Home > Articles > Cisco Network Technology > General Networking > Data Center Design Overview

Data Center Design Overview

  • Sample Chapter is provided courtesy of Cisco Press.
  • Date: Dec 31, 2003.

Chapter Description

This sample chapter covers types of server farms and Data Centers, Data Center topologies, fully redundant Layer 2 and Layer 3 designs, and fully redundant Layer 2 and Layer 3 designs with services.

From the Book

Data Center Fundamentals

Data Center Fundamentals


Fully Redundant Layer 2 and Layer 3 Designs

Up to this point, all the topologies that have been presented are fully redundant. This section explains the various aspects of a redundant and scalable Data Center design by presenting multiple possible design alternatives, highlighting sound practices, and pointing out practices to be avoided.

The Need for Redundancy

Figure 4-12 explains the steps in building a redundant topology.

Figure 4-12 depicts the logical steps in designing the server farm infrastructure. The process starts with a Layer 3 switch that provides ports for direct server connectivity and routing to the core. A Layer 2 switch could be used, but the Layer 3 switch limits the broadcasts and flooding to and from the server farms. This is option a in Figure 4-12. The main problem with the design labeled a is that there are multiple single point of failure problems: There is a single NIC and a single switch, and if the NIC or switch fails, the server and applications become unavailable.

The solution is twofold:

  • Make the components of the single switch redundant, such as dual power supplies and dual supervisors.

  • Add a second switch.

Redundant components make the single switch more tolerant, yet if the switch fails, the server farm is unavailable. Option b shows the next step, in which a redundant Layer 3 switch is added.

Figure 12Figure 4-12 Multilayer Redundant Design

By having two Layer 3 switches and spreading servers on both of them, you achieve a higher level of redundancy in which the failure of one Layer 3 switch does not completely compromise the application environment. The environment is not completely compromised when the servers are dual-homed, so if one of the Layer 3 switches fails, the servers still can recover by using the connection to the second switch.

In options a and b, the port density is limited to the capacity of the two switches. As the demands for more ports increase for the server and other service devices, and when the maximum capacity has been reached, adding new ports becomes cumbersome, particularly when trying to maintain Layer 2 adjacency between servers.

The mechanism used to grow the server farm is presented in option c. You add Layer 2 access switches to the topology to provide direct server connectivity. Figure 4-12 depicts the Layer 2 switches connected to both Layer 3 aggregation switches. The two uplinks, one to each aggregation switch, provide redundancy from the access to the aggregation switches, giving the server farm an alternate path to reach the Layer 3 switches.

The design described in option c still has a problem. If the Layer 2 switch fails, the servers lose their only means of communication. The solution is to dual-home servers to two different Layer 2 switches, as depicted in option d of Figure 4-12.


Throughout this book, the terms access layer and access switches refer to the switches used to provide port density. The terms aggregation layer and aggregation switches refer to the switches used both to aggregate the traffic to and from the access switches and to connect service devices (load balancers, SSL offloaders, firewalls, caches, and so on).

The aggregation switches are Layer 3 switches, which means that they have a built-in router that can forward traffic at wire speed.

The access switches are predominantly Layer 2 switches, yet they could be Layer 3 switches merely operating in Layer 2 mode for the server farms.

Layer 2 and Layer 3 in Access Layer

Option d in Figure 4-12 is detailed in option a of Figure 4-13.

Figure 13Figure 4-13 Layer 3 and Layer 2 in the Data Center

Figure 4-13 presents the scope of the Layer 2 domain(s) from the servers to the aggregation switches. Redundancy in the Layer 2 domain is achieved mainly by using spanning tree, whereas in Layer 3, redundancy is achieved through the use of routing protocols.

Historically, routing protocols have proven more stable than spanning tree, which makes one question the wisdom of using Layer 2 instead of Layer 3 at the access layer. This topic was discussed previously in the "Need for Layer 2 at the Access Layer" section. As shown in option b in Figure 4-13, using Layer 2 at the access layer does not prevent the building of pure Layer 3 designs because of the routing between the access and distribution layer or the supporting Layer 2 between access switches.

The design depicted in option a of Figure 4-13 is the most generic design that provides redundancy, scalability, and flexibility. Flexibility relates to the fact that the design makes it easy to add service appliances at the aggregation layer with minimal changes to the rest of the design. A simpler design such as that depicted in option b of Figure 4-13 might better suit the requirements of a small server farm.

Layer 2, Loops, and Spanning Tree

The Layer 2 domains should make you think immediately of loops. Every network designer has experienced Layer 2 loops in the network. When Layer 2 loops occur, packets are replicated an infinite number of times, bringing down the network. Under normal conditions, the Spanning Tree Protocol keeps the logical topology free of loops. Unfortunately, physical failures such as unidirectional links, incorrect wiring, rogue bridging devices, or bugs can cause loops to occur.

