Home > Articles > Cisco Network Technology > General Networking > Wireless LAN Implications, Problems, and Solutions

Wireless LAN Implications, Problems, and Solutions

Chapter Description

When designing and supporting a WLAN, however, you must be aware of potential implications, such as security vulnerabilities, radio signal interference, multipath propagation, and other issues. This chapter from Designing and Deploying 802.11 Wireless Networks explains the impacts of these problems and introduces some ways to resolve them.

This chapter will introduce you to:

  • Security Vulnerabilities
  • Radio Signal Interference
  • Impacts of Multipath Propagation
  • Roaming Issues
  • Battery Limitations
  • Interoperability Problems
  • Installation Issues

As Chapter 1, “Introduction to Wireless LANs,” describes, wireless LANs (WLANs) offer tremendous benefits. When designing and supporting a WLAN, however, you must be aware of potential implications, such as security vulnerabilities, radio signal interference, multipath propagation, and other issues. This chapter explains the impacts of these problems and introduces some ways to resolve them. Later chapters explain more details on how to combat the implications.

Security Vulnerabilities

Network security refers to the protection of information and resources from loss, corruption, and improper use. With WLANs, security vulnerabilities fall within the following areas (see Figure 4-1):

  • Passive monitoring
  • Unauthorized access
  • Denial-of-service attacks

The sections that follow explain these security problems in greater detail.

Figure 4-1

Figure 4-1 Wireless LAN Security Vulnerabilities Include Passive Monitoring, Unauthorized Access, and Denial-of-Service Attacks

Passive Monitoring

Wireless LANs intentionally propagate data throughout buildings, campuses, and even cities. As a result, the radio signals often go beyond the limits of the area an organization physically controls. For instance, radio waves easily penetrate building walls and can be received from the facility’s parking lot and possibly a few blocks away, as illustrated in Figure 4-2. It is possible for an unauthorized person to passively retrieve a company’s sensitive information by using a laptop equipped with a radio card from this distance without being noticed by network security personnel. A hacker, for example, might be sitting in an automobile outside a business, capturing all 802.11 transmissions using a freely available packet sniffer, such as WireShark. After capturing the data, the hacker will be able to retrieve contents of e-mails and user passwords to company servers. Of course, the hacker can use this information to compromise the security of the company. This problem also exists with wired Ethernet networks, but to a lesser degree. Current flow through the metallic wires emits electromagnetic waves that someone could receive by using sensitive listening equipment. The person must be much closer to the cable, though, to receive the signals. Thus, in terms of passive monitoring, WLANs are not as secure as wired networks.

The method for resolving the issues of passive monitoring is to implement encryption between all client devices and the access points. Encryption alters the information bits in each frame, based on an encryption key, so that the hacker cannot make sense of the data he captures via passive monitoring. An example of an 802.11 encryption process is Wired Equivalent Privacy (WEP), which was part of the original 802.11 standard ratified in 1997. WEP is fairly easy to crack, however, so it is not recommended for encrypting sensitive information. Other encryption methods, such as Wi-Fi Protected Access (WPA), offer much stronger security.

Figure 4-2

Figure 4-2 Without Effective Encryption, an Unauthorized Person Can Listen in on Wireless LAN Data Transmissions

Unauthorized Access

If someone can connect to a WLAN, she can potentially access anything on the network, including client devices, servers, and applications, as illustrated in Figure 4-3. Some organizations do a good job of locking down servers and applications, but others do not. A hacker who can connect to a WLAN will look for backdoors and other security glitches to compromise the security of the network. For example, a hacker connected to an access point can use a TCP port scanner to implement a scan for open (unsecured) ports on servers. If one is found, the hacker has access to the port’s utilities, which might allow her to directly access sensitive information or reconfigure the network in a manner that makes it less secure (and thus easier to access more sensitive information).

Figure 4-3

Figure 4-3 Unauthorized Access Enables Someone to Gain Access to an Organization’s Servers and Applications

One way that a hacker can gain unauthorized access to a WLAN is to stage a man-in-the-middle attack, as illustrated in Figure 4-4. There are a variety of methods to set up a man-in-the-middle attack. One is to exploit the TCP/IP Address Resolution Protocol (ARP) functions. ARP is a crucial function that a source station (such as an 802.11 radio) uses to discover the physical address of a destination station. This physical address is the MAC address, which is embedded in the client radio by the manufacturer and unique from any other client device or network component. The MAC address is analogous to the street address of your home. Just as someone must know this address to send you a letter, a sending 802.11 radio must know the MAC address of the destination. The 802.11 radio understands and responds to only the physical MAC address.

