Answers to Configuration Exercise: Configuring a Multiarea IS-IS Network
This section provides the answers to the questions in the configuration exercise. The answers are in bold.
Answers to Setup
To set up, do the following:
Step 1 Disable OSPF on all the routers within your pod.
The following example shows how to perform the required setup on the pod 1 routers.
p1r1(config)#no router ospf 200 p1r2(config)#no router ospf 200 p1r3(config)#no router ospf 200
Step 2 Shut the pxr1 S3 interface.
The following example shows how to perform the required setup on the p1r1 router.
p1r1(config)#int s3 p1r1(config-if)#shutdown
Answers to Task 1: Enabling IS-IS Within Your Pod
Complete the following steps:
Step 1 Enable IS-IS on the pxr1, pxr2, and pxr3 routers within your pod.
Step 2 Configure the pxr1, pxr2, and pxr3 routers within your pod with the IS-IS NETs shown in the following table.
Pod |
pxr1 NET |
pxr2 NET |
pxr3 NET |
1 |
00.0001.1111.1111.1111.00 |
00.0001.1212.1212.1212.00 |
00.0001.1313.1313.1313.00 |
2 |
00.0002.2121.2121.2121.00 |
00.0002.2222.2222.2222.00 |
00.0002.2323.2323.2323.00 |
3 |
00.0003.3131.3131.3131.00 |
00.0003.3232.3232.3232.00 |
00.0003.3333.3333.3333.00 |
4 |
00.0004.4141.4141.4141.00 |
00.0004.4242.4242.4242.00 |
00.0004.4343.4343.4343.00 |
5 |
00.0005.5151.5151.5151.00 |
00.0005.5252.5252.5252.00 |
00.0005.5353.5353.5353.00 |
6 |
00.0006.6161.6161.6161.00 |
00.0006.6262.6262.6262.00 |
00.0006.6363.6363.6363.00 |
7 |
00.0007.7171.7171.7171.00 |
00.0007.7272.7272.7272.00 |
00.0007.7373.7373.7373.00 |
8 |
00.0008.8181.8181.8181.00 |
00.0008.8282.8282.8282.00 |
00.0008.8383.8383.8383.00 |
9 |
00.0009.9191.9191.9191.00 |
00.0009.9292.9292.9292.00 |
00.0009.9393.9393.9393.00 |
10 |
00.0010.A1A1.A1A1.A1A1.00 |
00.0010.A2A2.A2A2.A2A2.00 |
00.0010.A3A3.A3A3.A3A3.00 |
11 |
00.0011.B1B1.B1B1.B1B1.00 |
00.0011.B2B2.B2B2.B2B2.00 |
00.0011.B3B3.B3B3.B3B3.00 |
12 |
00.0012.C1C1.C1C1.C1C1.00 |
00.0012.C2C2.C2C2.C2C2.00 |
00.0012.C3C3.C3C3.C3C3.00 |
The following example shows how to enable IS-IS and configure the NETs on the pod 1 routers.
p1r1(config)#router isis p1r1(config-router)#net 00.0001.1111.1111.1111.00 p1r2(config)#router isis p1r2(config-router)#net 00.0001.1212.1212.1212.00 p1r3(config)#router isis p1r3(config-router)#net 00.0001.1313.1313.1313.00
NOTE
The backbone_r1 router is configured with a NET of 00.0013.1111.2222.3333.00.
Step 3 Enable IS-IS on the interfaces specified in the following table on the pxr1, pxr2, and pxr3 routers within your pod.
Router |
Interfaces on Which to Enable IS-IS |
||||
pxr1 |
S0 |
S1 |
S2 |
|
|
pxr2 |
S0 |
S1 |
E0 |
Loopback10 |
|
pxr3 |
S0 |
E0 |
Loopback11 |
Loopback12 |
Loopback13 |
NOTE
For this task, the pxr1 S3 interface is shut down.
The following example shows how to enable IS-IS on the appropriate interfaces of the pod 1 routers.
p1r1(config)#int s0 p1r1(config-if)#ip router isis p1r1(config-if)#exit p1r1(config)#int s1 p1r1(config-if)#ip router isis p1r1(config-if)#exit p1r1(config)#int s2 p1r1(config-if)#ip router isis p1r1(config-if)#exit p1r1(config)# p1r2(config)#int s0 p1r2(config-if)#ip router isis p1r2(config-if)#exit p1r2(config)#int s1 p1r2(config-if)#ip router isis p1r2(config-if)#exit p1r2(config)#int e0 p1r2(config-if)#ip router isis p1r2(config-if)#exit p1r2(config)#int loopback 10 p1r2(config-if)#ip router isis p1r2(config-if)#exit p1r2(config)# p1r3(config)#int s0 p1r3(config-if)#ip router isis p1r3(config-if)#exit p1r3(config)#int e0 p1r3(config-if)#ip router isis p1r3(config-if)#exit p1r3(config)#int loopback 11 p1r3(config-if)#ip router isis p1r3(config-if)#exit p1r3(config)#int loopback 12 p1r3(config-if)#ip router isis p1r3(config-if)#exit p1r3(config)#int loopback 13 p1r3(config-if)#ip router isis p1r3(config-if)#exit p1r3(config)#
Step 4 Display the routing table of the pxr1, pxr2, and pxr3 routers within your pod, and verify that you have full connectivity within your pod.
The following example output is from the p1r1 router:
p1r1#show ip route <output omitted> Gateway of last resort is not set 172.26.0.0/28 is subnetted, 3 subnets i L1 172.26.1.48 [115/20] via 192.168.1.50, Serial2 i L1 172.26.1.32 [115/20] via 192.168.1.50, Serial2 i L1 172.26.1.16 [115/20] via 192.168.1.50, Serial2 192.168.1.0/28 is subnetted, 4 subnets i L1 192.168.1.64 [115/20] via 192.168.1.34, Serial1 [115/20] via 192.168.1.18, Serial0 [115/20] via 192.168.1.50, Serial2 C 192.168.1.32 is directly connected, Serial1 C 192.168.1.48 is directly connected, Serial2 C 192.168.1.16 is directly connected, Serial0 i L1 192.168.101.0/24 [115/20] via 192.168.1.34, Serial1 [115/20] via 192.168.1.18, Serial0 p1r1#
The following example output is from the p1r2 router:
p1r2#show ip route <output omitted> Gateway of last resort is not set 172.26.0.0/28 is subnetted, 3 subnets i L1 172.26.1.48 [115/20] via 192.168.1.66, Ethernet0 i L1 172.26.1.32 [115/20] via 192.168.1.66, Ethernet0 i L1 172.26.1.16 [115/20] via 192.168.1.66, Ethernet0 192.168.1.0/28 is subnetted, 4 subnets C 192.168.1.64 is directly connected, Ethernet0 C 192.168.1.32 is directly connected, Serial1 i L1 192.168.1.48 [115/20] via 192.168.1.33, Serial1 [115/20] via 192.168.1.17, Serial0 [115/20] via 192.168.1.66, Ethernet0 C 192.168.1.16 is directly connected, Serial0 C 192.168.101.0/24 is directly connected, Loopback10 p1r2#
The following example output is from the p1r3 router:
p1r3#show ip route <output omitted> Gateway of last resort is not set 172.26.0.0/28 is subnetted, 3 subnets C 172.26.1.48 is directly connected, Loopback13 C 172.26.1.32 is directly connected, Loopback12 C 172.26.1.16 is directly connected, Loopback11 192.168.1.0/28 is subnetted, 4 subnets C 192.168.1.64 is directly connected, Ethernet0 i L1 192.168.1.32 [115/20] via 192.168.1.65, Ethernet0 [115/20] via 192.168.1.49, Serial0 C 192.168.1.48 is directly connected, Serial0 i L1 192.168.1.16 [115/20] via 192.168.1.65, Ethernet0 [115/20] via 192.168.1.49, Serial0 i L1 192.168.101.0/24 [115/20] via 192.168.1.65, Ethernet0 p1r3#
These examples show that there is full connectivity within pod 1.
