Home > Articles > Cisco Network Technology > General Networking > Fiber-Optic Technologies

Fiber-Optic Technologies

  • Sample Chapter is provided courtesy of Cisco Press.
  • Date: Apr 23, 2004.

Chapter Description

Vivek Alwayn discusses in this chapter the increasing demand of optical-fiber and its wide spread applications ranging from global networks to desktop computers.

Propagation Modes

Fiber-optic cable has two propagation modes: multimode and single mode. They perform differently with respect to both attenuation and time dispersion. The single-mode fiber-optic cable provides much better performance with lower attenuation. To understand the difference between these types, you must understand what is meant by "mode of propagation."

Light has a dual nature and can be viewed as either a wave phenomenon or a particle phenomenon that includes photons and solitons. Solitons are special localized waves that exhibit particle-like behavior. For this discussion, let's consider the wave mechanics of light. When the light wave is guided down a fiber-optic cable, it exhibits certain modes. These are variations in the intensity of the light, both over the cable cross section and down the cable length. These modes are actually numbered from lowest to highest. In a very simple sense, each of these modes can be thought of as a ray of light. For a given fiber-optic cable, the number of modes that exist depends on the dimensions of the cable and the variation of the indices of refraction of both core and cladding across the cross section. The various modes include multimode step index, single-mode step index, single-mode dual-step index, and multimode graded index.

Multimode Step Index

Consider the illustration in Figure 3-8. This diagram corresponds to multimode propagation with a refractive index profile that is called step index. As you can see, the diameter of the core is fairly large relative to the cladding. There is also a sharp discontinuity in the index of refraction as you go from core to cladding. As a result, when light enters the fiber-optic cable on the left, it propagates down toward the right in multiple rays or multiple modes. This yields the designation multimode. As indicated, the lowest-order mode travels straight down the center. It travels along the cylindrical axis of the core. The higher modes, represented by rays, bounce back and forth, going down the cable to the left. The higher the mode, the more bounces per unit distance down to the right.

Figure 8Figure 3-8 Multimode Step Index

The illustration also shows the input pulse and the resulting output pulse. Note that the output pulse is significantly attenuated relative to the input pulse. It also suffers significant time dispersion. The reasons for this are as follows. The higher-order modes, the bouncing rays, tend to leak into the cladding as they propagate down the fiber-optic cable. They lose some of their energy into heat. This results in an attenuated output signal. The input pulse is split among the different rays that travel down the fiber-optic cable. The bouncing rays and the lowest-order mode, traveling down the center axis, are all traversing paths of different lengths from input to output. Consequently, they do not all reach the right end of the fiber-optic cable at the same time. When the output pulse is constructed from these separate ray components, the result is chromatic dispersion.

Fiber-optic cable that exhibits multimode propagation with a step index profile is thereby characterized as having higher attenuation and more time dispersion than the other propagation candidates. However, it is also the least costly and is widely used in the premises environment. It is especially attractive for link lengths up to 5 kilometers. It can be fabricated either from glass, plastic, or PCS. Usually, MMF core diameters are 50 or 62.5 m. Typically, 50-m MMF propagates only 300 modes as compared to 1100 modes for 62.5-m fiber. The 50-m MMF supports 1 Gbps at 850-nm wavelengths for distances up to 1 kilometer versus 275 meters for 62.5-m MMF. Furthermore, 50-m MMF supports 10 Gbps at 850-nm wavelengths for distances up to 300 meters versus 33 meters for 62.5-m MMF. This makes 50-m MMF the fiber of choice for low-cost, high-bandwidth campus and multitenant unit (MTU) applications.

Single-Mode Step Index

Single-mode propagation is illustrated in Figure 3-9. This diagram corresponds to single-mode propagation with a refractive index profile that is called step index. As the figure shows, the diameter of the core is fairly small relative to the cladding. Because of this, when light enters the fiber-optic cable on the left, it propagates down toward the right in just a single ray, a single mode, which is the lowest-order mode. In extremely simple terms, this lowest-order mode is confined to a thin cylinder around the axis of the core. The higher-order modes are absent.

Figure 9Figure 3-9 Single-Mode Step Index

Consequently, extremely little or no energy is lost to heat through the leakage of the higher modes into the cladding, because they are not present. All energy is confined to this single, lowest-order mode. Because the higher-order mode energy is not lost, attenuation is not significant. Also, because the input signal is confined to a single ray path, that of the lowest-order mode, very little chromatic dispersion occurs. Single-mode propagation exists only above a certain specific wavelength called the cutoff wavelength.