Figure 4-4

Figure 4-4 A Hacker Can Hijack a Session Away from a Legitimate User

The application software that needs to send the data will have the IP address of the destination, but the sending station must use ARP to discover the corresponding physical address. It gets the address by broadcasting an ARP request packet that announces the IP address of the destination station to all the other network devices. All stations within range hear this request, and the station that has the corresponding IP address will return an ARP response packet containing its MAC address and IP address. The sending station will then include this MAC address as the destination address in the 802.11 data frame being sent. The sending station also stores the corresponding IP address and MAC address mapping in a table for a period of time or until the station receives another ARP response from the station having that IP address. This is where ARP introduces a security risk.

A hacker can fool a station by sending (from an unauthorized laptop) a fictitious ARP response that includes the IP address of a legitimate network device, such as a wireless access point, and the MAC address of the client radio in the unauthorized laptop. This causes all legitimate stations on the network to automatically update their ARP tables with the false mapping to the unauthorized laptop. This causes these stations to send future 802.11 data frames to the rogue device rather than the legitimate access point. This is a classic man-in-the-middle attack, which enables a hacker to manipulate user sessions. As a result, the hacker can obtain passwords, capture sensitive data, and even interface with corporate servers as if she were the legitimate user.

A critical security concern of IT managers is the presence of rogue wireless access points on the corporate network. A rogue access point is one that the company does not authorize for operation. The trouble is that a rogue access point often does not conform to WLAN security policies, which enables an open, insecure interface to the corporate network from outside the physically controlled facility. Figure 4-5 illustrates a scenario where a rogue access point is providing open access to the network from outside the physically controlled area of a facility.

Figure 4-5

Figure 4-5 A Rogue Access Point Can Offer an Unsecured Opening to the Network

Employees have relatively free access to a company’s facility, which makes it possible for them to inadvertently install a rogue access point. An employee, for example, might purchase an access point at an office supply store and install it without coordinating with the IT organization to support wireless printing or access to the network from a conference room. Or developers working on wireless applications might connect an access point to the corporate network for testing purposes. In most cases, employees deploying these types of access points do not understand the security issues they’re creating. These scenarios often lead to access points not conforming to adequate security practices. As a result, the corporate network is left wide open for a casual snooper or hacker to attack.

A hacker can install a rogue access point to provide an open, non-secure interface to the corporate network. To do this, the hacker must directly connect the access point to an active network port within the facility. This requires the hacker to pass through physical security, and it is easier to do than most companies assume. Nevertheless, the hacker will need to physically traverse the facility and install the access point without being noticed. It is unlikely that someone would do this unless the company has resources that are critical enough for a hacker to go to the trouble and risk of planting the rogue.

A way to counter unauthorized access is to employ an authentication system that verifies the identity of users, client devices, and access points before allowing them to operate on the WLAN. The user provides a form of credentials, such as username and password or digital certificate, and an authentication server determines whether the person (or client device) can access the network. If not, the network does not allow the client device to connect to the access point. As a result, the access point on the WLAN acts as a security gate to the network. In addition, for added protection, a company can keep all traffic on the WLAN on a virtual LAN (VLAN) that is separate from VLANs supporting sensitive applications and servers. This way, the company can limit the implications resulting from unauthorized access to only the applications and servers supporting the wireless network. A company can even go as far as keeping all WLAN traffic outside the company firewall and requiring all wireless users to implement virtual private network (VPN) client software similar to when connecting to the corporate network from public networks.

Unauthorized Access Leads to Compromise of Financial Data

A large private company in California implemented a WLAN to support enterprise mobility. The system was seemingly working great and providing significant benefits to its users. Over a year after the system went operational, the IT department noticed, through a routine network security audit, that several of its printers in the financial department had been configured to send all printed data to a file at a suspicious IP address. Unfortunately, the IT department had not locked down the administrative access ports on these printers. Even though all the details of what happened here are not known, it is likely that a hacker gained unauthorized access to the WLAN (which did not implement any form of authentication) and ran a port scan to find the open printer administration port. With the open port’s IP address (resulting from the scan), the hacker could easily log in to the administrative port and set the printer to send all print jobs to a file located on the hacker’s laptop. The printer would then continue to print on paper and also send the print data to the hacker’s laptop. Of course this would send to the hacker everything that the printer would print, such as internal goals and objectives, company sales information, employee salaries, and so on. After discovering this issue, the company promptly implemented an authentication system to disallow all unauthorized people from accessing the WLAN.