Step 5 Examine the pxr1 routing table and answer the following questions:
The following example output is from the p1r1 router:
p1r1#show ip route <output omitted> Gateway of last resort is not set 172.26.0.0/28 is subnetted, 3 subnets i L1 172.26.1.48 [115/20] via 192.168.1.50, Serial2 i L1 172.26.1.32 [115/20] via 192.168.1.50, Serial2 i L1 172.26.1.16 [115/20] via 192.168.1.50, Serial2 192.168.1.0/28 is subnetted, 4 subnets i L1 192.168.1.64 [115/20] via 192.168.1.34, Serial1 [115/20] via 192.168.1.18, Serial0 [115/20] via 192.168.1.50, Serial2 C 192.168.1.32 is directly connected, Serial1 C 192.168.1.48 is directly connected, Serial2 C 192.168.1.16 is directly connected, Serial0 i L1 192.168.101.0/24 [115/20] via 192.168.1.34, Serial1 [115/20] via 192.168.1.18, Serial0 p1r1#
Does IS-IS load-balance by default?
Yes, it does load-balance by default. In the previous example routing table, there are three equal-cost routes to 192.168.1.64 and two equal-cost routes to 192.168.101.0.
What is the IS-IS routing metric based on by default?
The default metric is a scalar cost where 1 hop = 10. Note that you count one hop for yourself or for the link (that is, the metric is always at least 20 for nonconnected networks).
Use the show clns int s0 command to determine the Level 1 and Level 2 default metric.
The following example output is from the p1r1 router:
p1r1#show clns int s0 Serial0 is up, line protocol is up Checksums enabled, MTU 1500, Encapsulation HDLC ERPDUs enabled, min. interval 10 msec. RDPDUs enabled, min. interval 100 msec., Addr Mask enabled Congestion Experienced bit set at 4 packets CLNS fast switching enabled CLNS SSE switching disabled DEC compatibility mode OFF for this interface Next ESH/ISH in 18 seconds Routing Protocol: IS-IS Circuit Type: level-1-2 Interface number 0x0, local circuit ID 0x100 Level-1 Metric: 10, Priority: 64, Circuit ID: 1212.1212.1212.00 Number of active level-1 adjacencies: 1 Level-2 Metric: 10, Priority: 64, Circuit ID: 1111.1111.1111.00 Number of active level-2 adjacencies: 1 Next IS-IS Hello in 5 seconds p1r1#
The Level 1 and Level 2 default metric is 10.
What is the default administrative distance of IS-IS routes?
The following example output is from the p1r1 router:
p1r1#show ip protocols Routing Protocol is "isis" Sending updates every 0 seconds Invalid after 0 seconds, hold down 0, flushed after 0 Outgoing update filter list for all interfaces is Incoming update filter list for all interfaces is Redistributing: isis Address Summarization: None Routing for Networks: Serial0 Serial1 Serial2 Routing Information Sources: Gateway Distance Last Update 192.168.1.34 115 00:04:09 192.168.1.50 115 00:03:21 192.168.101.101 115 00:03:06 172.26.1.17 115 00:03:11 Distance: (default is 115)
This output shows that the default IP administrative distance is 115.
Step 6 Save the current configurations of all the routers within your pod to NVRAM.
The following example shows how to save the configuration of the p1r1 router using the copy run start command (this is an abbreviated form of the copy running-config startup-config command):
p1r1#copy run start Destination filename [startup-config]? Building configuration... p1r1#
Answers to Task 2: Enabling Connectivity to the backbone_r1 Router
Complete the following steps:
Step 1 No shut the S3 interface on the pxr1 router.
Step 2 Enable IS-IS on the S3 interface on the pxr1.
The following example shows the configuration of the p1r1 router. The output from the router is also displayed:
p1r1(config)#int s3 p1r1(config-if)#no shutdown p1r1(config-if)# 08:36:18: %LINK-3-UPDOWN: Interface Serial3, changed state to up p1r1(config-if)# 08:36:19: %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial3, changed state to up p1r1(config-if)#ip router isis p1r1(config-if)#^Z p1r1#
Step 3 Display the routing table of the pxr1, pxr2, and pxr3 routers within your pod, and verify that you have full connectivity to the backbone_r1 router.
The following example output is from the p1r1 router:
p1r1#show ip route <output omitted> Gateway of last resort is not set 172.16.0.0/24 is subnetted, 2 subnets i L2 172.16.10.0 [115/20] via 10.1.1.100, Serial3 i L2 172.16.11.0 [115/20] via 10.1.1.100, Serial3 172.26.0.0/28 is subnetted, 3 subnets i L1 172.26.1.48 [115/20] via 192.168.1.50, Serial2 i L1 172.26.1.32 [115/20] via 192.168.1.50, Serial2 i L1 172.26.1.16 [115/20] via 192.168.1.50, Serial2 10.0.0.0/24 is subnetted, 1 subnets C 10.1.1.0 is directly connected, Serial3 192.168.1.0/28 is subnetted, 4 subnets i L1 192.168.1.64 [115/20] via 192.168.1.34, Serial1 [115/20] via 192.168.1.18, Serial0 [115/20] via 192.168.1.50, Serial2 C 192.168.1.32 is directly connected, Serial1 C 192.168.1.48 is directly connected, Serial2 C 192.168.1.16 is directly connected, Serial0 i L1 192.168.101.0/24 [115/20] via 192.168.1.34, Serial1 [115/20] via 192.168.1.18, Serial0 p1r1#
The following example output is from the p1r2 router:
p1r2#show ip route <output omitted> Gateway of last resort is not set 172.16.0.0/24 is subnetted, 2 subnets i L2 172.16.10.0 [115/30] via 192.168.1.33, Serial1 [115/30] via 192.168.1.17, Serial0 i L2 172.16.11.0 [115/30] via 192.168.1.33, Serial1 [115/30] via 192.168.1.17, Serial0 172.26.0.0/28 is subnetted, 3 subnets i L1 172.26.1.48 [115/20] via 192.168.1.66, Ethernet0 i L1 172.26.1.32 [115/20] via 192.168.1.66, Ethernet0 i L1 172.26.1.16 [115/20] via 192.168.1.66, Ethernet0 10.0.0.0/24 is subnetted, 1 subnets i L1 10.1.1.0 [115/20] via 192.168.1.33, Serial1 [115/20] via 192.168.1.17, Serial0 192.168.1.0/28 is subnetted, 4 subnets C 192.168.1.64 is directly connected, Ethernet0 C 192.168.1.32 is directly connected, Serial1 i L1 192.168.1.48 [115/20] via 192.168.1.33, Serial1 [115/20] via 192.168.1.17, Serial0 [115/20] via 192.168.1.66, Ethernet0 C 192.168.1.16 is directly connected, Serial0 C 192.168.101.0/24 is directly connected, Loopback10 p1r2#
The following example output is from the p1r3 router:
p1r3#show ip route <output omitted> Gateway of last resort is not set 172.16.0.0/24 is subnetted, 2 subnets i L2 172.16.10.0 [115/30] via 192.168.1.49, Serial0 i L2 172.16.11.0 [115/30] via 192.168.1.49, Serial0 172.26.0.0/28 is subnetted, 3 subnets C 172.26.1.48 is directly connected, Loopback13 C 172.26.1.32 is directly connected, Loopback12 C 172.26.1.16 is directly connected, Loopback11 10.0.0.0/24 is subnetted, 1 subnets i L1 10.1.1.0 [115/20] via 192.168.1.49, Serial0 192.168.1.0/28 is subnetted, 4 subnets C 192.168.1.64 is directly connected, Ethernet0 i L1 192.168.1.32 [115/20] via 192.168.1.65, Ethernet0 [115/20] via 192.168.1.49, Serial0 C 192.168.1.48 is directly connected, Serial0 i L1 192.168.1.16 [115/20] via 192.168.1.65, Ethernet0 [115/20] via 192.168.1.49, Serial0 i L1 192.168.101.0/24 [115/20] via 192.168.1.65, Ethernet0 p1r3#
Do you see the backbone_r1 router's loopback interfaces in your routing table? (Note that you also might see routes to the other pods.)
Yes, the backbone_r1 loopback interfaces on networks 172.16.10.0 and 172.16.11.0 are visible in all the routing tables.
Does IS-IS perform autosummarization across the network boundary by default?
No, IS-IS does not perform autosummarization across the network boundary by default. The routing tables show all configured subnets of all networks.
Does IS-IS use the same default administrative distance for Level 1 and Level 2 routes?
Yes, IS-IS uses the same default admin distance for Level 1 and Level 2: 115.
Make sure you can ping the loopback interfaces on the backbone_r1 router from the pxr1, pxr2, and pxr3 routers within your pod.