Fortunately, the introduction of 802.1w has addressed many of the limitations of the original spanning tree algorithm, and features such as Loopguard fix the issue of malfunctioning transceivers or bugs.

Still, the experience of deploying legacy spanning tree drives network designers to try to design the Layer 2 topology free of loops. In the Data Center, this is sometimes possible. An example of this type of design is depicted in Figure 4-14. As you can see, the Layer 2 domain (VLAN) that hosts the subnet 10.0.0.x is not trunked between the two aggregation switches, and neither is 10.0.1.x. Notice that GigE3/1 and GigE3/2 are not bridged together.

Figure 14Figure 4-14 Loop-Free Layer 2 Design


It is possible to build a loop-free access layer if you manage to keep subnets specific to a single access switch. If subnets must span multiple access switches, you should have a "looped" topology. This is the case when you have dual-attached servers because NIC cards configured for "teaming" typically use a floating IP and MAC address, which means that both interfaces belong to the same subnet.

Keep in mind that a "loop-free" topology is not necessarily better. Specific requirements such as those mandated by content switches actually might require the additional path provided by a "looped" topology.

Also notice that a "looped" topology simply means that any Layer 2 device can reach any other Layer 2 device from at least two different physical paths. This does not mean that you have a "forwarding loop," in which packets are replicated infinite times: Spanning tree prevents this from happening.

In a "looped" topology, malfunctioning switches can cause Layer 2 loops. In a loop-free topology, there is no chance for a Layer 2 loop because there are no redundant Layer 2 paths.

If the number of ports must increase for any reason (dual-attached servers, more servers, and so forth), you could follow the approach of daisy-chaining Layer 2 switches, as shown in Figure 4-15.

Figure 15Figure 4-15 Alternate Loop-Free Layer 2 Design

To help you visualize a Layer 2 loop-free topology, Figure 4-15 shows each aggregation switch broken up as a router and a Layer 2 switch.

The problem with topology a is that breaking the links between the two access switches would create a discontinuous subnet—this problem can be fixed with an EtherChannel between the access switches.

The other problem occurs when there are not enough ports for servers. If a number of servers need to be inserted into the same subnet 10.0.0.x, you cannot add a switch between the two existing servers, as presented in option b of Figure 4-15. This is because there is no workaround to the failure of the middle switch, which would create a split subnet. This design is not intrinsically wrong, but it is not optimal.

Both the topologies depicted in Figures 4-14 and 4-15 should migrate to a looped topology as soon as you have any of the following requirements:

  • An increase in the number of servers on a given subnet

  • Dual-attached NIC cards

  • The spread of existing servers for a given subnet on a number of different access switches

  • The insertion of stateful network service devices (such as load balancers) that operate in active/standby mode

Options a and b in Figure 4-16 show how introducing additional access switches on the existing subnet creates "looped topologies." In both a and b, GigE3/1 and GigE3/2 are bridged together.

Figure 16Figure 4-16 Redundant Topologies with Physical Layer 2 Loops

If the requirement is to implement a topology that brings Layer 3 to the access layer, the topology that addresses the requirements of dual-attached servers is pictured in Figure 4-17.

Figure 17Figure 4-17 Redundant Topology with Layer 3 to the Access Switches

Notice in option a of Figure 4-17, almost all the links are Layer 3 links, whereas the access switches have a trunk (on a channel) to provide the same subnet on two different switches. This trunk also carries a Layer 3 VLAN, which basically is used merely to make the two switches neighbors from a routing point of view. The dashed line in Figure 4-17 shows the scope of the Layer 2 domain.

Option b in Figure 4-17 shows how to grow the size of the server farm with this type of design. Notice that when deploying pairs of access switches, each pair has a set of subnets disjointed from the subnets of any other pair. For example, one pair of access switches hosts subnets 10.0.1.x and 10.0.2.x; the other pair cannot host the same subnets simply because it connects to the aggregation layer with Layer 3 links.


If you compare the design in Figure 4-17 with option b in Figure 4-12, the natural questions are these: Why is there an aggregation layer, and are the access switches not directly connected to the core? These are valid points, and the answer actually depends on the size of the Data Center. Remember that the access layer is added for reasons of port density, whereas the aggregation layer is used mainly to attach appliances, such as load-balancing devices, firewalls, caches, and so on.

So far, the discussions have centered on redundant Layer 2 and Layer 3 designs. The Layer 3 switch provides the default gateway for the server farms in all the topologies introduced thus far. Default gateway support, however, could also be provided by other service devices, such as load balancers and firewalls. The next section explores the alternatives.

4. Fully Redundant Layer 2 and Layer 3 Designs with Services | Next Section Previous Section

Cisco Press Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from Cisco Press and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about Cisco Press products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites; develop new products and services; conduct educational research; and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@ciscopress.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by Cisco Press. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.ciscopress.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020