Home > Articles > Configuring the Enhanced Interior Gateway Routing Protocol

Configuring the Enhanced Interior Gateway Routing Protocol

  • Sample Chapter is provided courtesy of Cisco Press.
  • Date: Dec 25, 2006.

This chapter introduces you to Enhanced Interior Gateway Routing Protocol (EIGRP). This chapter covers the following topics:

  • EIGRP Overview
  • EIGRP Terminology and Operation
  • Configuring and Verifying EIGRP
  • Configuring EIGRP Authentication
  • Using EIGRP in an Enterprise Network
  • Verifying EIGRP Operation

In present-day and future routing environments, Enhanced Interior Gateway Routing Protocol (EIGRP) offers benefits and features over historic distance vector routing protocols, such as Routing Information Protocol Version 1 (RIPv1) and Interior Gateway Routing Protocol (IGRP). These benefits include rapid convergence, lower bandwidth utilization, and multiple-routed protocol support.

This chapter introduces EIGRP terminology and concepts and EIGRP configuration, verification, and troubleshooting. The chapter also explores topics such as route summarization, load balancing, bandwidth usage, and authentication. The chapter concludes with a discussion of EIGRP design and configuration techniques to implement an effective enterprise network.

EIGRP Overview

This section introduces EIGRP and describes its four underlying technologies.

EIGRP Capabilities and Attributes

EIGRP is a Cisco-proprietary protocol that combines the advantages of link-state and distance vector routing protocols. EIGRP has its roots as a distance vector routing protocol and is predictable in its behavior. Like its predecessor IGRP, EIGRP is easy to configure and is adaptable to a wide variety of network topologies. What makes EIGRP an advanced distance vector protocol is the addition of several link-state features, such as dynamic neighbor discovery. EIGRP is an enhanced IGRP because of its rapid convergence and the guarantee of a loop-free topology at all times. Features of this hybrid protocol include the following:

  • Fast convergence—EIGRP uses the Diffusing Update Algorithm (DUAL) to achieve rapid convergence. A router running EIGRP stores its neighbors' routing tables so that it can quickly adapt to changes in the network. If no appropriate route or backup route exists in the local routing table, EIGRP queries its neighbors to discover an alternative route. These queries are propagated until an alternative route is found, or it is determined that no alternative route exists.
  • Variable-length subnet masking (VLSM) support—EIGRP is a classless routing protocol, which means that it advertises a subnet mask for each destination network; this enables EIGRP to support discontinuous subnetworks and VLSM.
  • Partial updates—EIGRP sends partial triggered updates instead of periodic updates. These updates are sent only when the path or the metric for a route changes; they contain information about only that changed link rather than the entire routing table. Propagation of these partial updates is automatically bounded so that only those routers that require the information are updated. As a result, EIGRP consumes significantly less bandwidth than IGRP. This behavior is also different than link-state protocol operation, which sends a change update to all routers within an area.
  • Multiple network layer support—EIGRP supports IP, AppleTalk, and Novell NetWare Internetwork Packet Exchange (IPX) using protocol-dependent modules that are responsible for protocol requirements specific to the network layer. EIGRP's rapid convergence and sophisticated metric offer superior performance and stability when implemented in IP, IPX, and AppleTalk networks.

Other EIGRP features include the following:

  • Seamless connectivity across all data link layer protocols and topologies—EIGRP does not require special configuration to work across any Layer 2 protocols. Other routing protocols, such as Open Shortest Path First (OSPF), require different configurations for different Layer 2 protocols, such as Ethernet and Frame Relay (as you will see in Chapter 4, "Configuring the Open Shortest Path First Protocol"). EIGRP was designed to operate effectively in both local-area network (LAN) and wide-area network (WAN) environments. In multiaccess topologies, such as Ethernet, neighbor relationships are formed and maintained using reliable multicasting. EIGRP supports all WAN topologies: dedicated links, point-to-point links, and nonbroadcast multiaccess (NBMA) topologies. EIGRP accommodates differences in media types and speeds when neighbor adjacencies form across WAN links. The amount of bandwidth that EIGRP uses on WAN links can be limited.
  • Sophisticated metric—EIGRP uses the same algorithm for metric calculation as IGRP, but represents values in a 32-bit format, rather than IGRP's 24-bit format, to give additional granularity (thus, the EIGRP metric is the IGRP metric multiplied by 256). A significant advantage of EIGRP (and IGRP) over other protocols is its support for unequal metric load balancing that allows administrators to better distribute traffic flow in their networks.
  • Use of multicast and unicast—EIGRP uses multicast and unicast for communication between routers, rather than broadcast. As a result, end stations are unaffected by routing updates or queries. The multicast address used for EIGRP is