The following examples are the results of the ping commands on the pod 1 routers to the backbone_r1 router's loopback interfaces. All pings are successful:
p1r1#ping 172.16.10.100 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 172.16.10.100, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 32/32/32 ms p1r1#ping 172.16.11.100 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 172.16.11.100, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 32/32/32 ms p1r1# p1r2#ping 172.16.10.100 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 172.16.10.100, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 60/60/64 ms p1r2#ping 172.16.11.100 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 172.16.11.100, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 60/60/64 ms p1r2# p1r3#ping 172.16.10.100 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 172.16.10.100, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 56/59/60 ms p1r3#ping 172.16.11.100 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 172.16.11.100, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 60/62/72 ms p1r3#
Step 4 Save the current configurations of all the routers within your pod to NVRAM.
The following example shows how to save the configuration of the p1r1 router using the copy run start command (this is an abbreviated form of the copy running-config startup-config command):
p1r1#copy run start Destination filename [startup-config]? Building configuration... p1r1#
Answers to Task 3: Changing the IS-IS Router Type
Complete the following steps:
Step 1 By default, the pxr1, pxr2, and pxr3 routers within your pod are what type of IS-IS router (Level 1, Level 2, or Level 12)?
What command can be used to determine the IS-IS router type?
The show clns is-neighbors command can be used to determine the IS-IS router type. The output from this command on the p1r1 router is shown here:
p1r1#show clns is-neighbors System Id Interface State Type Priority Circuit Id Format 1212.1212.1212 Se1 Up L1L2 0 /0 01 Phase V 1212.1212.1212 Se0 Up L1L2 0 /0 00 Phase V 1313.1313.1313 Se2 Up L1L2 0 /0 00 Phase V 1111.2222.3333 Se3 Up L2 0 00 Phase V p1r1#
By default, the routers are Level 12 (L1L2) routers. Note that the backbone_r1 router has a command to make it a Level 2only router.
Step 2 Examine the IS-IS link state database of the pxr1, pxr2, and pxr3 routers within your pod. Do you see both the Level 1 and Level 2 link-state database on all the routers?
The following example output is from the p1r1 router:
p1r1#show isis database IS-IS Level-1 Link State Database LSPID LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL 1111.1111.1111.00-00* 0x00000008 0x0B2C 838 1/0/0 1212.1212.1212.00-00 0x00000007 0x1C1C 839 1/0/0 1212.1212.1212.01-00 0x00000002 0xD237 434 0/0/0 1212.1212.1212.02-00 0x00000002 0xA265 1125 0/0/0 1313.1313.1313.00-00 0x00000009 0xBCB1 839 1/0/0 1313.1313.1313.01-00 0x00000001 0x4840 0 (441) 0/0/0 1313.1313.1313.02-00 0x00000002 0xA853 1117 0/0/0 1313.1313.1313.03-00 0x00000002 0xA159 1140 0/0/0 1313.1313.1313.04-00 0x00000001 0x9C5E 449 0/0/0 IS-IS Level-2 Link State Database LSPID LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL 1111.1111.1111.00-00* 0x0000000C 0xDAD4 827 0/0/0 1111.2222.3333.00-00 0x00000006 0x352F 826 0/0/0 1212.1212.1212.00-00 0x0000000A 0x6588 828 0/0/0 1212.1212.1212.01-00 0x00000003 0x6031 1115 0/0/0 1313.1313.1313.00-00 0x0000000A 0xEA43 828 0/0/0 1313.1313.1313.01-00 0x00000002 0x4641 0 (441) 0/0/0 p1r1#
The following example output is from the p1r2 router:
p1r2#show isis database IS-IS Level-1 Link State Database LSPID LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL 1111.1111.1111.00-00 0x00000008 0x0B2C 827 1/0/0 1212.1212.1212.00-00* 0x00000007 0x1C1C 832 1/0/0 1212.1212.1212.01-00* 0x00000002 0xD237 427 0/0/0 1212.1212.1212.02-00* 0x00000002 0xA265 1118 0/0/0 1313.1313.1313.00-00 0x00000009 0xBCB1 830 1/0/0 1313.1313.1313.01-00 0x00000001 0x4840 0 (429) 0/0/0 1313.1313.1313.02-00 0x00000002 0xA853 1107 0/0/0 1313.1313.1313.03-00 0x00000002 0xA159 1131 0/0/0 1313.1313.1313.04-00 0x00000001 0x9C5E 440 0/0/0 IS-IS Level-2 Link State Database LSPID LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL 1111.1111.1111.00-00 0x0000000C 0xDAD4 816 0/0/0 1111.2222.3333.00-00 0x00000006 0x352F 815 0/0/0 1212.1212.1212.00-00* 0x0000000A 0x6588 821 0/0/0 1212.1212.1212.01-00* 0x00000003 0x6031 1108 0/0/0 1313.1313.1313.00-00 0x0000000A 0xEA43 819 0/0/0 1313.1313.1313.01-00 0x00000002 0x4641 0 (432) 0/0/0 p1r2#
The following example output is from the p1r3 router:
p1r3#show isis database IS-IS Level-1 Link State Database LSPID LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL 1111.1111.1111.00-00 0x00000008 0x0B2C 819 1/0/0 1212.1212.1212.00-00 0x00000007 0x1C1C 822 1/0/0 1212.1212.1212.01-00 0x00000002 0xD237 415 0/0/0 1212.1212.1212.02-00 0x00000002 0xA265 1108 0/0/0 1313.1313.1313.00-00* 0x00000009 0xBCB1 824 1/0/0 1313.1313.1313.01-00* 0x00000001 0x4840 0 (421) 0/0/0 1313.1313.1313.02-00* 0x00000002 0xA853 1102 0/0/0 1313.1313.1313.03-00* 0x00000002 0xA159 1125 0/0/0 1313.1313.1313.04-00* 0x00000001 0x9C5E 434 0/0/0 IS-IS Level-2 Link State Database LSPID LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL 1111.1111.1111.00-00 0x0000000C 0xDAD4 808 0/0/0 1111.2222.3333.00-00 0x00000006 0x352F 807 0/0/0 1212.1212.1212.00-00 0x0000000A 0x6588 811 0/0/0 1212.1212.1212.01-00 0x00000003 0x6031 1098 0/0/0 1313.1313.1313.00-00* 0x0000000A 0xEA43 813 0/0/0 1313.1313.1313.01-00* 0x00000002 0x4641 0 (420) 0/0/0 p1r3#
Yes, the Level 1 and Level 2 link-state database on all the routers in the pod is visible.
In the link-state database, which link-state packet (LSP) is identified with an asterisk?
The LSPs with an asterisk are the local LSPsin other words, LSPs originated from this router.
Examine the routing table of the pxr2 and pxr3 routers within your pod. Do you see both the Level 1 and Level 2 routes?
The following example output is from the p1r2 router:
p1r2#show ip route <output omitted> Gateway of last resort is not set 172.16.0.0/24 is subnetted, 2 subnets i L2 172.16.10.0 [115/30] via 192.168.1.33, Serial1 [115/30] via 192.168.1.17, Serial0 i L2 172.16.11.0 [115/30] via 192.168.1.33, Serial1 [115/30] via 192.168.1.17, Serial0 172.26.0.0/28 is subnetted, 3 subnets i L1 172.26.1.48 [115/20] via 192.168.1.66, Ethernet0 i L1 172.26.1.32 [115/20] via 192.168.1.66, Ethernet0 i L1 172.26.1.16 [115/20] via 192.168.1.66, Ethernet0 10.0.0.0/24 is subnetted, 1 subnets i L1 10.1.1.0 [115/20] via 192.168.1.33, Serial1 [115/20] via 192.168.1.17, Serial0 192.168.1.0/28 is subnetted, 4 subnets C 192.168.1.64 is directly connected, Ethernet0 C 192.168.1.32 is directly connected, Serial1 i L1 192.168.1.48 [115/20] via 192.168.1.33, Serial1 [115/20] via 192.168.1.17, Serial0 [115/20] via 192.168.1.66, Ethernet0 C 192.168.1.16 is directly connected, Serial0 C 192.168.101.0/24 is directly connected, Loopback10 p1r2#
The following example output is from the p1r3 router:
p1r3#show ip route <output omitted> Gateway of last resort is not set 172.16.0.0/24 is subnetted, 2 subnets i L2 172.16.10.0 [115/30] via 192.168.1.49, Serial0 i L2 172.16.11.0 [115/30] via 192.168.1.49, Serial0 172.26.0.0/28 is subnetted, 3 subnets C 172.26.1.48 is directly connected, Loopback13 C 172.26.1.32 is directly connected, Loopback12 C 172.26.1.16 is directly connected, Loopback11 10.0.0.0/24 is subnetted, 1 subnets i L1 10.1.1.0 [115/20] via 192.168.1.49, Serial0 192.168.1.0/28 is subnetted, 4 subnets C 192.168.1.64 is directly connected, Ethernet0 i L1 192.168.1.32 [115/20] via 192.168.1.65, Ethernet0 [115/20] via 192.168.1.49, Serial0 C 192.168.1.48 is directly connected, Serial0 i L1 192.168.1.16 [115/20] via 192.168.1.65, Ethernet0 [115/20] via 192.168.1.49, Serial0 i L1 192.168.101.0/24 [115/20] via 192.168.1.65, Ethernet0 p1r3#
Yes, both the Level 1 and Level 2 routes are in the p1r2 and p1r3 routing tables.
