    Link State Protocol in a Local Area Network 53

IS-IS Architecture Details 55

TRILL and FabricPath Specific Changes in IS-IS 56

    Overview of TRILL and FabricPath 57

    IS-IS Frame Formats 58

        Router Capability TLV 59

        Multitopology-Aware Port Capability TLV 59

    TRILL IS-IS Neighbor Discovery 59

        TRILL HELLOs 60

        P2P HELLOs 63

        TRILL Neighbor TLV 64

        Router Capability Sub-TLVs 64

        Multitopology-Aware Port Capability Sub-TLVs 64

        Area Address TLV 67

        Protocols Supported TLV 67

TRILL and FabricPath Topology Exchange 67

    Flooding 69

    Nickname or SwitchID Resolution 70

    Shortest Path Computation 71

    Distribution Trees Computation 71

        Pruning the Distribution Tree 74

    ESADI 77

        MAC Reachability TLV 78

    Fine Grained Labeling 79

    Pseudo Node 81

    Multi Topology Routing 83

Summary 84

References 84

Additional Resources 84

Chapter 4 FabricPath 85

FabricPath Overview 86

FabricPath Architecture 87

    Core and Edge 88

    Addressing Concepts 89

    VLANs 89

    vPC+ 89

    FabricPath Encapsulation 91

    FabricPath Control Plane Protocols 93

        IGMP Snooping in FabricPath Multicast Networks 96

    FabricPath Dynamic Resource Allocation Protocol 97

        Allocation of Resources by DRAP 97

        FabricPath MAC Address Learning 98

        Control Plane Learning 98

        Data Plane Learning 98

FabricPath STP Interaction 102

    Topology Change Notifications Forwarding 105

FabricPath Packet Forwarding 106

    Broadcast: ARP Request 108

    Unicast: ARP Reply 111

    Unicast: Data 113

    IP Multicast Forwarding 116

FabricPath Basic Configuration 119

    FabricPath Benefits 121

Summary 122

References 122

Chapter 5 TRILL 123

Need for TRILL 124

    Spanning Tree in Layer 2 Networks 124

    Issues with Spanning Tree Protocol 126

    Virtual Switching System 127

    Giant Virtual Switch 128

    Flat Network 129

    Layer 3 Network 130

Concepts and Terminologies 130

    RBridge 131

    Appointed Forwarder 132

    Addressing Concepts 133

TRILL Frame Format 134

TRILL Control Plane 136

    Unicast 136

    Multicast 137

        Pruning 139

TRILL Data Plane 141

    Unicast 141

        Ingress RBridge Processing 141

        Processing of TRILL Packets 143

    Multidestination 143

        Ingress Processing 144

        Core and Egress Processing 146

        Egress Processing 146

MAC Address Learning in TRILL-Based Networks 147

    Dynamic Learning 147

    Learning Through Control Protocols 147

Work in Progress 148

    Multitopology Routing 148

    Fine-Grained Labeling 149

        Ingress RBridge 152

        Core RBridge 152

        Egress RBridge 152

    Pseudo Node 152

        Choosing a Pseudo Nickname 154

        Multiple Distribution Trees per Member RBridge 156

        Synchronization of MAC Addresses 158

Case Studies 159

    Bidirectional Packet Flow 159

        Traffic from H1 to H2 160

        Traffic from H2 to H1 164

    Packet Flow for Pseudo Node 167

        Packet Originating from Host H1 170

        Reverse Traffic from Host H2 to H1 172

Summary 174

References 174

Additional Resources 175

Chapter 6 VXLAN 177

VXLAN Overview 177

    Advent of VXLAN 178

VXLAN Architecture 179

    VXLAN Header Format 181

VXLAN Packet Forwarding 182

    Broadcast: ARP Request 183

    Unicast: ARP Reply 184

    Unicast: Data 186

    Unknown Unicast 187

    VM Mobility Case 188

    IPv6 Data Forwarding 190

    NS Request and NA Response 191

    VXLAN Gateway 192

    Inter-VXLAN Communication 196

    Layer 3 Multicast 198

    Multicast-Less VXLAN 200

    Floodless VXLAN Forwarding 203

    VXLAN as a Network Overlay 205

    Other VXLAN Considerations 207

VXLAN Basic Configuration 208

    VXLAN Gateway Configuration 210

Summary 211

References 211

Chapter 7 FabricPath Deployment, Migration, and Troubleshooting 213

vPC 214

    vPC Overview 214

    vPC Terminology 215

    vPC Benefits 216

    vPC Deployment Scenarios 217

    Double-Sided vPC 218

    vPC Operations 219

    vPC Traffic Flow 224

    Cisco Fabric Services over Ethernet 225

    vPC ARP Sync 225

    vPC Peer Gateway 225

    vPC Verification 227

vPC+ 231

    vPC+ Overview 231

    vPC+ Basics 232

    vPC+ Basic Packet Flow 236

    Active/Active HSRP Forwarding 238

FabricPath Topologies 241

Migration to FabricPath Network 242

    Conversion from Classical Layer 2 to FabricPath Network 242

    Conversion of vPC to vPC+ (Classical Ethernet to FabricPath) 244

    Configuring vPC+ on Secondary Switch 246

    Configuring vPC+ on Primary Switch 249

    Conversion of Access Switch (Sw3) Connecting to Secondary (Sw2) to FabricPath 251

    Converting Access Switch Sw3 Uplink Connecting to Sw1 to FabricPath 254

Monitoring and Troubleshooting in FabricPath Networks 257

    Loopback Message 258

    Path Trace Message 259

    Multicast Trace Message 259

    FabricPath OAM Configuration Model 261

Summary 270

References 270

Chapter 8 TRILL Deployment, Migration, and Troubleshooting 271

Introduction 271

TRILL Deployment 271

    TRILL Between Access and Distribution 274

    TRILL Core 274

        Layer 2 Bridging Case 276

        Layer 3 Routing Cases 277

    Expanding the POD 285

    TRILL Everywhere 286

    Meshed Distribution with No Core 287

    Link Aggregation or Pseudo-Node Deployments 287

    CLOS Network Model 289

Migration Toward TRILL 290

    TRILL and Spanning Tree 291

        Appointed Forwarder Solution 292

        Spanning Tree Solution 293

    Bottom-up Migration Toward TRILL 296

    Top-down Migration Toward TRILL 298

Monitoring and Troubleshooting in TRILL Networks 299

    OAM Packet Format 300

    Connectivity Verification 302

    Path Tracing 303

    TRILL Configuration Model 304

Summary 304

References 305

Chapter 9 Multi-Overlay Deployments 307

Overview 307

Case Study 1: TRILL or FabricPath Network with VXLAN to Virtualized Servers 309

Case Study 2: Data Center Interconnect Using OTV 315

Case Study 3: Interconnecting TRILL or FabricPath Data Centers Using OTV 321

    Merging TRILL or FabricPath Networks 321

    Independent TRILL or FabricPath Networks 323

    Interconnection of TRILL and FabricPath Data Centers 325

    Packet Flow 325

Summary 327

References 328

Index 329

Cisco Press Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from Cisco Press and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about Cisco Press products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites; develop new products and services; conduct educational research; and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by Cisco Press. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive:

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020