Like most IP routing protocols, EIGRP relies on IP packets to deliver routing information (Integrated Intermediate System-to-Intermediate System [IS-IS] is the exception, as you will see in Chapter 6, "Configuring the Integrated Intermediate System-to-Intermediate System Protocol"). The EIGRP routing process is a transport layer function of the Open System Interconnection (OSI) reference model. IP packets carrying EIGRP information have protocol number 88 in their IP header, as illustrated in Figure 3-1.

Figure 3-1

Figure 3-1 EIGRP Is a Transport Layer Function

Figure 3-2 illustrates how EIGRP performs automatic route summarization at major network boundaries. Administrators can also configure manual summarization on arbitrary bit boundaries on any router interface (as long as a more-specific route exists in the routing table) to shrink the size of the routing table. EIGRP also supports the creation of supernets or aggregated blocks of addresses (networks).

Figure 3-2

Figure 3-2 EIGRP Performs Route Summarization by Default

EIGRP supports both hierarchical and nonhierarchical IP addressing.

Underlying Processes and Technologies

EIGRP uses the following four key technologies that combine to differentiate it from other routing technologies:

  • Neighbor discovery/recovery mechanism—EIGRP's neighbor discovery mechanism enables routers to dynamically learn about other routers on their directly attached networks. Routers also must discover when their neighbors become unreachable or inoperative. This process is achieved with low overhead by periodically sending small hello packets. As long as a router receives hello packets from a neighboring router, it assumes that the neighbor is functioning, and the two can exchange routing information.
  • Reliable Transport Protocol (RTP)—RTP is responsible for guaranteed, ordered delivery of EIGRP packets to all neighbors. RTP supports intermixed transmission of multicast or unicast packets. For efficiency, only certain EIGRP packets are transmitted reliably.

    For example, on a multiaccess network that has multicast capabilities, such as Ethernet, it is not necessary to send hello packets reliably to all neighbors individually, so EIGRP sends a single multicast hello packet containing an indicator that informs the receivers that the packet need not be acknowledged. Other types of packets, such as updates, indicate in the packet that acknowledgment is required. RTP contains a provision for sending multicast packets quickly even when unacknowledged packets are pending, which helps ensure that convergence time remains low in the presence of varying speed links.

  • DUAL finite-state machine—DUAL embodies the decision process for all route computations. DUAL tracks all routes advertised by all neighbors and uses distance information, known as a metric or cost, to select efficient, loop-free paths to all destinations.
  • Protocol-dependent modules—EIGRP's protocol-dependent modules are responsible for network layer protocol-specific requirements. EIGRP supports IP, AppleTalk, and Novell NetWare; each protocol has its own EIGRP module and operates independently from any of the others that might be running. The IP-EIGRP module, for example, is responsible for sending and receiving EIGRP packets that are encapsulated in IP. Likewise, IP-EIGRP is also responsible for parsing EIGRP packets and informing DUAL of the new information that has been received. IP-EIGRP asks DUAL to make routing decisions, the results of which are stored in the IP routing table. IP-EIGRP is also responsible for redistributing routes learned by other IP routing protocols.
2. EIGRP Terminology and Operation | Next Section

Cisco Press Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from Cisco Press and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about Cisco Press products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites; develop new products and services; conduct educational research; and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@ciscopress.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by Cisco Press. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.ciscopress.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020