Step 3 Configure the pxr2 and pxr3 routers within your pod to be Level 1 IS-IS routers.
The following example configuration shows how to configure p1r2 and p1r3 to be Level 1 IS-IS routers:
p1r2(config)#router isis p1r2(config-router)#is-type level-1 p1r3(config)#router isis p1r3(config-router)#is-type level-1
NOTE
You will have to wait a minute or so after changing the IS type for the routing tables to converge.
Step 4 What are the advantages of configuring the pxr2 and pxr3 routers within your pod to be Level 1 IS-IS routers?
The advantages include having shorter routing tables in the Level 1 routers (containing only area routes and default route) and being less processor intensive.
Step 5 Re-examine the link-state database of the pxr2 and pxr3 routers within your pod. Do the pxr2 and pxr3 routers contain only the Level 1 link-state database now?
The following example output is from the p1r2 router:
p1r2#show isis database IS-IS Level-1 Link State Database LSPID LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL 1111.1111.1111.00-00 0x0000000D 0x0131 1117 1/0/0 1212.1212.1212.00-00* 0x0000000A 0x0C33 1111 0/0/0 1212.1212.1212.01-00* 0x00000005 0xCA3E 1125 0/0/0 1212.1212.1212.02-00* 0x00000002 0xA265 820 0/0/0 1313.1313.1313.00-00 0x0000000D 0xAAC9 1115 0/0/0 1313.1313.1313.01-00 0x00000001 0x4840 0 (131) 0/0/0 1313.1313.1313.02-00 0x00000002 0xA853 810 0/0/0 1313.1313.1313.03-00 0x00000002 0xA159 833 0/0/0 1313.1313.1313.04-00 0x00000002 0x9A5F 999 0/0/0 p1r2#
The following example output is from the p1r2 router:
p1r3#show isis database IS-IS Level-1 Link State Database LSPID LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL 1111.1111.1111.00-00 0x0000000D 0x0131 1109 1/0/0 1212.1212.1212.00-00 0x0000000A 0x0C33 1099 0/0/0 1212.1212.1212.01-00 0x00000005 0xCA3E 1114 0/0/0 1212.1212.1212.02-00 0x00000002 0xA265 809 0/0/0 1313.1313.1313.00-00* 0x0000000D 0xAAC9 1110 0/0/0 1313.1313.1313.01-00* 0x00000001 0x4840 0 (122) 0/0/0 1313.1313.1313.02-00* 0x00000002 0xA853 802 0/0/0 1313.1313.1313.03-00* 0x00000002 0xA159 826 0/0/0 1313.1313.1313.04-00* 0x00000002 0x9A5F 992 0/0/0 p1r3#
Yes, the pxr2 and pxr3 routers contain only the Level 1 link-state database now.
Step 6 Re-examine the routing table of the pxr2 and pxr3 routers now. What are the differences after they became Level 1only IS-IS routers?
The following example output is from the p1r2 router:
p1r2#show ip route <output omitted> Gateway of last resort is 192.168.1.17 to network 0.0.0.0 172.26.0.0/28 is subnetted, 3 subnets i L1 172.26.1.48 [115/20] via 192.168.1.66, Ethernet0 i L1 172.26.1.32 [115/20] via 192.168.1.66, Ethernet0 i L1 172.26.1.16 [115/20] via 192.168.1.66, Ethernet0 10.0.0.0/24 is subnetted, 1 subnets i L1 10.1.1.0 [115/20] via 192.168.1.17, Serial0 [115/20] via 192.168.1.33, Serial1 192.168.1.0/28 is subnetted, 4 subnets C 192.168.1.64 is directly connected, Ethernet0 C 192.168.1.32 is directly connected, Serial1 i L1 192.168.1.48 [115/20] via 192.168.1.17, Serial0 [115/20] via 192.168.1.33, Serial1 [115/20] via 192.168.1.66, Ethernet0 C 192.168.1.16 is directly connected, Serial0 C 192.168.101.0/24 is directly connected, Loopback10 i*L1 0.0.0.0/0 [115/10] via 192.168.1.17, Serial0 [115/10] via 192.168.1.33, Serial1 p1r2#
The following example output is from the p1r3 router:
p1r3#show ip route <output omitted> Gateway of last resort is 192.168.1.49 to network 0.0.0.0 172.26.0.0/28 is subnetted, 3 subnets C 172.26.1.48 is directly connected, Loopback13 C 172.26.1.32 is directly connected, Loopback12 C 172.26.1.16 is directly connected, Loopback11 10.0.0.0/24 is subnetted, 1 subnets i L1 10.1.1.0 [115/20] via 192.168.1.49, Serial0 192.168.1.0/28 is subnetted, 4 subnets C 192.168.1.64 is directly connected, Ethernet0 i L1 192.168.1.32 [115/20] via 192.168.1.65, Ethernet0 [115/20] via 192.168.1.49, Serial0 C 192.168.1.48 is directly connected, Serial0 i L1 192.168.1.16 [115/20] via 192.168.1.65, Ethernet0 [115/20] via 192.168.1.49, Serial0 i L1 192.168.101.0/24 [115/20] via 192.168.1.65, Ethernet0 i*L1 0.0.0.0/0 [115/10] via 192.168.1.49, Serial0 p1r3#
The difference is that the routing tables are shorter, containing only area routes and a default route.
Step 7 In the pxr2 and pxr3 routing tables, do you see a default route through the pxr1 router?
Yes, a default route to the p1r1 router is visible.
Step 8 From the pxr2 or pxr3 routers, can you still ping the backbone_r1 router's loopback interfaces?
Yes, as shown in the following example output, the p1r2 and p1r3 routers can still ping the backbone_r1 router's loopback interfaces:
p1r2#ping 172.16.10.100 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 172.16.10.100, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 56/74/136 ms p1r2#ping 172.16.11.100 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 172.16.11.100, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 56/56/60 ms p1r2# p1r3#ping 172.16.10.100 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 172.16.10.100, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 56/89/216 ms p1r3#ping 172.16.11.100 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 172.16.11.100, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 60/60/60 ms p1r3#
Step 9 Save the current configurations of all the routers within your pod to NVRAM.
The following example shows how to save the configuration of the p1r1 router using the copy run start command (this is an abbreviated form of the copy running-config startup-config command):
p1r1#copy run start Destination filename [startup-config]? Building configuration... p1r1#
Answers to Task 4: Configure Route Summarization
Complete the following steps:
Step 1 From pxr3, telnet to the backbone_r1 router using the password cisco.
The following example output is from the p1r3 router:
p1r3#bbr1 Trying bbr1 (10.1.1.100)... Open User Access Verification Password: backbone_r1>
Step 2 Display the routing table of the backbone_r1 router. Do you see your 192.168.x.y/28 and 172.26.x.y/28 subnets?