The cutoff wavelength is the smallest operating wavelength when SMFs propagate only the fundamental mode. At this wavelength, the second-order mode becomes lossy and radiates out of the fiber core. As the operating wavelength becomes longer than the cutoff wavelength, the fundamental mode becomes increasingly lossy. The higher the operating wavelength is above the cutoff wavelength, the more power is transmitted through the fiber cladding. As the fundamental mode extends into the cladding material, it becomes increasingly sensitive to bending loss. Comparing the output pulse and the input pulse, note that there is little attenuation and time dispersion. Lower chromatic dispersion results in higher bandwidth. However, single-mode fiber-optic cable is also the most costly in the premises environment. For this reason, it has been used more with metropolitan- and wide-area networks than with premises data communications. Single-mode fiber-optic cable has also been getting increased attention as local-area networks have been extended to greater distances over corporate campuses. The core diameter for this type of fiber-optic cable is exceedingly small, ranging from 8 microns to 10 microns. The standard cladding diameter is 125 microns.

SMF step index fibers are manufactured using the outside vapor deposition (OVD) process. OVD fibers are made of a core and cladding, each with slightly different compositions and refractive indices. The OVD process produces consistent, controlled fiber profiles and geometry. Fiber consistency is important, to produce seamless spliced interconnections using fiber-optic cable from different manufacturers. Single-mode fiber-optic cable is fabricated from silica glass. Because of the thickness of the core, plastic cannot be used to fabricate single-mode fiber-optic cable. Note that not all SMFs use a step index profile. Some SMF variants use a graded index method of construction to optimize performance at a particular wavelength or transmission band.

Single-Mode Dual-Step Index

These fibers are single-mode and have a dual cladding. Depressed-clad fiber is also known as doubly clad fiber. Figure 3-10 corresponds to single-mode propagation with a refractive index profile that is called dual-step index. A depressed-clad fiber has the advantage of very low macrobending losses. It also has two zero-dispersion points and low dispersion over a much wider wavelength range than a singly clad fiber. SMF depressed-clad fibers are manufactured using the inside vapor deposition (IVD) process. The IVD or modified chemical vapor deposition (MCVD) process produces what is called depressed-clad fiber because of the shape of its refractive index profile, with the index of the glass adjacent to the core depressed. Each cladding has a refractive index that is lower than that of the core. The inner cladding a the lower refractive index than the outer cladding.

Figure 10Figure 3-10 Single-Mode Dual-Step Index

Multimode Graded Index

Multimode graded index fiber has a higher refractive index in the core that gradually reduces as it extends from the cylindrical axis outward. The core and cladding are essentially a single graded unit. Consider the illustration in Figure 3-11. This corresponds to multimode propagation with a refractive index profile that is called graded index. Here the variation of the index of refraction is gradual as it extends out from the axis of the core through the core to the cladding. There is no sharp discontinuity in the indices of refraction between core and cladding. The core here is much larger than in the single-mode step index case previously discussed. Multimode propagation exists with a graded index. As illustrated, however, the paths of the higher-order modes are somewhat confined. They appear to follow a series of ellipses. Because the higher-mode paths are confined, the attenuation through them due to leakage is more limited than with a step index. The time dispersion is more limited than with a step index; therefore, attenuation and time dispersion are present, but limited.

In Figure 3-11, the input pulse is shown on the left, and the resulting output pulse is shown on the right. When comparing the output pulse and the input pulse, note that there is some attenuation and time dispersion, but not nearly as much as with multimode step index fiber-optic cable.

Figure 11Figure 3-11 Multimode Graded Index

Fiber-optic cable that exhibits multimode propagation with a graded index profile is characterized as having levels of attenuation and time-dispersion properties that fall between the other two candidates. Likewise, its cost is somewhere between the other two candidates. Popular graded index fiber-optic cables have core diameters of 50, 62.5, and 85 microns. They have a cladding diameter of 125 microns—the same as single-mode fiber-optic cables. This type of fiber-optic cable is extremely popular in premise data communications applications. In particular, the 62.5/125 fiber-optic cable is the most popular and most widely used in these applications. Glass is generally used to fabricate multimode graded index fiber-optic cable.

6. Fiber-Optic Characteristics | Next Section Previous Section

Cisco Press Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from Cisco Press and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about Cisco Press products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites; develop new products and services; conduct educational research; and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@ciscopress.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by Cisco Press. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.ciscopress.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020