Home > Articles > Cisco Network Technology > Wireless/Optical/High Speed > Wireless System Architecture: How Wireless Works

Wireless System Architecture: How Wireless Works

  • Sample Chapter is provided courtesy of Cisco Press.
  • Date: Oct 15, 2004.

Chapter Description

Apart from transmitting the information over the air, wireless networks are very much like wired networks. However, that seemingly small difference can lead to some very large problems if you don't understand the nuances of this medium. Read this chapter to find out how wireless networks work, and why they need to be administered differently from traditional, wired networks.

Information Signals

Data is a type of information that the network stores in a computer or retrieves from it. As a result, wireless networks transfer data from one computer to another. This data can include e-mail messages, files, web pages, video, music, and voice conversations.

Communications systems—such as a wireless network— symbolize data using codes that electrical, radio, and light signals efficiently represent. The signals carry the information through the system from one point to another. The signals are either digital or analog, depending on their location within the system.

Digital Signals

Digital signals, which are found inside computers, vary in amplitude steps as time advances. (See Figure 2-7.) Digital signals are usually binary (two-state); therefore, it is common to refer to the signal as a string of binary digits (bits) or binary data. Digital circuitry inside the computer easily stores and processes these digital signals in binary form.

Figure 7Figure 2-7 Digital Signals Are Ideal for Use in Computers

Binary is a system that only uses 0s and 1s to represent the numbers. Conversions are easy from the more familiar decimal numbering system to binary, and computers can readily store binary numbers. With some protocols, the binary values within a data frame represent specific protocol information.

One of the advantages of digital signals is easy signal regeneration. As a signal propagates through the air medium, it might encounter noise or interference that changes the appearance of the signal's waveform. To clean up and regenerate the signal, digital circuitry can detect if a digital pulse is present at a certain period of time and create a new pulse that is exactly equal to the one originally sent. As a result, a digital signal can be sent over vast distances through periodic repeaters while preserving the integrity of the information. This is not possible with analog signals.

For security purposes, it is often necessary to encrypt and later decode a signal at the destination. This process is simple with digital signals because all that is necessary is to rearrange the bits using some type of secret keying process. When the destination receives the data, a device can use the same key and decrypt the data.

The following defines important characteristics of digital signals:

  • Data rate—The data rate corresponds to the speed that a digital signal transfers data across a wireless network. As a result, the data rate of a digital signal gives some insight on how long it will take to send data from one point to another, as well as identify the amount of bandwidth that the medium must supply to effectively support the signal.

  • The data rate of a signal is equal to the total number of bits transmitted in relation to the time it takes to send them. The common unit of measure for bit rate is bits per second (bps). As an example, consider a signal that moves 1,000,000 bits in 1 second. The data rate is 1,000,000/1 = 1,000,000 bps (or 1 Mbps).

  • Throughput—Throughput is similar to data rate; however, throughput calculations generally exclude the bits that correspond to the overhead that communications protocols include. There are no standards for representing throughput, but it usually includes only the actual information being sent across the network. As a result, throughput gives a more accurate way of representing the true performance and efficiency of a network. This makes throughput important when comparing wireless networks because it's directly related to performance. The higher the throughput, the higher the performance.

  • The data rate of a wireless LAN, for example, might be 11 Mbps, but the throughput might be only 5 Mbps. After removing the overhead—frame headers, error checking fields, acknowledgement frames, and retransmissions because of errors—the resulting information transfer is considerably lower. As the number of users increases, contention for the shared medium increases, which drives throughput even lower because computer devices (wireless NICs, to be more precise) must wait longer before sending data. This delay, which is a form of overhead, can significantly lower the throughput.

With wireless networks, it is common to say that the system sends data bits. In reality, a wireless network converts the binary digital signals into analog before transmitting the signal through the air medium.

Analog Signals

An analog signal, shown in Figure 2-8, is one where the amplitude of the signal varies continuously as time progresses. Much of the natural environment produces signals that are analog in form. Examples of this are light and the human voice. Man-made signals, such as radio waves, are also analog in form.

Figure 8Figure 2-8 Analog Signals Carry Information Through the Air Medium

In the early days of electronic communication, most systems processed signals in analog form, mainly because their inputs were information coming from humans. An analog signal has amplitude, in units of voltage or power, and a frequency (having a specific number of cycles per second often referred to as Hertz). Wireless networks generally use analog signals at 2.4 GHz, which is in a band of frequencies referred to as radio waves. There are several different methods for describing the amplitude of wireless signals. Refer to Chapter 3 for details on wireless analog signals.

4. Chapter Summary | Next Section Previous Section

Cisco Press Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from Cisco Press and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about Cisco Press products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites; develop new products and services; conduct educational research; and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@ciscopress.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by Cisco Press. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.ciscopress.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020