The following example output is from the backbone_r1 router:
backbone_r1>show ip route <output omitted> Gateway of last resort is not set 172.16.0.0/24 is subnetted, 2 subnets C 172.16.10.0 is directly connected, Loopback100 C 172.16.11.0 is directly connected, Loopback101 172.26.0.0/28 is subnetted, 3 subnets i L2 172.26.1.48 [115/30] via 10.1.1.1, Serial0/0 i L2 172.26.1.32 [115/30] via 10.1.1.1, Serial0/0 i L2 172.26.1.16 [115/30] via 10.1.1.1, Serial0/0 10.0.0.0/24 is subnetted, 1 subnets C 10.1.1.0 is directly connected, Serial0/0 192.168.1.0/28 is subnetted, 4 subnets i L2 192.168.1.64 [115/30] via 10.1.1.1, Serial0/0 i L2 192.168.1.32 [115/20] via 10.1.1.1, Serial0/0 i L2 192.168.1.48 [115/20] via 10.1.1.1, Serial0/0 i L2 192.168.1.16 [115/20] via 10.1.1.1, Serial0/0 i L2 192.168.101.0/24 [115/30] via 10.1.1.1, Serial0/0 backbone_r1>
Yes, the 192.168.1.y/28 and 172.26.1.y/28 subnets appear in the backbone_r1 router's routing table.
Step 3 Exit the telnet to the backbone_r1 router.
The following example output is from the backbone_r1 router:
backbone_r1>exit [Connection to bbr1 closed by foreign host] p1r3#
Step 4 Configure the Level 12 router within your pod to perform route summarization. Summarize the 192.168.x.y/28 and 172.26.x.y/28 subnets within your pod to 192.168.x.0/24 and 172.26.x.0/24 (where x is your pod number).
The following example shows how to configure the p1r1 router, the Level 12 router in pod 1, to perform route summarization:
p1r1(config)#router isis p1r1(config-router)#summary-address 192.168.1.0 255.255.255.0 p1r1(config-router)#summary-address 172.26.1.0 255.255.255.0
Step 5 Telnet to the backbone_r1 router.
The following example output is from the p1r1 router:
p1r1#bbr1 Trying bbr1 (10.1.1.100)... Open User Access Verification Password: backbone_r1>
Step 6 Re-examine the routing table of the backbone_r1 router. Do you see your summarized routes?
The following example output is from the backbone_r1 router:
backbone_r1>show ip route <output omitted> Gateway of last resort is not set 172.16.0.0/24 is subnetted, 2 subnets C 172.16.10.0 is directly connected, Loopback100 C 172.16.11.0 is directly connected, Loopback101 172.26.0.0/24 is subnetted, 1 subnets i L2 172.26.1.0 [115/30] via 10.1.1.1, Serial0/0 10.0.0.0/24 is subnetted, 1 subnets C 10.1.1.0 is directly connected, Serial0/0 i L2 192.168.1.0/24 [115/20] via 10.1.1.1, Serial0/0 i L2 192.168.101.0/24 [115/30] via 10.1.1.1, Serial0/0 backbone_r1>
Yes, the summarized routes to 172.26.1.0 and 192.168.1.0 are in the backbone_r1 router's routing table.
Step 7 From the backbone_r1 router, can you ping all the interfaces within your pod?
Yes, as the example output shows, the backbone_r1 router can ping all the interfaces on the pod 1 routers:
backbone_r1>ping 192.168.1.17 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 192.168.1.17, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 36/64/172 ms backbone_r1>ping 192.168.1.18 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 192.168.1.18, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 64/69/84 ms backbone_r1>ping 192.168.1.33 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 192.168.1.33, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 36/40/56 ms backbone_r1>ping 192.168.1.34 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 192.168.1.34, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 64/68/84 ms backbone_r1>ping 192.168.1.49 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 192.168.1.49, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 36/40/56 ms backbone_r1>ping 192.168.1.50 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 192.168.1.50, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 64/68/84 ms backbone_r1>ping 192.168.1.65 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 192.168.1.65, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 64/69/84 ms backbone_r1>ping 192.168.1.66 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 192.168.1.66, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 64/67/80 ms backbone_r1>ping 192.168.101.101 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 192.168.101.101, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 64/69/88 ms backbone_r1>ping 172.26.1.17 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 172.26.1.17, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 64/106/268 ms backbone_r1>ping 172.26.1.33 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 172.26.1.33, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 64/69/84 ms backbone_r1>ping 172.26.1.49 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 172.26.1.49, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 64/68/84 ms backbone_r1>
Step 8 Exit the telnet to the backbone_r1 router.
The following example output is from the backbone_r1 router:
backbone_r1> backbone_r1>exit [Connection to bbr1 closed by foreign host] p1r1#
Step 9 Save the current configurations of all the routers within your pod to NVRAM.
The following example shows how to save the configuration of the p1r1 router using the copy run start command (this is an abbreviated form of the copy running-config startup-config command):
p1r1#copy run start Destination filename [startup-config]? Building configuration... p1r1#
Answers to Task 5: Using IS-IS show and debug Commands
Complete the following steps:
Step 1 At the pxr2 router, enable the debug isis adj-packets command and observe the debug output.
The following example shows enabling the debug on the p1r2 router and the output that results:
p1r2#debug isis adj-packets IS-IS Adjacency related packets debugging is on p1r2# 01:45:23: ISIS-Adj: Sending serial IIH on Serial1 01:45:23: ISIS-Adj: Rec serial IIH from *HDLC* (Serial1), cir type L1L2, cir id 01 01:45:23: ISIS-Adj: rcvd state UP, old state UP, new state UP 01:45:23: ISIS-Adj: Action = ACCEPT 01:45:24: ISIS-Adj: Sending L1 IIH on Loopback10 p1r2# 01:45:24: ISIS-Adj: Sending L1 IIH on Ethernet0 p1r2# 01:45:26: ISIS-Adj: Rec serial IIH from *HDLC* (Serial0), cir type L1L2, cir id 00 01:45:26: ISIS-Adj: rcvd state UP, old state UP, new state UP 01:45:26: ISIS-Adj: Action = ACCEPT 01:45:27: ISIS-Adj: Sending L1 IIH on Loopback10 p1r2# 01:45:27: ISIS-Adj: Sending L1 IIH on Ethernet0 01:45:28: ISIS-Adj: Sending serial IIH on Serial0 p1r2# 01:45:30: ISIS-Adj: Sending L1 IIH on Loopback10 01:45:30: ISIS-Adj: Sending L1 IIH on Ethernet0 01:45:31: ISIS-Adj: Rec L1 IIH from 0010.7b81.d6ec (Ethernet0), cir type L1, cir id 1212.1212.1212.01 p1r2#
What type of hello is pxr2 sending to pxr3 over the Ethernet interface?
The p1r2 router is sending an L1 hello to the p1r3 router.
Step 2 Shut the pxr2 E0 interface and observe the debug output.
The following example shows shutting down the Ethernet 0 interface on the p1r2 router and the output that results:
p1r2#conf t Enter configuration commands, one per line. End with CNTL/Z. 01:45:38: ISIS-Adj: Rec L1 IIH from 0010.7b81.d6ec (Ethernet0), cir type L1, cir id 1212.1212.1212.01 01:45:39: ISIS-Adj: Sending L1 IIH on Loopback10 01:45:39: ISIS-Adj: Sending L1 IIH on Ethernet0 01:45:39: ISIS-Adj: Sending serial IIH on Serial1 p1r2(config)#int e0 01:45:41: ISIS-Adj: Rec serial IIH from *HDLC* (Serial1), cir type L1L2, cir id 01 01:45:41: ISIS-Adj: rcvd state UP, old state UP, new state UP 01:45:41: ISIS-Adj: Action = ACCEPT 01:45:42: ISIS-Adj: Sending L1 IIH on Loopback10 01:45:42: ISIS-Adj: Sending L1 IIH on Ethernet0 p1r2(config-if)#shutdown p1r2(config-if)# 01:45:45: ISIS-Adj: Sending serial IIH on Serial0 01:45:45: ISIS-Adj: Sending L1 IIH on Loopback10 01:45:45: ISIS-Adj: Rec serial IIH from *HDLC* (Serial0), cir type L1L2, cir id 00 01:45:45: ISIS-Adj: rcvd state UP, old state UP, new state UP 01:45:45: ISIS-Adj: Action = ACCEPT 01:45:46: %LINK-5-CHANGED: Interface Ethernet0, changed state to administratively down 01:45:47: %LINEPROTO-5-UPDOWN: Line protocol on Interface Ethernet0, changed state to down 01:45:48: ISIS-Adj: Sending L1 IIH on Loopback10 01:45:48: ISIS-Adj: Sending serial IIH on Serial1 01:45:49: ISIS-Adj: Rec serial IIH from *HDLC* (Serial1), cir type L1L2, cir id01 01:45:49: ISIS-Adj: rcvd state UP, old state UP, new state UP 01:45:49: ISIS-Adj: Action = ACCEPT 01:45:50: ISIS-Adj: Sending L1 IIH on Loopback10 01:45:53: ISIS-Adj: Sending L1 IIH on Loopback10 01:45:54: ISIS-Adj: Sending serial IIH on Serial0 01:45:54: ISIS-Adj: Rec serial IIH from *HDLC* (Serial0), cir type L1L2, cir id00 01:45:54: ISIS-Adj: rcvd state UP, old state UP, new state UP 01:45:54: ISIS-Adj: Action = ACCEPT 01:45:56: ISIS-Adj: Sending serial IIH on Serial1 01:45:56: ISIS-Adj: Sending L1 IIH on Loopback10 01:45:58: ISIS-Adj: Rec serial IIH from *HDLC* (Serial1), cir type L1L2, cir id01 01:45:58: ISIS-Adj: rcvd state UP, old state UP, new state UP 01:45:58: ISIS-Adj: Action = ACCEPT p1r2(config-if)#
Step 3 No shut the pxr2 E0 interface and observe the debug output. From the debug output, determine which router (pxr2 or pxr3) is elected as the DR.
