Home > Articles > Cisco Certification > CCIE > Cisco Network Topology and Design

Cisco Network Topology and Design

  • Sample Chapter is provided courtesy of Cisco Press.
  • Date: Feb 1, 2002.

Chapter Description

Explore design issues related to overall network topology with this sample chapter from CCIE Professional Development: Large-Scale IP Network Solutions by Cisco Press.

Tools and Techniques

Network design is both an art and a science. The science involves exploiting various methodologies to meet all the requirements within the given constraints. Each of these methods trades one constrained resource for another. The art involves choosing the best balance between constrained resources, resulting in a network that is future-proof—one that will grow to meet increased, or even radically new, requirements.

Modularization and Layering

Two of the most common design and implementation methodologies are those of modularization and layering. Both enable the network problem to be broken down into something more manageable, and both involve the definition of interfaces that enable one module or layer to be modified without affecting others. These benefits usually compensate for inefficiency, due to hidden information between layers or modules. Nevertheless, when designing the interfaces between modules or layers, it is good practice to optimize the common case. For example, if there is a large flow of traffic between two distribution networks, perhaps this flow should be optimized by introducing a new dedicated link into the core network.

Layering typically implies a hierarchical relationship. This is a fundamental technique in network protocol design, as exemplified by the ubiquitous OSI reference model. Modularization typically implies a peer relationship, although a hierarchy certainly can exist between modules. In an upcoming section, "Hierarchy Issues," as well as in many of the remaining chapters in this book, the text continues to emphasize and develop the practice of hierarchy and modularization in network design.

Layering the network control plan above a redundant physical infrastructure is a vital part of resilient network design. Critical control information, such as network management or routing updates, should be exchanged using IP addresses of a virtual interface on the router rather than one associated with a physical interface. In Cisco routers, this can be achieved using loopback interfaces—virtual interfaces that are always active, independent of the state of any physical interfaces.

Another common approach used when a physical address must be used for routing is to permit two or more routers to own the same IP address, but not concurrently. A control protocol, such as Cisco's Hot Standby Router Protocol (HSRP), arbitrates the use of the IP address for routing purposes.

Network Design Elements

Multiplexing is a fundamental element of network design. Indeed, you could argue that a network is typically one huge multiplexing system. More specifically, however, multiplexing is a tool that provides economies of scale—multiple users share one large resource rather than a number of individual resources.


Multiplexing is the aggregation of multiple independent traffic flows into one large traffic flow. A useful analogy is the freeway system, which multiplexes traffic from many smaller roads into one large flow. At any time, traffic on the freeway may exit onto smaller roads (and thus be de-multiplexed) when it approaches its final destination.

As an added benefit, if the multiplexing is statistical in nature, one user may consume the unused resources of someone else. During periods of congestion, however, this statistical sharing of the resource might need to be predictable to ensure that basic requirements are met. In IP networks, bandwidth is the resource, and routers provide the multiplexing.

Traditionally, multiplexing has been a best-effort process. However, increasingly deterministic behavior is required—you can read about such techniques in Chapter 14, "Quality of Service Features." For now, it suffices to say that multiplexing saves money and can provide performance improvements while guaranteeing a minimum level of service.

Randomization is the process of applying random behavior to an otherwise predictable mechanism. This is an important approach to avoid the synchronization of network data or control traffic that can lead to cyclic congestion or instability. Although critical to the design of routing protocols, congestion control, and multiplexing algorithms, randomization is not currently a major factor in network topology design. However, this may change if load sharing of IP traffic through random path selection is ever shown to be a practical routing algorithm.

Soft state is the control of network functions through the use of control messages that are periodically refreshed. If the soft state is not refreshed, it is removed (or timed out). Soft state is also extremely important to routing functions. When routers crash, it becomes difficult to advise other routers that the associated routing information is invalidated. Nearly all routing information is kept as soft-state—if it is not refreshed, or at the very least reconfirmed in some way, it is eventually removed.

Soft state can be obviated by the use of static or "hard-coded" routes that are never invalidated. Static routes should therefore be used with extreme caution.

Some level of hysterisis or dampening is useful whenever there is the possibility of unbounded oscillation. These techniques are often used for processing routing updates in Interior Gateway Protocols (IGPs). If a route is withdrawn, a router may "hold down" that route for several minutes, even if the route is subsequently re-advertised by the IGP. This prevents an unstable route from rapidly oscillating between the used and unused states because the route can change its state only once per hold-down period.

Similarly, the external routing Border Gateway Protocol (BGP) applies dampening to external routes. This prevents CPU saturation that can occur when repeatedly calculating new routes, if large numbers of routes are involved.

Stabilizing routes in this manner also can improve network throughput because the congestion control mechanisms of TCP do not favor environments with oscillating or rapidly changing values of round-trip time or throughput on the network.

Localization and caching represent a variation on the earlier technique of optimizing the common case. Even in today's peer-to-peer networking model, many extremely popular data repositories (such as major Web farms) still exist. By caching commonly accessed Web data (in other words, making a localized copy of this data) it is possible to save long-distance network traffic and improve performance. Such caches can form a natural part of the network hierarchy.

Finally, any network topology should be carefully analyzed during failure of the design's various components. These are usually known as failure modes. The topology should be engineered for graceful degradation. In particular, the failure of links constitutes the most common failure mode, followed by the failure of critical routing nodes.


There are essentially four topological building blocks: rings, buses, stars, and meshes. (See Figure 4-1.) A large, well-designed network normally will exploit the benefits of each building block—either alone or combined—at various points within its architecture.

Figure 4-1 Mesh, Star, Ring, and Bus Topologies (from top)

Although initially attractive due to minimal dependence on complex electronics, the use of bus media, such as repeated Ethernet segments, is decreasing. For the most part, this is due to an increase in the reliability and flexibility of the technology that is implementing rings, stars, and meshes. In particular, bus LAN topologies are typically converted into stars using a LAN switch. This offers increased aggregate bandwidth and superior diagnostic capabilities.

Operational experience has also shown that a passive shared broadcast medium does not necessarily create a more reliable environment because a single misbehaving Ethernet card can render a bus LAN useless for communication purposes.

3. Hierarchy Issues | Next Section Previous Section

Cisco Press Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from Cisco Press and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about Cisco Press products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites; develop new products and services; conduct educational research; and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@ciscopress.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by Cisco Press. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.ciscopress.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020