Denial-of-Service Attacks

A denial-of-service (DoS) attack is an assault that can cripple or disable a WLAN. Wireless networks are extremely vulnerable to DoS attacks (even when using modern security mechanisms), which can cause a WLAN to slow to crawling speeds or even quit working. This causes a company that’s dependent on a WLAN to experience delays, which can be costly for some applications, such as wireless security cameras, inventory systems, and PoS terminals.

One form of DoS attack is the “brute-force” method. This type of attack can come in one of two forms:

  • A huge flood of packets that uses up all the network’s resources and forces it to shut down
  • A very strong radio signal that totally dominates the airwaves and renders access points and radio cards useless

One of the ways a hacker can perform a packet-based brute-force DoS attack is to use other computers on the network to send large numbers of useless packets to the server. This adds significant overhead on the network and takes away usable bandwidth from legitimate users. The use of a very strong radio signal to disrupt the access points and radio cards is a rather risky attack for a hacker to attempt. Because a very powerful transmitter at a relatively close range must be used to execute this type of attack, the owners of the WLAN can find the hacker through the use of homing tools.

Another form of DoS attack fiddles with the 802.11 protocols in a way that disables the network. This can be done via specialized software running on a laptop without connecting to any of the network’s access points. For example, the software can continuously send 802.11 disassociation frames to all client radios, which causes them to disconnect from the access points with which they are associated. This cuts off the client devices from the network, which of course disables them from communicating on the network, accessing applications, and so on. This method and others are well known by network culprits and published readily on the Internet.

DoS attacks are not common, and they are generally implemented over the air, thus disturbing only a small portion of a WLAN. For example, a malicious hacker with a wireless laptop might be outside a building containing a WLAN and begin broadcasting disassociation frames, but only the client radios within range of the malicious person will receive the disassociation frames and disconnect from their respective access points. Other client radios operating farther inside the building, far enough away to not receive disassociation frames, will continue operating.

Sometimes a DoS occurrence on a wireless network might not be intentional. Because the 2.4-GHz version of 802.11n resides in such a crowded spectrum, 2.4-GHz cordless phones, microwave ovens, Bluetooth devices, and other devices that use the 2.4-GHz spectrum might cause a significant reduction in WLAN performance. As a result, a company should fully investigate the use of these devices and possibly put limits on their usage before a WLAN is deemed operational.

There is not much that you can do to entirely prevent a DoS attack. A company can minimize the possibility of DoS attacks against a WLAN by making the facility as resistive as possible to incoming radio signals. This includes using directive antennas near the periphery of the building and aiming the directive side of the antenna indoors to reduce the listening capability of the antenna to signals originating outdoors. In addition, the use of RF shielding paint and window film can add significant attenuation to the exterior walls of the buildings to nearly eliminate jamming signals from outdoors. The problem with these solutions, however, is that they can be expensive and also cut off the usage of other wireless devices, such as cell phones. Also, they are not effective if a hacker somehow gets inside the building to stage the DoS attack. Of course that’s where good physical security practices come into play.

Because of the potential harm, you must consider potential DoS attacks before launching mission-critical applications on a WLAN. If a DoS attack is even a remote possibility, think about how you will get by if the network is not available for an indefinite period of time. The benefits of the WLAN in the long term, however, will likely outweigh the disruption of an occasional DoS attack, assuming that the organization does not depend entirely on the wireless network. Something that should be put in place for any mission-critical WLAN application is a backup plan. A company should not be so dependent on its wireless network that if it goes down, everything grinds to a halt.

As with wired networks, a company should also have a “Plan B” in case the WLAN becomes unavailable because of a DoS attack. For example, a large retail store might use a wireless network to support wireless PoS terminals. In case the wireless network becomes inoperative (possibly due to a DoS attack), the retail store should have a backup plan, such as batching sale transactions for later processing when the network becomes available or when it is possible to connect the terminal to the retail system via a cable.

2. Radio Signal Interference | Next Section

There are currently no related articles. Please check back later.