NOTE
The correct term in IS-IS is DIS, not DR. However, the debug output on the router uses the term DR, so we will also use the term DR in this task.
In the debug output, you should see something similar to the output shown in Example S-32 if pxr3 is the DR.
Example S-32 debug isis adj-packets Command Output from Router pxr2 If Router pxr3 Is the DR
02:23:12: ISIS-Adj: Adjacency state goes to Up 02:23:12: ISIS-Adj: Run level 1 DR election for Ethernet0 02:23:12: ISIS-Adj: New level 1 DR 3333.3333.3333 on Ethernet0 pxr2#
Or, in the debug output, you should see something similar to the output shown in Example S-33 if pxr2 is the DR.
Example S-33 debug isis adj-packets Command Output from Router pxr2 If Router pxr2 Is the DR
05:19:43: ISIS-Adj: Run level 1 DR election for Ethernet0 05:19:43: ISIS-Adj: No change (it's us) pxr2#
What determines who will be elected as the DR on the Ethernet?
The following example shows no shutting the Ethernet 0 interface on the p1r2 router and the output that results:
p1r2(config-if)#int e0 01:46:17: ISIS-Adj: Sending L1 IIH on Loopback10 01:46:17: ISIS-Adj: Sending serial IIH on Serial0 p1r2(config-if)#no shutdown p1r2(config-if)# 01:46:20: ISIS-Adj: Sending L1 IIH on Loopback10 01:46:21: ISIS-Adj: Sending L1 IIH on Ethernet0 01:46:21: ISIS-Adj: Rec L1 IIH from 0010.7b81.d6ec (Ethernet0), cir type L1, cir id 1212.1212.1212.01 01:46:21: ISIS-Adj: New adjacency, level 1 for 0010.7b81.d6ec 01:46:22: ISIS-Adj: Sending L1 IIH on Ethernet0 01:46:22: %LINK-3-UPDOWN: Interface Ethernet0, changed state to up 01:46:22: ISIS-Adj: Sending serial IIH on Serial1 01:46:23: ISIS-Adj: Rec serial IIH from *HDLC* (Serial0), cir type L1L2, cir id 00 01:46:23: ISIS-Adj: rcvd state UP, old state UP, new state UP 01:46:23: ISIS-Adj: Action = ACCEPT 01:46:23: %LINEPROTO-5-UPDOWN: Line protocol on Interface Ethernet0, changed state to up 01:46:23: ISIS-Adj: Sending L1 IIH on Loopback10 01:46:24: ISIS-Adj: Sending L1 IIH on Ethernet0 01:46:24: ISIS-Adj: Rec serial IIH from *HDLC* (Serial1), cir type L1L2, cir id 01 01:46:24: ISIS-Adj: rcvd state UP, old state UP, new state UP 01:46:24: ISIS-Adj: Action = ACCEPT 01:46:26: ISIS-Adj: Sending serial IIH on Serial0 01:46:26: ISIS-Adj: Sending L1 IIH on Loopback10 01:46:27: ISIS-Adj: Sending L1 IIH on Ethernet0 01:46:29: ISIS-Adj: Sending L1 IIH on Loopback10 01:46:29: ISIS-Adj: Rec L1 IIH from 0010.7b81.d6ec (Ethernet0), cir type L1, cir id 1212.1212.1212.01 01:46:29: ISIS-Adj: Adjacency state goes to Up 01:46:29: ISIS-Adj: Run level 1 DR election for Ethernet0 01:46:29: ISIS-Adj: No change (it's us) 01:46:30: ISIS-Adj: Sending L1 IIH on Ethernet0 01:46:30: ISIS-Adj: Rec serial IIH from *HDLC* (Serial0), cir type L1L2, cir id 00 01:46:30: ISIS-Adj: rcvd state UP, old state UP, new state UP 01:46:30: ISIS-Adj: Action = ACCEPT 01:46:32: ISIS-Adj: Sending serial IIH on Serial1 01:46:32: ISIS-Adj: Sending L1 IIH on Loopback10 01:46:32: ISIS-Adj: Rec serial IIH from *HDLC* (Serial1), cir type L1L2, cir id 01 01:46:32: ISIS-Adj: rcvd state UP, old state UP, new state UP 01:46:32: ISIS-Adj: Action = ACCEPT 01:46:33: ISIS-Adj: Sending L1 IIH on Ethernet0 01:46:35: ISIS-Adj: Sending L1 IIH on Loopback10 01:46:35: ISIS-Adj: Sending serial IIH on Serial0 01:46:36: ISIS-Adj: Sending L1 IIH on Ethernet0 p1r2(config-if)#^Z p1r2# 01:46:38: ISIS-Adj: Sending L1 IIH on Loopback10 01:46:38: ISIS-Adj: Rec L1 IIH from 0010.7b81.d6ec (Ethernet0), cir type L1, cir id 1212.1212.1212.01 01:46:39: %SYS-5-CONFIG_I: Configured from console by console 01:46:39: ISIS-Adj: Sending serial IIH on Serial1 01:46:39: ISIS-Adj: Sending L1 IIH on Ethernet0 01:46:40: ISIS-Adj: Rec serial IIH from *HDLC* (Serial0), cir type L1L2, cir id00 01:46:40: ISIS-Adj: rcvd state UP, old state UP, new state UP 01:46:40: ISIS-Adj: Action = ACCEPT 01:46:40: ISIS-Adj: Rec serial IIH from *HDLC* (Serial1), cir type L1L2, cir id01 01:46:40: ISIS-Adj: rcvd state UP, old state UP, new state UP 01:46:40: ISIS-Adj: Action = ACCEPT 01:46:41: ISIS-Adj: Sending L1 IIH on Loopback10
As the example output shows, p1r2 remains the DR. Priority determines who is the DR. The default is 64; a priority of 0 means that the router cannot be elected. If two routers have the same priority, the one with the highest MAC address is the DR.
Step 4 Disable debug isis adj-packets at the pxr2 router.
The following example shows how to disable debugging on the p1r2 router:
p1r2#no debug all All possible debugging has been turned off p1r2# 01:46:42: ISIS-Adj: Sending L1 IIH on Ethernet0 p1r2#
Step 5 At the DR (as determined from Step 3), enter the show clns int e0 command. What is the default IS-IS router priority set to?
The following example shows the output of the show clns int 0 command on the DR, p1r2:
p1r2#show clns int e0 Ethernet0 is up, line protocol is up Checksums enabled, MTU 1497, Encapsulation SAP ERPDUs enabled, min. interval 10 msec. RDPDUs enabled, min. interval 100 msec., Addr Mask enabled Congestion Experienced bit set at 4 packets CLNS fast switching enabled CLNS SSE switching disabled DEC compatibility mode OFF for this interface Next ESH/ISH in 30 seconds Routing Protocol: IS-IS Circuit Type: level-1-2 Interface number 0x2, local circuit ID 0x1 Level-1 Metric: 10, Priority: 64, Circuit ID: 1212.1212.1212.01 Number of active level-1 adjacencies: 1 Next IS-IS LAN Level-1 Hello in 420 milliseconds p1r2#
As shown, the default router priority is set to 64.
Step 6 At the DR (as determined from Step 3), change the E0 interface IS-IS router priority to 63.
The following example shows how to change the IS-IS router priority on the E0 interface of p1r2, the DR:
p1r2(config)#int e0 p1r2(config-if)#isis priority 63
Step 7 At the DR (as determined from Step 3), enter the show clns int e0 command again and verify that the DR is now changed to the other router.
The Circuit ID field in the show clns int e0 output identifies which router is the DR. Example S-34 shows the output of this command on the pxr3 router. In this example, the DR is the pxr2 router and the pxr3 router has an IS-IS priority of 63.
Example S-34 show clns Command Output from Router pxr3 If Router pxr2 Is the DR
pxr3#show clns int e0 Ethernet0 is up, line protocol is up Checksums enabled, MTU 1497, Encapsulation SAP ERPDUs enabled, min. interval 10 msec. RDPDUs enabled, min. interval 100 msec., Addr Mask enabled Congestion Experienced bit set at 4 packets CLNS fast switching enabled CLNS SSE switching disabled DEC compatibility mode OFF for this interface Next ESH/ISH in 21 seconds Routing Protocol: IS-IS Circuit Type: level-1-2 Interface number 0x1, local circuit ID 0x1 Level-1 Metric: 10, Priority: 63, Circuit ID: 2222.2222.2222.01 Number of active level-1 adjacencies: 1 Next IS-IS LAN Level-1 HELLO in 8 seconds
The following example is the output of the show clns int e0 command on the p1r2 router, the DR:
p1r2#show clns int e0 Ethernet0 is up, line protocol is up Checksums enabled, MTU 1497, Encapsulation SAP ERPDUs enabled, min. interval 10 msec. RDPDUs enabled, min. interval 100 msec., Addr Mask enabled Congestion Experienced bit set at 4 packets CLNS fast switching enabled CLNS SSE switching disabled DEC compatibility mode OFF for this interface Next ESH/ISH in 24 seconds Routing Protocol: IS-IS Circuit Type: level-1-2 Interface number 0x2, local circuit ID 0x1 Level-1 Metric: 10, Priority: 63, Circuit ID: 1313.1313.1313.01 Number of active level-1 adjacencies: 1 Next IS-IS LAN Level-1 Hello in 4 seconds p1r2#
In this example, the priority is now 63 on interface E0. The circuit ID is that of router p1r3, indicating that p1r3 is now the DR.
Step 8 At the pxr2 router, enable the debug isis update-packets command. Shut and no shut the E0 interface on the pxr2 router and observe the debug output.
The following example shows how to enable the debug on the p1r2 router and the output on the router:
p1r2#debug isis update-packets IS-IS Update related packet debugging is on p1r2# 01:58:08: ISIS-SNP: Rec L1 CSNP from 1313.1313.1313 (Ethernet0) p1r2#conf t Enter configuration commands, one per line. End with CNTL/Z. p1r2(config)#int e0 p1r2(config-if)#shutdown p1r2(config-if)# 01:58:16: ISIS-SNP: Rec L1 CSNP from 1313.1313.1313 (Ethernet0) 01:58:16: ISIS-Update: Building L1 LSP 01:58:16: ISIS-Update: TLV contents different, code 80 01:58:16: ISIS-Update: TLV contents different, code 2 01:58:16: ISIS-Update: Full SPF required 01:58:16: ISIS-Update: Building L1 pseudonode LSP for Ethernet0 01:58:16: ISIS-Update: TLV contents different, code 2 01:58:16: ISIS-Update: Full SPF required 01:58:16: ISIS-Update: Sending L1 LSP 1212.1212.1212.00-00, seq 10, ht 1199 on Serial1 01:58:16: ISIS-Update: Sending L1 LSP 1212.1212.1212.00-00, seq 10, ht 1199 on Serial0 01:58:16: ISIS-Update: Sending L1 LSP 1212.1212.1212.01-00, seq 9, ht 1199 on Serial1 01:58:16: ISIS-Update: Sending L1 LSP 1212.1212.1212.01-00, seq 9, ht 1199 on Serial0 01:58:17: ISIS-SNP: Rec L1 PSNP from 1111.1111.1111 (Serial1) 01:58:17: ISIS-SNP: PSNP entry 1212.1212.1212.00-00, seq 10, ht 1196 01:58:17: ISIS-SNP: PSNP entry 1212.1212.1212.01-00, seq 9, ht 1197 01:58:17: ISIS-SNP: Rec L1 PSNP from 1111.1111.1111 (Serial0) 01:58:17: ISIS-SNP: PSNP entry 1212.1212.1212.00-00, seq 10, ht 1196 01:58:17: ISIS-SNP: PSNP entry 1212.1212.1212.01-00, seq 9, ht 1197 01:58:18: %LINK-5-CHANGED: Interface Ethernet0, changed state to administratively down 01:58:18: ISIS-Update: Building L1 LSP 01:58:18: ISIS-Update: No change, suppress L1 LSP 1212.1212.1212.00-00, seq 11 01:58:19: %LINEPROTO-5-UPDOWN: Line protocol on Interface Ethernet0, changed state to down p1r2(config-if)#no shutdown p1r2(config-if)# 01:58:30: ISIS-Update: Building L1 LSP 01:58:30: ISIS-Update: TLV contents different, code 80 01:58:30: ISIS-Update: Leaf routes changed 01:58:30: ISIS-Update: Building L1 pseudonode LSP for Ethernet0 01:58:30: ISIS-Update: No change, suppress L1 LSP 1212.1212.1212.01-00, seq A 01:58:30: ISIS-Update: Sending L1 LSP 1212.1212.1212.00-00, seq 11, ht 1199 on Serial1 01:58:30: ISIS-Update: Sending L1 LSP 1212.1212.1212.00-00, seq 11, ht 1199 on Serial0 01:58:30: ISIS-Update: Rec L1 LSP 1313.1313.1313.01-00, seq 2, ht 1197, 01:58:30: ISIS-Update: from SNPA *HDLC* (Serial1) 01:58:30: ISIS-Update: LSP newer than database copy 01:58:30: ISIS-Update: TLV contents different, code 2 01:58:30: ISIS-Update: Full SPF required 01:58:31: ISIS-Update: Building L1 LSP 01:58:31: ISIS-Update: No change, suppress L1 LSP 1212.1212.1212.00-00, seq 12 01:58:31: ISIS-SNP: Rec L1 PSNP from 1111.1111.1111 (Serial1) 01:58:31: ISIS-SNP: PSNP entry 1212.1212.1212.00-00, seq 11, ht 1197 01:58:31: ISIS-SNP: Rec L1 PSNP from 1111.1111.1111 (Serial0) 01:58:31: ISIS-SNP: PSNP entry 1212.1212.1212.00-00, seq 11, ht 1196 01:58:31: ISIS-Update: Build L1 PSNP entry for 1313.1313.1313.01-00, seq 2 01:58:31: ISIS-Update: Sending L1 PSNP on Serial1 01:58:31: ISIS-Update: Build L1 PSNP entry for 1313.1313.1313.01-00, seq 2 01:58:31: ISIS-Update: Sending L1 PSNP on Serial0 01:58:32: %LINK-3-UPDOWN: Interface Ethernet0, changed state to up 01:58:33: %LINEPROTO-5-UPDOWN: Line protocol on Interface Ethernet0, changed state to up 01:58:35: ISIS-Update: Purging LSP 1212.1212.1212.01-00, seq 9 01:58:35: ISIS-Update: Building L1 LSP 01:58:35: ISIS-Update: Rate limiting L1 LSP 1212.1212.1212.00-00, seq 12 01:58:35: ISIS-Update: TLV contents different, code 2 01:58:35: ISIS-Update: Full SPF required 01:58:35: ISIS-Update: Sending L1 LSP 1212.1212.1212.01-00, seq 9, ht 0 on Ethernet0 01:58:35: ISIS-Update: Sending L1 LSP 1212.1212.1212.01-00, seq 9, ht 0 on Serial1 01:58:35: ISIS-Update: Sending L1 LSP 1212.1212.1212.01-00, seq 9, ht 0 on Serial0 01:58:35: ISIS-Update: Rec L1 LSP 1212.1212.1212.01-00, seq 9, ht 0, 01:58:35: ISIS-Update: from SNPA 0010.7b81.d6ec (Ethernet0) 01:58:35: ISIS-Update: LSP same as database copy 01:58:35: ISIS-Update: Rec L1 LSP 1212.1212.1212.01-00, seq 9, ht 0, 01:58:35: ISIS-Update: from SNPA *HDLC* (Serial1) 01:58:35: ISIS-Update: LSP same as database copy 01:58:35: ISIS-Update: Sending L1 LSP 1212.1212.1212.00-00, seq 12, ht 1199 on Ethernet0 01:58:35: ISIS-Update: Sending L1 LSP 1212.1212.1212.00-00, seq 12, ht 1199 on Serial1 01:58:35: ISIS-Update: Sending L1 LSP 1212.1212.1212.00-00, seq 12, ht 1199 on Serial0 01:58:35: ISIS-Update: Rec L1 LSP 1313.1313.1313.01-00, seq 3, ht 1196, 01:58:35: ISIS-Update: from SNPA 0010.7b81.d6ec (Ethernet0) 01:58:35: ISIS-Update: LSP newer than database copy 01:58:35: ISIS-Update: TLV contents different, code 2 01:58:35: ISIS-Update: Full SPF required 01:58:35: ISIS-Update: Sending L1 LSP 1313.1313.1313.01-00, seq 3, ht 1194 on Serial1 01:58:35: ISIS-Update: Sending L1 LSP 1313.1313.1313.01-00, seq 3, ht 1194 on Serial0 01:58:36: ISIS-SNP: Rec L1 PSNP from 1111.1111.1111 (Serial0) 01:58:36: ISIS-SNP: PSNP entry 1212.1212.1212.00-00, seq 12, ht 1197 01:58:36: ISIS-SNP: PSNP entry 1212.1212.1212.01-00, seq 9, ht 0 01:58:36: ISIS-SNP: PSNP entry 1313.1313.1313.01-00, seq 3, ht 1192 01:58:36: ISIS-Update: Build L1 PSNP entry for 1212.1212.1212.01-00, seq 9 01:58:36: ISIS-Update: Sending L1 PSNP on Serial1 01:58:36: ISIS-SNP: Rec L1 PSNP from 1111.1111.1111 (Serial1) 01:58:36: ISIS-SNP: PSNP entry 1212.1212.1212.00-00, seq 12, ht 1197 01:58:36: ISIS-SNP: PSNP entry 1313.1313.1313.01-00, seq 3, ht 1192 01:58:41: ISIS-SNP: Rec L1 CSNP from 1313.1313.1313 (Ethernet0) p1r2(config-if)#exit p1r2(config)# 01:58:50: ISIS-SNP: Rec L1 CSNP from 1313.1313.1313 (Ethernet0)
Step 9 Disable the debug isis update-packets at the pxr2 router.
The following example shows how to disable the debug on the p1r2 router:
p1r2#no debug all All possible debugging has been turned off
Step 10 At the pxr2 router, use the proper show command to verify how often and why the router has run a full SPF calculation.
The following example shows the output of the show isis spf-log command on the p1r2 router:
p1r2#show isis spf-log Level 1 SPF log When Duration Nodes Count Last trigger LSP Triggers 00:46:50 12 5 2 1313.1313.1313.02-00 NEWLSP 00:46:45 16 7 3 1313.1313.1313.03-00 NEWLSP TLVCONTENT 00:46:40 16 8 2 1313.1313.1313.04-00 NEWLSP TLVCONTENT 00:40:10 16 8 4 1313.1313.1313.00-00 ATTACHFLAG LSPHEADER 00:36:15 16 8 1 PERIODIC 00:31:28 8 3 5 1212.1212.1212.01-00 NEWLEVEL DELADJ LSPHEADER 00:30:37 40 8 2 1212.1212.1212.00-00 NEWADJ TLVCONTENT 00:30:32 36 4 3 1313.1313.1313.00-00 NEWADJ TLVCONTENT 00:30:22 20 8 1 1111.1111.1111.00-00 TLVCONTENT 00:30:17 24 8 3 1313.1313.1313.00-00 NEWADJ LSPHEADER TLVCONTEN T 00:21:16 16 8 1 PERIODIC 00:14:29 20 8 3 1212.1212.1212.01-00 IPBACKUP IPQUERY TLVCONTEN T 00:14:24 16 8 1 1313.1313.1313.00-00 TLVCONTENT 00:13:51 16 8 1 1313.1313.1313.00-00 TLVCONTENT 00:13:47 24 8 2 1212.1212.1212.01-00 NEWADJ TLVCONTENT 00:06:16 16 8 1 PERIODIC 00:04:27 16 8 4 1313.1313.1313.01-00 NEWLSP TLVCONTENT 00:01:58 20 9 3 1212.1212.1212.01-00 IPQUERY TLVCONTENT 00:01:43 24 8 4 1313.1313.1313.01-00 NEWADJ TLVCONTENT p1r2#
Step 11 At the pxr2 router, use the proper show command to examine the IS-IS neighbor table. How many entries do you see? Are they all Level 1 adjacency?
The following example shows the output of the show clns is-neighbors command on the p1r2 router:
p1r2#show clns is-neighbors System Id Interface State Type Priority Circuit Id Format 1111.1111.1111 Se1 Up L1 0 01 Phase V 1111.1111.1111 Se0 Up L1 0 00 Phase V 1313.1313.1313 Et0 Up L1 64 1313.1313.1313.0Phase V p1r2#
There are three entries; all are Level 1.
Step 12 At the pxr1 router, use the proper show command to examine the IS-IS neighbor table. How many entries do you see? Do you see both Level 2 and Level 1 adjacency?
The following example shows the output of the show clns is-neighbors command on the p1r1 router:
p1r1#show clns is-neighbors System Id Interface State Type Priority Circuit Id Format 1212.1212.1212 Se1 Up L1 0 01 Phase V 1212.1212.1212 Se0 Up L1 0 00 Phase V 1313.1313.1313 Se2 Up L1 0 00 Phase V 1111.2222.3333 Se3 Up L2 0 00 Phase V p1r1#
There are four entries. The adjacencies to the other routers in pod 1 are Level 1, and the adjacency to the backbone_r1 router is Level 2.
Step 13 Display the running configuration of the pxr1 router. Is clns routing enabled by default?
The following example output is from the p1r1 router. The clns routing command is on by default:
p1r1#show run Building configuration... Current configuration: ! version 12.0 service timestamps debug uptime service timestamps log uptime no service password-encryption ! hostname p1r1 ! enable secret 5 $1$dlQh$WrD8xeBBJLywzPs6AMZUO/ enable password sanfran ! ip subnet-zero no ip domain-lookup ip host p1r1 192.168.1.17 192.168.1.33 192.168.1.49 10.1.1.1 ip host p1r2 192.168.1.65 192.168.1.18 192.168.1.34 ip host p1r3 192.168.1.66 192.168.1.50 ip host bbr1 10.1.1.100 clns routing ! ! ! interface Ethernet0 no ip address no ip directed-broadcast shutdown ! interface Serial0 bandwidth 64 ip address 192.168.1.17 255.255.255.240 no ip directed-broadcast ip router isis no ip mroute-cache no fair-queue clockrate 64000 ! interface Serial1 bandwidth 64 ip address 192.168.1.33 255.255.255.240 no ip directed-broadcast ip router isis clockrate 64000 ! interface Serial2 bandwidth 64 ip address 192.168.1.49 255.255.255.240 no ip directed-broadcast ip router isis clockrate 64000 ! interface Serial3 bandwidth 64 ip address 10.1.1.1 255.255.255.0 no ip directed-broadcast ip router isis ! interface BRI0 no ip address no ip directed-broadcast shutdown ! router isis summary-address 192.168.1.0 255.255.255.0 summary-address 172.26.1.0 255.255.255.0 net 00.0001.1111.1111.1111.00 ! ip classless ! ! ! line con 0 exec-timeout 0 0 logging synchronous transport input none line aux 0 line vty 0 4 password cisco login ! end p1r1#
Step 14 Save the current configurations of all the routers within your pod to NVRAM.
The following example shows how to save the configuration of the p1r1 router using the copy run start command (this is an abbreviated form of the copy running-config startup-config command):
p1r1#copy run start Destination filename [startup-config]? Building configuration... p1r1#
NOTE
If you go on to do the Configuration Exercises in Chapter 5, "Configuring EIGRP," of the Cisco Press book Building Scalable Cisco Networks, you will need to change setup Step 2 to
Step 2 Disable IS-IS on all the routers within your pod.